A NEEDLE-FREE VISION MEETING ON NEEDLE-FREE ADMINISTRATION SYSTEMS FOR VACCINES **Rockville, MD, 12/18/03**

Myron M. Levine, M.D., D.T.P.H.

Center for Vaccine Development, University of Maryland School of Medicine

PUBLIC HEALTH IMMUNIZATION STRATEGIES & TARGETS, 2003

ROUTINE vs. MASS CAMPAIGNS

ROUTINE IMMUNIZATIONS

- fixed care facilities
- outreach services (mobile teams)
- low or moderate workload
- vaccine supplies & logistics readily forecasted
- population typically needs to be motivated

MASS CAMPAIGNS

- more outreach
- high workload
- often strong consumer demand
- extra personnel required

AN IDEAL VACCINE-- CHARACTERISTICS

- Safe in all ages & immunocompromised (e.g., tetanus toxoid)
- Efficacious in all ages (including young infants & elderly) & high risk groups (e.g., tetanus toxoid)
- Single-dose (e.g., 17D yellow fever, measles, rubella)
- Early onset of protection (e.g., CVD 103-HgR)
- Long-lived protection (e.g., 17D yellow fever, TT, Ty21a)
- Administrable without needle & syringe (e.g., OPV, Ty21a, FluMist, CVD 103-HgR)
- Practical, simple formulation favors compliance
- Formulation resistant to high & low ambient temperatures (does not need a cold chain)

A WHY NEEDLE-FREE IMMUNIZATION IS DESIRABLE

SIMPLER

- More practical
- Less technical expertise required
- More suitable for mass campaigns

A WHY NEEDLE-FREE IMMUNIZATION IS DESIRABLE

PREFERRED

Generally
 preferred over
 needles
 (increases
 compliance)

WHY NEEDLE-FREE IMMUNIZATION IS DESIRABLE

SAFER

- Occupational safety (for health workers)
- Injection safety (for vaccinees)
- No infectious "sharps" waste

Discarded infectious waste

INJECTION SAFETY IN DEVELOPING COUNTRIES

- Many cases of inadvertent transmission of HIV, HBV & HBC from re-use of non-sterile needles and syringes
- Vaccinations constitute ~ 10% of injections in developing countries
- Vaccination targets healthy subjects --- must be held to a higher standard
- Autodisposable (AD) syringes have helped
- AD syringes still constitute infectious waste that must be disposed of safely

INJECTION SAFETY IN INDUSTRIALIZED COUNTRY MASS VACCINATION CAMPAIGNS

- Occupation health concern for vaccinators (needle sticks during high workload conditions)
- Disposal of infectious waste generated during high workload conditions

3 STRATEGIES FOR NEEDLE-FREE IMMUNIZATION

- MUCOSAL
 - Aerosol

TRANSCUTANEOUS

NEEDLE-FREE INJECTIONS

RATIONALE FOR ADMINISTERING VACCINES VIA MUCOSAL SURFACES

- Practical (e.g., Sabin oral polio vaccine)
- Preferred by parents & children over injections
- Avoids "injection safety" concerns in developing countries (inadvertent HBV, HCV, HIV transmission)
- Can stimulate all arms of the immune system (mucosal SIgA, serum antibodies, CMI [including CTL], ADCC)
- Preferred for mucosal pathogens
- Early defense for pathogens that invade via mucosa
- Some mucosal vaccines can elicit long-lived immunity (> 7 years)
- Some mucosal vaccines elicit rapid protection (day 8)

MUCOSAL LYMPHOID INDUCTIVE SITES

Gut-associated lymphoid tissue (GALT) Bronchus-associated lymphoid tissue (BALT) Nasal-associated lymphoid tissue (NALT)

MUCOSAL ROUTES OF IMMUNIZATION

ORAL NASAL

Rectal Vaginal Conjunctival

SOME MUCOSAL IMMUNIZATION STRATEGIES

- Live attenuated bacteria & viruses (Ty21a, CVD 103-HgR; cold adapted influenza virus, attenuated rotavirus)
- Live vectors (Salmonella Typhi, Shigella, adenovirus)
- Bacterial vectors delivering DNA vaccine
- Heterologous prime/boost
- Inactivated microbes (e.g., BS/WCV)
- Non-living antigen delivery systems (polylactide/polyglycolide microspheres; proteosomes, liposomes, cochleates, virus-like particles, virosomes, chitosan [polycationic polysaccharide] microspheres)
- "Edible vaccines" (transgenic plants)
- Mucosal adjuvants with non-living antigens (e.g., mutant LT or CT, CTA1-DD, cytokines, chitosan)
- DNA vaccines (e.g., given with chitosan)

