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Outline:

Fragmentation
= Particle momentum spectra
= Charge multiplicity

Underlying Event
= Definitions
= Transverse charge density distributions

Jet Shapes
= Definitions
* Inclusive shapes
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+ Jets:
= Hard scattered partons
[ = Final state radiation

= Hadronisation

* Underlying Event:

‘» |nitial state radiation

= Beam-beam remnants
.* Multiple parton interactions
= Hadronisation
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Fragmentation

Why study fragmentation?

= Driven by soft QCD (k;<<1 GeV)
= Theoretical challenge (QCD at ky~Aqcp)

= Hadronisation stage still poorly understood

Why at the Tevatron?
= Push energy scale up
= Study different sub-processes
= Much more “noisy” than lepton colliders
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Particle momentum spectra

CDF
Charged particle momentum spectra (6
Measurement: cone=0.47)
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Multiplicities in g- and g-jets (D

Ratio r = N, (gluon jet) / N (quark jet)
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- dijet events with M;~100 GeV
gluon jet fraction ~60%

*  vy-jet events with Myj~100 GeV
gluon fraction ~20%

© measure N; and N,;inside
15-30° cone around jet axis

r=N_/N_

Multiplicities in g- and g-jets

(

1 LLA &NLLA, r=C,,/C =225

S I Gaffney & Mueller, 1985

CDF, E,;= 41 GeV
O CDF, E, =53 GeV

1 — — Catanietal., 1992 P
1 —— Lupia & Ochs, 1998 . GLED
sfe—— Capella et al., 2000 OPAL
10 100
Q, GeV

RESULT: r =1.6+0.2
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Ongoing analyses (Runll):

Two particle momentum correlations in jets
= R(§;,E,)=Cy + C, (dg; + dE,) + C, (dg; - d&y)?
Where dE = g - <E>
= |LEP correlation data cannot be fitted with current
QCD calculations

= Higher order contributions might be important
= What does the Tevatron have to say?

Event shapes:
= Beam-beam remnants models
= Hadronisation “power corrections”
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Fragmentation summary

Momenta of charged particles in jets

= well described by theory
= Kkr-cutoff can be set as low as ~Aq¢p

= number of hadrons ~ number of partons

Ratio of charged particle multiplicities in
gluon/quark jets r=1.6 = 0.2

= multiplicities and their ratio agree with NLLA
extensions and recent LEP data

Many promising ongoing analyses
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Proton

Underlying Event derlying Event

Final-State

Outgoing Parton Radiation
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Underlying Event

The underlying event
consists of:
= jnitial- and final-state radiation
= beam-beam remnants

= possible multiple parton
interactions

Study the charged particle correlations

Many different variables to look at. e.g.
= Charged particle density, dN_../dnd¢, as a function of A¢ or
ET

= Charged scalar p; sum density (not presented here, see public
CDF web-pages for more plots)

chg
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Event Topologies (

Define the following event topologies:

‘Leading jet”: the highest p; jet in the
event (JetClu cone 0.7, [n| < 2)

‘Back-to-Back”: at least two jets with:
= A¢,, > 150°

= E. (et 2)/E;(jet1) >0.8

= E;(jet3) <15 GeV

Jet #1 Direction

<
5
{3
.
J

et #1 Direction

Define spatial regions around jet axis:
= |A¢| < /3 as “Toward”
" 1/3 <-Ap <2n/3and /3 < Ap < 2n/3 as
“Transverse 1” and “Transverse 2”
= |A¢p| > 2n/3 as “Away”

“Toward”

Jet #2 Direction
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Charged particle density

A¢ dependence

A¢ dependence of the

Charged Particle Density: dN/d ndé
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“Transverse” charged particle (
density vs. E; leading jet

"AVE Transverse" Charge Density: dN/d ﬂd¢|
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“Transverse” charged particle
density vs. E; leading jet

Jet #1 Direction
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Jet #1 Direction

“TransMAX” “TransMIN”

Look at the difference in
the charge particle
density between two
transverse regions
(MAX-MIN)

HCP2005 4th July 2005

y “Transverse difference” charge ¢
density vs. E-(jet 1)

"Transverse" Charge Density

"MAX-MIN Transverse" Charge Density: dN/d "Md¢

-
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“Transverse minimum” charge ¢
density vs. E-(jet 1)

Jet #1 Direction "MIN Transverse" Charge Density: dN/d Nd¢
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Ad N
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distribution of the
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the lowest charge
density (MIN)
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Charged Particle Density
PYTHIA Tune A vs HERWIG

‘Data - Theory: Charged Particle Density dN/d  Nd¢

‘Data - Theory: Charged Particle Density dN/d nd¢|

. 1.0
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Summary: underlying event

Interesting correlations between the two transverse regions

“Back-to-Back” less initial and final state radiation in transverse
region than “Leading-Jet”
— closer look at beam-beam remnants and multiple parton interactions

PYTHIA Tune A (with multiple parton scattering) describes these
correlations better than HERWIG (without multiple parton scattering)

Ongoing analysis to make results usable by other experiments:
= unfold distributions to particle level
= MidPoint algorithm
= HERWIG + JIMMY
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Jet Shapes: definitions (P

Integrated shape:
Fractional p; of jet inside cone r around jet axis

vir) = [ Py - 37 P
0 Pp jets ors pr(0, R)
Measurement: AR = \/(A¢)2 + (AY)?
= ~170 pb-' CDF Run Il data
= MidPoint jet algorithm (cone 0.7, f
Jet rapidity: 0.1 < |Y| <0.7
Shapes corrected back to hadron level
= Binned in jet p

75%)

merge
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Low py:

dominated by gluon jets

CDF Il Prelimincry

(%
> ' @ DATA
p—
> — PYTHIA Tune A
0.8 .
....... gluon—jet
quork—jet
0.6
37 < P < 45 GeV/c
0.4
0.1 < 1YY" <0.7
0.2
% 0.2 0.4 0.6 0.8 1
r/R
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Jet Shapes: Results -

High p+:
dominated by quark jets

CDF Il Preliminary

Ve
Qi @ DATA
o T~ PYTHIATune A e
o -
¥
0.8 .
S gluon—jet
gquork—jet
0.6
277 < P® < 304 GeV/c
0.4
| 0.1 <1Y*1<0.7
0.2
% 0.2 0.4 0.6 0.8 1

r/R
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Jet Shapes: Results P

Pythia Tune A Monte . CDF I Prefiminary
Carlo (tuned to Run | 3 Midpoint Algorton (R=0.7)
underlying event) S ® DATA
describes data very well 7 > e

7025 SYTHIA (no MPI)

N 0 HERWIG

Multiple parton " SN ar<iveicor
interaction (MPI) .,
Important in the >
description of jet shape 008

- 50 100 150 200 250 300 350

P (GeV/c)
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Jet Shapes: Summary *

First Runll analysis on Jet Shapes

Pythia Tune A describes data well

Ongoing analysis to measure the shapes of
b-jets
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Jet Shapes: Results (

@ DATA ® DATA
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