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Abstract

Early warning systems (EWS) tend to focus on the identification of slow onset disasters such famine and epidemic disease. Since hazardous
environmental conditions often precede disastrous outcomes by many months, effective monitoring via satellite and in situ observations can
successfully guide mitigation activities. Accurate short term forecasts of NDVI could increase lead times, making early warning earlier. This paper
presents a simple empirical model for making 1 to 4 month NDVI projections. These statistical projections are based on parameterized satellite
rainfall estimates (RFE) and relative humidity demand (RHD). A quasi-global, 1 month ahead, 1° study demonstrates reasonable accuracies in
many semi-arid regions. In Africa, a 0.1° cross-validated skill assessment quantifies the technique's applicability at 1 to 4 month forecast intervals.
These results suggest that useful projections can be made over many semi-arid, food insecure regions of Africa, with plausible extensions to
drought prone areas of Asia, Australia and South America.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In areas with limited in situ data, NDVI and satellite rainfall
estimates are routinely used to identify areas prone to drought
related crop failure and poor pasture conditions (FEWS, 2000;
Field, 1991; Hutchinson, 1998), malaria (Hay et al., 1998) and
Rift Valley Fever (RVF) (Linthicum et al., 1999), and damaging
pests such as locusts (Hielkema et al., 1986; Tucker et al.,
1985). These satellite observations are routinely used by
development organizations working in semi-arid regions
where agriculture and pastoralism are the primary livelihood
strategy (Maxwell, 1996; Watts, 1987; Webb & Rogers, 2003).
By monitoring environmental and social conditions, govern-
ments and international, national and local organizations have
been able to respond rapidly to food crises. This paper describes
a statistical approach for making intra-seasonal projections of
vegetation change, thereby providing the potential for earlier
early warning of these events.
⁎ Corresponding author. Tel.: +1 805 893 8322.
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The enhanced integration of remotely sensed vegetation
and precipitation products has an immediate and interested
audience, with the ability to inform policy and emergency
response agencies and governments. One way of leveraging the
substantial human investment in the environmental monitoring
of vegetation (Eklundh, 1996; Hielkema et al., 1986; Kawabata
et al., 2001; Prince & Justice, 1991; Tucker et al., 1986),
precipitation (Adler et al., 1994; Arkin et al., 1994; Huffman et
al., 1995, 1997; Love et al., 2004; Xie & Arkin, 1996) and
atmospheric conditions (Kalnay et al., 1996) is to use observed
environmental conditions to make predictions of future land
surface properties.

Many studies have described the dependency of vegetation
on variations of rainfall and temperature (Davenport &
Nicholson, 1993; Lotsch et al., 2003a; Nicholson et al.,
1997; Richard & Poccard, 1998; Tucker & Nicholson, 1999).
The Normalized Difference Vegetation Index or NDVI from
NOAA's Advanced Very High Resolution Radiometer
(AVHRR) instrument has been used to assess climate in
semi-arid zones where rainfall records are scarce or difficult
to obtain in a timely fashion (Davenport & Nicholson, 1993;
Zhou et al., 2003). A month lead-time can prove critical in
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minimizing the impacts of these hazards. This paper
demonstrates one way in which the lagged relationship
between rainfall and NDVI can be used to estimate vegetation
response to current conditions, helping to make early warning
systems earlier. We refer to these statistical estimates of
NDVI change as ‘projections’ to differentiate them from
climate-based forecasts of NDVI (Anyamba et al., 2002;
Verdin et al., 1999). The approach described here is distinct
from and compatible with climate-modeling approaches. Our
focus is on the direct use satellite-observed precipitation as a
basis for forecasting NDVI.

2. Data

The following sections describe the datasets that were used
in the model: 1° monthly precipitation fields from the Global
Precipitation Climatology Project (GPCP), 0.1° monthly
precipitation fields from NOAA's Climate Prediction Center,
relative humidity fields from the National Climatic Diagnostics
Center's reanalysis, and 1° and 0.1° monthly AVHRR NDVI
data from NASA's Global Inventory Monitoring and Modeling
Systems group (GIMMS).