LIVE ATTENUATED VACCINES

- Polio Eradication Initiative (Sabin OPV)
- Ty21a (Vivotif[®]) live oral typhoid vaccine
- CVD 103-HgR live oral cholera vaccine (Orochol[®], Mutacol[®], Orochol E[®])
- Trivalent cold adapted influenza (FluMist[®])
- New live rotavirus vaccines (GSK, Merck)
- Engineered attenuated S. Typhi live oral vaccines (CVD 908-htrA, ACAM948-CVD, Ty800, ZH9)
- Attenuated Shigella strains
- Attenuated Shigella expressing ETEC antigens

POLIO ERADICATION INITIATIVE

Mass immunization campaigns with Sabin OPV are the basis of the PEI

FIGURE 1. POLIO CASES BY FOUR WEEK PERIOD, IN BRAZIL, 1975 - 1984

- ~ 35,000 polio cases in 1988
- 1,999 cases reported in 2002 (95% reduction)
- 7 polio-endemic countries
- 80% of all cases occur in India, Nigeria and Pakistan
- No type 2 wild poliovirus cases since 1999.

EFFICACY OF FLUMIST® TRIVALENT (H3N2, H1N1, B) COLD ADAPTED ATTENUATED INTRANASAL INFLUENZA VACCINE

	Efficacy:		
<u>Virus</u>	<u>Years 1 & 2</u>		
A (H3N2)	92%		
В	91%		
A or B	92%		

Phase 3 field trial in the USA in 1,602 children, 15-71 months of age Belshe et al NEJM 1998

LONG-TERM PROTECTION FROM Ty21a LIVE ORAL TYPHOID VACCINE

Norte trial	<u>Ty21a</u>	<u>Plbo</u>	Efficacy
Years 1-3	N=22,170*	N=21,906	
Inc./10 ⁵	104	310	67% (47-97%)+
Years 1-7			
Inc./10 ⁵	226	598	62% (48-73%)
Suroriente trial	1		
Years 1-3	N=36,623**	N=10,602	
Inc./10 ⁵	63	272	77% (60-87%)
Years 1-5			
Inc./10 ⁵	93	417	78% (65-86%)
SVD * 3 doses of ente	eric-coated formulation e	every other day	+ (95% CI)
** 3 doses of "liqu	id" formulation every ot	her day (Levine et	al 1987, 1990 & 1999)

IMPORTANCE OF FORMULATION, EVEN FOR ORAL VACCINES

Chilean adolescents ingesting Ty21a in enteric capsule formulation

8% of Chilean 6- & 7-yearolds could not swallow the enteric capsules.

100% of kids this age ingested a liquid formulation

Mass immunization of Chilean adolescents with Ty21a in enteric capsules

CVD 103-HgR LIVE ORAL CHOLERA VACCINE

- Safety
- Immunogenicity
- Excretion of vaccine strain (minimal)
- Transmissibility (minimal)
- Environment (no introduction)
- Efficacy
- Effectiveness

CVD

ASSESSMENT OF LIVE ORAL VACCINE EFFICACY, MICRONESIA OUTBREAK

- Retrospective cohort study of target population vaccinated
- Match between cholera case records
 & vaccination registries
- 47% of population vaccinated during mass campaign
- Cholera incidence 5x higher in nonvaccinees
- Estimated Vaccine Efficacy = 79% (CI, 72-85%)

Vaccine efficacy evaluation team led by Dr. Claire-Lise Chaignat, Global Task Force on Cholera Control, WHO

SINGLE-DOSE ORAL IMMUNIZATION OF YOUNG INFANTS IN A NON-INDUSTRIALIZED COUNTRY

- ~ 70% of Chilean infants were able to mount relevant immune (vibriocidal antibody) responses following administration of a single-dose of live oral vaccine CVD 103-HgR (5x10⁹ CFU)
- Paves the way for studies with other singledose oral vaccines

