Development of Detailed Railyard Emissions to Capture Activity, Technology and Operational Changes

Robert G. Ireson¹, M. J. (Jon) Germer², and Lanny A. Schmid²

¹ Air Quality Management Consulting
 ² Union Pacific Railroad

14th Annual EPA Emission Inventory Conference Transforming Emission Inventories – Meeting Future Challenges Today April 12-14, 2005 Las Vegas, NV

Sponsor:

Union Pacific Railroad

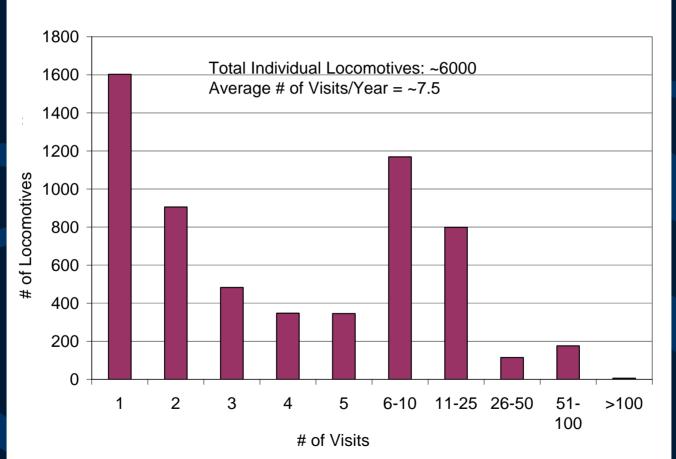
Acknowledgements

- Deb Schafer, UP
- Punky Poff, UP
- Rob Cohee, UP
- Jim Diel, UP
- Brock Nelson, UP
- Ron Hand, CARB
- Numerous other UP professionals

Overview

- Union Pacific Railroad, the J. R. Davis Yard, and railroad operations in general
- Emission inventory issues for railyards
- Specific activities at the J. R. Davis Yard
- Activity data and emission factors
- Activity and emission trends
- Conclusions

Union Pacific Railroad The Largest Railroad in North America


23 states32,615 route miles7,500 locomotives

J. R. Davis Yard, Roseville, CA

- UP's largest classification yard in the western U.S.
- 40,000 locomotive arrivals per year
- Subject of a 2004 CARB modeling study
- UP cooperated closely in data collection and analysis for emission inventory
- Methodology extended to assess trends and evaluate emission reduction alternatives

Part of a National Network

Annual Yard Visits by Individual Locomotives

Railroad Operations

- Move the freight!
 - Quickly
 - Efficiently
- 1 double stack train = 280 HHDDTs
- 2-4 x more fuel efficient
- 3-4 x cleaner per ton-mile

Railyards

- Strategically located
- Get freight to its destination
 - Break and build trains (classification)
 - Intermodal facilities
 - Ports
- Keep them running

 Refueling and service
 Locomotive repair
 Car repair

Top-Down Rail Emission Inventories

- EPA 1998 Regulatory Support Document
 - Average duty cycles for line-haul and switching
 - Emission factors in g/bhp-hr by model and duty cycle
 - Fuel consumption estimated and converted to bhp-hrs
 - Emissions = (bhp-hrs) x (g/bhp-hr)

	Throttle Position (Percent Time in Notch)									
Duty Cycle	D.B.	Idle	N1	N2	N3	N4	N5	N6	N7	N8
Line-Haul	12.5	38.0	6.5	6.5	5.2	4.4	3.8	3.9	3.0	16.2
Switch	0.0	59.8	12.4	12.3	5.8	3.6	3.6	1.5	0.2	0.8

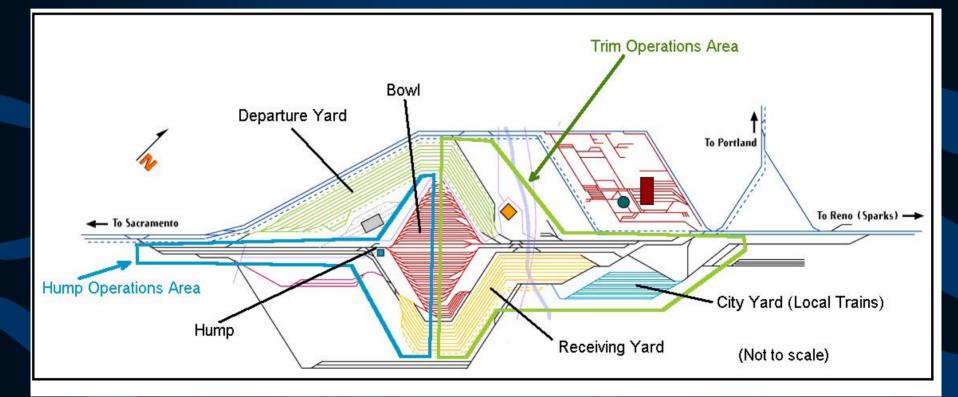
Problems with Top Down Approach

- Impossible to spatially disaggregate
 - Roseville arrivals likely to have been last fueled in Utah or Oregon
 - Duty cycles are not representative of activity within railyards
- Bottom-up inventory approaches are required

Q: What Goes on in Railyards?