2.1. Global and operational contexts

In this study, the data were used at two spatial resolutions: 1°/
quasi-global (50 N/S, 180°W to 180°E) and 8 km African (40°
N/S, 20°W to 55°E) data re-projected to the Plate Carree or
geographic 0.1° resolution. The 1° data provides global
validation with low signal-to-noise ratios for the inputs. The
0.1° scale recreates the operational context used in weekly
monitoring by FEWS NET.

2.2. Precipitation data

This analysis used two sources of precipitation: the global
GPCP Version 2 Combined Precipitation Dataset (Huffman et
al., 1995, 1997) and the African 0.1° Rainfall Estimate or
RFE climatology. The GPCP is a 2.5° merged analysis
incorporating precipitation estimates from low-orbit-satellite
infrared data and rain gauge observations. This study used 1°
monthly gridded area-mean rainfall totals and error estimates
over the January 1979 to January 2001 period (GPCP, 2001).
For Africa, NOAA's Climate Prediction Center's African
RFE Climatology (ARC, Love et al., 2004) provides a
unique resource for studying rainfall variability. The CPC's
ARC dataset is similar in spirit to climate reanalysis projects.
A fixed algorithm, the RFE 2.0 method (Xie & Arkin, 1996;
Xie et al., 2002) is applied consistently to a long
homogeneous set of 0.1° three-hourly Meteosat infrared
and Global Telecommunications System rain gauge data.
While the ARC estimates lack additional satellite inputs used
in the operational RFE 2.0 estimates, it has much longer
period of record (1995–present as opposed to 2001–present).
The ARC data is used operationally by USAID's Famine
Early Warning System, and is available for download from
www.fews.net.
2.3. Relative humidity data

This study has used surface relative humidity (the 0.995
sigma level) fields from the National Centers for Environmental
Prediction (NCEP)/National Center for Atmospheric Research
(NCAR) reanalysis. These fields are at a 2.5° resolution and are
available from January 1948 to present. Atmospheric fields in
the reanalysis are derived from solutions to the primitive
equations for vorticity, divergence, virtual temperature, loga-
rithm of surface pressure and specific humidity on a T62
spectral grid with 28 unequally spaced sigma levels (Kana-
mitsu, 1989; Kanamitsu et al., 1991; Sela, 1980). The data were
resampled to a 1.0° and a 0.1° resolution using cubic
convolution.

Moisture related parameters in the reanalysis are consid-
ered much less reliable than temperature, pressure or wind
fields, which are constrained by observations. Despite the
approximate nature of these fields, both our previous efforts
modeling rainfall in Africa (Funk & Michaelsen, 2004; Funk
et al., 2003b) and the ongoing use of statistically corrected
climate forecast models (Landman & Goddard, 2002) have
demonstrated that climate models can provide useful
information regarding atmospheric moisture conditions.
‘True’ relative humidity varies more smoothly in space and
time than rainfall, making the use of reanalysis based on
relative humidity plausible.

2.4. NDVI data

The AVHRR-based NDVI time series is from the NASA
NDVIe dataset produced by the NASA Global Inventory
Monitoring and Modeling Systems (GIMMS) group. The
NDVIe is based on a pre-existing dataset produced by members
of the GIMMS group at the Laboratory for Terrestrial Physics in
the late 1990s. The NDVI was mapped from an in-house library
of AVHRR level 1B data (Tucker et al., 2005). Corrections to
the dataset include volcanic aerosol correction in 82–84 and
91–93, cloud screening, desert calibration, and a solar zenith
angle correction (Los, 1998; Mahoney et al., 2001; Vermote et
al., 1997; Vermote & Kaufman, 1995).

The solar zenith angle correction was applied during post-
processing to remove non-vegetative artifacts due to orbital drift
and changes in sun-target-sensor geometry (Pinzon, 2002;
Pinzon et al., 2005). A kriging interpolation removes noise and
attenuates the effect of cloudy and missing pixels. The resulting
data has a high signal-to-noise ratio and has a comparable range
to that of MODIS and SPOT-Vegetation (NDVI values of 0.05
to 0.95) (Tucker et al., 2005). This dataset has been used in
several studies in the past few years (Brown et al., in press;
Lotsch et al., 2003b; Zeng et al., 1999).