THE ROLLER COASTER "UPS" AND "DOWNS" OF MUCOSAL VACCINES, 1998-2003

LESSONS FROM ROTASHIELD[®]

- Licensed by FDA in 8/98 based on clinical acceptability, safety, & efficacy
- Routine infant immunization, USA, 10/98-7/99 (circa 1.8 million doses administered)
- VAERS detected cases of intussusception in relation to the first dose of Rotashield[®] vaccine
- Routine use discontinued in 8/99
- Product withdrawn from market
- Epidemiologic studies suggest risk of ~1 per 10,000 vaccinated infants
- Legacy -- large safety studies for new infant oral rotavirus vaccines

ORAL VACCINES FOR WHICH IMMUNOGENICITY DIFFERS IN INDUSTRIALIZED VERSUS DEVELOPING WORLD POPULATIONS

- Sabin OPV
- RIT bovine rotavirus
- Tetravalent Rhesus rotavirus (10⁴ PFU)
- CVD 103-HgR live
 oral cholera vaccine
- Non-living BS/WCV

- Competition by enteric viruses
- Bacterial competition
- "Environmental enteropathy"
 - Small bowel bacterial overgrowth
 - Blunted villi
 - Hypercellularity

A CAUTION FOR INTRANASAL ANTIGENS AND ADJUVANTS

- Intranasal influenza vaccine (virosomes plus wild type LT adjuvant) withdrawn from market because of possible association with Bell's Palsy
- Olfactory nerve fibers are present in the nasal mucosa
- Cribriform plate of the ethmoid bone separates nasal cavity from the anterior cranial cavity
- Olfactory nerve fibers perforate the cribriform plate and extend to the olfactory bulbs of the brain
- Some adjuvants (e.g., LT, CT and their mutants) and antigens that bind gangliosides on neurons can be transported centrally
- Animal models vary widely in their predictability

A CAUTION FOR INTRANASAL ANTIGENS AND ADJUVANTS

CONTROVERSY OVER TRANSGENIC PLANTS

Non au mai transgéniques

AEROSOL MEASLES VACCINE

- Small particles (1-3
) to reach alveoli
- "Classical Mexican" jet nebulizer
 - Huge experience (> 3 million children vaccinated); well tolerated & immunogenic
 - Efficient with E-Z strain
 - Bulky; needs ice & power
- Portable devices under development
 - CDC ultrasonic
 (piezoelectric) nebulizer
 - "Portable Mexican" device

DIAGRAM OF AEROSOL EQUIPMENT

NEEDLE-FREE INJECTION DEVICES

"Universal Cartridge" Strategy

- Vaccines formulated in unidose "universal" cartridges of a standard size
- Cartridges fit needle-free injector devices
- Prototype -- Imule® cartridges and Mini-Imojet® hand-wound spring powered injector
- Premise -- all parenteral vaccines administrable by injection-free devices
- Practical obstacles
 - Cost of re-tooling production lines
 - Intellectual property issues
 - Need to agree on the "universal cartridge"

"BIOJECT 2000®" NEEDLE-FREE INJECTION SYSTEM

"LECTRAJET ®" NEEDLE-FREE INJECTION SYSTEM

TRANSCUTANEOUS IMMUNIZATION

- Potent dendritic antigen presenting cells (APCs) reside in abundance in the epidermis (Langerhans cells)
- Make Stratum corneum permeable to antigen (hydration, abrasion, micron-scale silicon projections)
- Co-administer adjuvant (e.g., LT)

Nasal immunization

- Specific vaccines
- Platform technologies

Oral immunization

- Specific vaccines
- Platform technologies

Small particle aerosols

Transcutaneous vaccination

Needle-free percutaneous jet injectors:

- High workload devices (for mass campaigns)
- Low work load devices

SOME BARRIERS TO ACHIEVING THE VISION OF NEEDLE-FREE VACCINATION GLOBALLY

- Organizational and political
 - Need commitment to make this a priority
 - Agreement on universal standards (where relevant)
- Financial
 - Direct investment costs
 - Opportunity costs
- Paucity of clinical data on many technologies

