



Fragmentation, Underlying Event and Jet Shapes at the Tevatron (CDF)

#### Alison Lister ETH Zürich On behalf of the CDF collaboration

HCP2005 4th July 2005



#### **Outline**:



- Fragmentation
  - Particle momentum spectra
  - Charge multiplicity
- Underlying Event
  - Definitions
  - Transverse charge density distributions
- Jet Shapes
  - Definitions
  - Inclusive shapes







#### Fragmentation

HCP2005 4th July 2005



#### Fragmentation

#### • Why study fragmentation?

- Driven by soft QCD (k<sub>T</sub><<1 GeV)</li>
- Theoretical challenge (QCD at  $k_T \sim \Lambda_{QCD}$ )
- Hadronisation stage still poorly understood

#### • Why at the Tevatron?

- Push energy scale up
- Study different sub-processes
- Much more "noisy" than lepton colliders



HCP2005 4th July 2005



### Multiplicities in q- and g-jets

- dijet events with M<sub>jj</sub>~100 GeV gluon jet fraction ~60%
- γ-jet events with M<sub>γj</sub>~100 GeV
  gluon fraction ~20%
- measure N<sub>jj</sub> and N<sub>γj</sub> inside
  15-30° cone around jet axis

Tevatron and recent OPAL "unbiased" data (r=1.51± 0.04 at Q=80 GeV) agree and follow trends obtained in the recent NLL extensions



#### RESULT: r = 1.6±0.2

HCP2005 4th July 2005

### Ongoing analyses (RunII):

- Two particle momentum correlations in jets
  - $R(\xi_1,\xi_2)=C_0 + C_1 (d\xi_1 + d\xi_2) + C_2 (d\xi_1 d\xi_2)^2$ • Where  $d\xi = \xi - \langle \xi \rangle$
  - LEP correlation data cannot be fitted with current QCD calculations
  - Higher order contributions might be important
  - What does the Tevatron have to say?
- Event shapes:
  - Beam-beam remnants models
  - Hadronisation "power corrections"



- Momenta of charged particles in jets
  - well described by theory
  - $k_T$ -cutoff can be set as low as  $\sim \Lambda_{QCD}$
  - number of hadrons ~ number of partons
- Ratio of charged particle multiplicities in gluon/quark jets  $r = 1.6 \pm 0.2$ 
  - multiplicities and their ratio agree with NLLA extensions and recent LEP data
- Many promising ongoing analyses





#### **Underlying Event**







- The underlying event consists of:
  - initial- and final-state radiation
  - beam-beam remnants
  - possible multiple parton interactions
- Study the charged particle correlations
- Many different variables to look at. e.g.
  - Charged particle density,  $dN_{chg}/d\eta d\phi$ , as a function of  $\Delta \phi$  or  $E_T$
  - Charged scalar p<sub>T</sub> sum density (not presented here, see public CDF web-pages for more plots)

HCP2005 4th July 2005





#### **Event Topologies**

Define the following event topologies:

- "Leading jet": the highest p<sub>T</sub> jet in the event (JetClu cone 0.7, |η| < 2)</li>
- "Back-to-Back": at least two jets with:
  - Δφ<sub>12</sub> > 150°
  - E<sub>T</sub>(jet 2)/E<sub>T</sub>(jet 1) > 0.8
  - E<sub>T</sub>(jet 3) < 15 GeV</li>

Define spatial regions around jet axis:

- $|\Delta \phi| < \pi/3$  as "Toward"
- $\pi/3 < -\Delta\phi < 2\pi/3$  and  $\pi/3 < \Delta\phi < 2\pi/3$  as "Transverse 1" and "Transverse 2"
- $|\Delta \phi| > 2\pi/3$  as "Away"





#### Charged particle density Δφ dependence

- Δφ dependence of the charged particle density in the "Leading Jet" and "Back-to-Back" events.
- Cuts:
  - p<sub>T</sub> > 0.5 GeV/c
  - |η| < 1 relative to jet1
  - 30 < E<sub>T</sub>(jet1) < 70 GeV







# "Transverse" charged particle density vs. $E_T$ leading jet





# "Transverse difference" charge density vs. E<sub>T</sub>(jet 1)



 Look at the difference in the charge particle density between two transverse regions (MAX-MIN)



# "Transverse minimum" charge density vs. E<sub>T</sub>(jet 1)



 Look at charge density distribution of the transverse region with the lowest charge density (MIN)



"MIN Transverse" is very sensitive to the "beam-beam remnance" component of the underlying event!

HCP2005 4th July 2005





#### Summary: underlying event

- Interesting correlations between the two transverse regions
- "Back-to-Back" less initial and final state radiation in transverse region than "Leading-Jet"
  - $\rightarrow$  closer look at beam-beam remnants and multiple parton interactions
- PYTHIA Tune A *(with multiple parton scattering)* describes these correlations better than HERWIG (*without multiple parton scattering*)
- Ongoing analysis to make results usable by other experiments:
  - unfold distributions to particle level
  - MidPoint algorithm
  - HERWIG + JIMMY





#### **Jet Shapes**

HCP2005 4th July 2005



#### Jet Shapes: definitions

Integrated shape:

Fractional  $p_{\rm T}$  of jet inside cone r around jet axis

$$\Psi(r) = \int_0^r \frac{p_T(r')}{p_T^{jet}} dr' = \frac{1}{N_{jets}} \sum_{jets} \frac{p_T(0, r)}{p_T(0, R)}$$

Measurement:

$$\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta Y)^2}$$

- ~170 pb<sup>-1</sup> CDF Run II data
- MidPoint jet algorithm (cone 0.7, f<sub>merge</sub> 75%)
- Jet rapidity: 0.1 < |Y| < 0.7</p>
- Shapes corrected back to hadron level
- Binned in jet p<sub>T</sub>





#### Jet Shapes: Results

- Pythia Tune A Monte Carlo (tuned to Run I underlying event) describes data very well
- Multiple parton interaction (MPI) important in the description of jet shape







• First RunII analysis on Jet Shapes

Pythia Tune A describes data well

 Ongoing analysis to measure the shapes of b-jets





## Backup slides

HCP2005 4th July 2005



HCP2005 4th July 2005