A: It depends on the yard • J. R. Davis Yard - "Hump" yard for classification - Locomotive fueling and service – Locomotive repair and testing – Local train operations - Track "maintenance of way" trains

11


Q: What's a Hump?

- A: Gravity-powered classification
- Incoming trains pushed over a hump
- Cars are automatically uncoupled at the hump and directed into "bowl" tracks with computer switching and braking to build new train segments
- Switchers ("trim sets") pull out new train segments and push to departure tracks

The J. R. Davis Yard

Yard Schematic

What Happens at J. R. Davis Yard

- Through trains pass on the Northside track
- In-bound line-haul and locals go to the Receiving Yard
 - Consists (groups of locomotives) disconnect and are sent to the Service Track or to outbound trains
 - Cars are sent to classification (hump)
- Service Track washes, fuels, oils, and sands out-bound consists, and does minor repairs

What Happens at J. R. Davis (cont.)

- Locomotive repairs and testing handled at the locomotive shop
- Maintenance of way and out-bound local trains handled at the Rockpile and City Yard
- Out-bound line-haul trains are mated with consists in the Departure Yard

What Happens at Other Yards

- J. R. Davis is a hump classification yard with maintenance facilities
- Other yards differ
 - Flat switching classification yards
 - Intermodal terminals
 - Ports and car loading
 - Service and maintenance
 - Geographic layout and types of freight handled

Emission Inventory Needs

• Activity

- Number, model and location of consists
- Paths through the yard
- Duration of operations and throttle settings
- Hump set operations
- Trim set operations

Train Data (~70,000 Records)

	Used to Identify								
Parameter	Identification of Train Events	Location in Railyard	Consist Composition	Temporal Profile	Train Characteristics				
Train Symbol	X	Х							
Train Section	X								
Train Date	Х								
Arrival or Departure	X	Х							
Originating or Terminating	Х	Х							
Direction		Х							
Crew Change?		Х							
Arrival & Departure Times				Х					
# of Locomotives			X						
# of Working Locomotives			X						
Trailing Tons					Х				
Locomotive ID #			X						
Locomotive Model			X						

Hump and Trim

- Dedicated units (sort of)
 - Hump: Specially modified GP-38s with variable throttle
 - Trim: GP-38 or switchers that may be traded out
 - Most equipped with ZTR SmartStart

- 24/	-24/7 operations with fixed number of units									
	Throttle Position (Percent Time in Notch)									
Duty Cycle	D.B.	Idle	N1	N2	N3	N4	N5	N6	N7	N8
Trim	0.0									
Operations		44.2	5.0	25.0	2.3	21.5	1.5	0.6	0.0	0.0
Hump Pull-	0.0									
Back		60.4	12.5	12.4	5.9	3.6	3.6	1.5	0.0	0.0
Hump Push	0.0	0.0	0.0	100	0.0	0.0	0.0	0.0	0.0	0.0

21/7 operations with fixed number of units

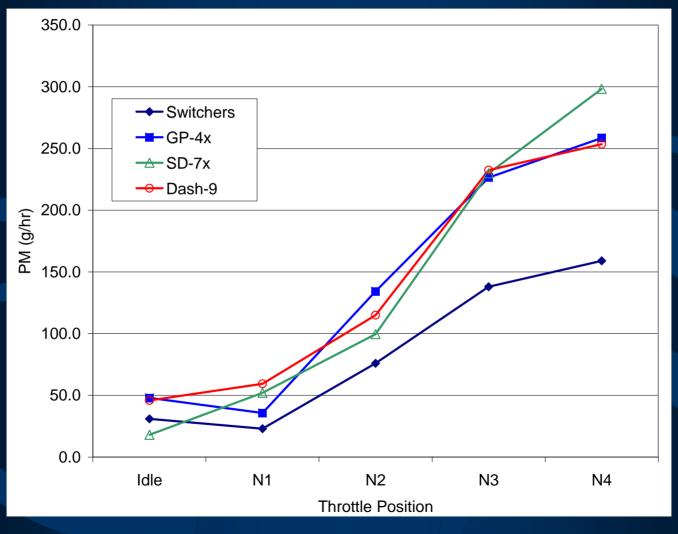
Robert G. Ireson, Ph.D.

Movement, Service, Repair and Testing

- Consist movements avoid bowl and hump, typically with all but one unit shut down
- Service volume and model distribution data
 - Service codes by locomotive ID give location

– Maintenance codes identify load tests

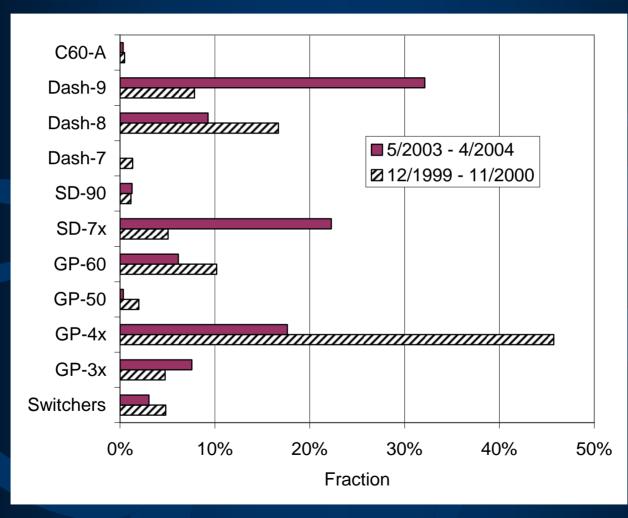
	Throttle Position (Percent Time in Notch)									
Duty Cycle	D.B.	Idle	N1	N2	N3	N4	N5	N6	N7	N8
Consist	0.0	0.0	50.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0
Movement										
Load Tests:						 			 	
10-Minute	0.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	80.0
15-Minute	0.0	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.7
30-Minute	0.0	33.3	33.3	0.0	0.0	0.0	0.0	0.0	0.0	33.3


Emission Factors

- > 50 locomotive submodels in common use
- Differences may be negligible between models, and in-use emissions data are not available for every model
- 11 model groups were selected based on common engine families

Locomotive Model Groups

Model Group	Engine Family	Representative Models
Switchers	EMD 12-645E	GP-15, SW1500
GP-3x	EMD 16-645E	GP-30, GP-38
GP-4x	EMD 16-645E3B	GP-40, SD-40-2, SD-45-2
GP-50	EMD 16-645F3B	GP-50, SD-50M
GP-60	EMD 16-710G3A	GP-60, SD-60M
SD-7x	EMD 16-710G3B	SD-70MAC, SD-75
SD-90	EMD 16V265H	SD-90AC, SD-90-43AC
Dash-7	GE7FDL (12 cyl)	B23-7, B30-7, C36-7
Dash-8	GE7FDL (12 or 16 cyl)	B39-8, B40-8, C41-8
Dash-9	GE7FDL (16 cyl)	C44-9, C44AC
С60-А	GE7HDL	C60AC


Emission Factors (PM, g/hr)

Factors Affecting Emission Trends

- Fleet modernization
 - 1900 new units since January 2000
 - Higher horsepower, Tier 0, 1 and (soon) 2
 - Decrease in GP-4x, GP-50, GP-60, Dash 7 & 8
 - Lower idle emission rates
 - 1800 units now have auto start/stop technology.
 - Decrease in maintenance and load testing
- Increased freight volume and operational changes
 - Little change in number of trains
 - Decrease in fraction of trains handled in the yard

Locomotive Model Trends

Yard Activity Trends

Trains, Locomotives and Freight

	Trains	Locomotives	Trailing Tons
Arrivals	-5.2%	-3.5%	
Departures	-7.0%	-7.3%	
Throughs (Bypassing the yard)	8.0%	6.8%	
Total Arrivals and Departures	-0.3%	-0.9%	15.1%

Load Testing (scheduled and unscheduled maintenance)

10-Minute Tests	-18.9%
15-Minute Tests	14.6%
30-Minute Tests	-43.2%
Total Tests	-12.3%
Idling Hours	-20.6%
Notch 1 Hours	-43.2%
Notch 8 Hours	-12.0%

Emission Trends

	Estimated Emissio	Percent Change	
	12/1999-11/2000	5/2003-4/2004	
Idling and Movement of Trains	5.2	4.2	-20.3%
Idling and Movement of Consists	8.5	6.8	-20.2%
Testing	1.5	1.3	-14.1%
Hump and Trim	7.0	6.6	-5.7%
Total	22.3	18.9	-15.3%

Conclusions

- Each railyard is unique w.r.t. activities, layout, types of freight, and role in the national network
- Top-down methods don't apply
- Total activity (trains, tons, locomotives, and models) can be well characterized
- Details of in-yard operations less available, and require expert input

Conclusions (cont.)

- Disaggregate (bottom-up) data provide verifiable trends and the opportunity to evaluate emission reductions from operational changes and new technologies
- Yards are part of a national network and can't be treated in isolation
- Yard operations and emissions will reflect the effects of national network changes