It should be noted that the vegetation, and hence NDVI, will
tend to vary on much shorter spatial scales than relative
humidity and rainfall estimates. The modeling approach
described in the next section links NDVI variations with
combinations of NDVI, precipitation and relative humidity, thus
using the NDVI to ‘sharpen’ the landscape response to smooth
rainfall and humidity fields.

http:www.fews.net
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3. Methods

3.1. Modeling NDVI change as a function of NDVI state and
environmental forcing

This model seeks reasonable predictions of NDVI values
over relatively short time scales (1 to 4 months), based on
environmental forcing factors. The authors work closely with
FEWS NET, a food security early warning decision support
system, thus our objective is to create a simple and effective
means of quantifying the future effects of observed environ-
mental conditions. The framework described here uses observed
precipitation, relative humidity and NDVI values to project
NDVI change. Forecast precipitation and relative humidity
fields could easily be incorporated, using information from
dynamic, statistical or dynamic-statistical climate models.
Extensions including more environmental parameters would
likely improve performance, especially in mid-latitude climes.
The model focuses on month-to-month NDVI change. These
values can then be used to estimate future values of NDVI. We
begin with a description of a simple 1 month-ahead implemen-
tation at quasi-global resolution, and then develop the more
complete version that incorporates lags from 1 to 5 months for
Africa. We find that the combination of NDVI state,
precipitation and relative humidity information can be used to
forecast NDVI in semi-arid Africa.

The NDVI change at time t at some location (ΔNt=Nt−Nt−1)
can be approximated by NDVI growth and loss terms. Since
vegetation is mostly water, this can be grossly considered as a
balance between precipitation/soil moisture uptake and a
transpiration related loss component. NDVI state is important.
The growth associated with a given precipitation value is greater
when the NDVI is far below its maximum value, and zero when
this NDVI value is achieved. Similarly the NDVI loss term
associated with low relativity humidity values will be greatest
when the NDVI value is highest, and zero when the NDVI value
is at its historic minimum.

This approach is guided by the broad characteristics of rain
and the resulting green vegetation. Early in the rainy season,
precipitation tends to produce rapid green-up and water
absorption. Late in the season, increased leaf area can produce
higher rates of evapotranspiration and brown-down or vegeta-
tion senescence. Constrained NDVI growth estimates are
derived from the log of monthly precipitation values.
Constrained NDVI loss estimates are based on a transform of
relative humidity (100−RH). We refer to this latter term as
relative humidity demand (RHD).

The bivariate 1 month-ahead form of the model is

DN̂t ¼ b1ðNmax � Nt�1Þlnð1þ Pt�1Þ
� b2ðNt�1 � NminÞð100� RHt�1Þ ð1Þ

where ΔN̂t is the change in NDVI at time t−1 and t, b1 and b2
are least-squares-fit parameters, Nmax and Nmin are historic
maximum and minimum observed NDVI at a given location, Nt,
Pt and RHt are the observed monthly NDVI, precipitation and
relative humidity at the time the forecast is made.
Note that this modeling approach automatically limits the
range of the NDVI to the historically observed extremes, and
provides an unsophisticated water-balance approach to model-
ing NDVI response. When NDVI values are low, leaf area and
soil moisture values are typically low, enabling the plant/soil
system to capture and use a large fraction of the available water.
When NDVI values are high, soil moisture and vegetation cover
are typically near their maximum values, and a larger fraction of
rainfall will be lost from the soil/vegetation system through
runoff and evapotranspiration from the land and plant surfaces.
When NDVI values are low, both plant leaf area and stomatal
conductance are low, reducing moisture loss to atmosphere.

3.2. The full NDVI projection model

Many studies have shown links between NDVI and rainfall
at 2 months, 3 months or even greater lags (Ji & Peters, 2003;
Kerr et al., 1989; Piao et al., 2003; Potter et al., 1999). We
extend the bivariate model, therefore, to include lags between 1
and 5 months. This can be expressed in matrix notation as

DN̂t ¼ bTF

F1 N 5 ¼ ðNmax � Nt�0 N 4Þlnð1þ Pt�0 N 4Þ

F6 N 10 ¼ ðNt�0::4 � NminÞð100þ RHt�0 N 4Þ ð2Þ
where b is a vector of least-squared-error derived weights, and F
is a vector of growth and loss terms associated with monthly
lags 0 through 4. Observant readers will note that for a 1 month
ahead forecast model, the 0 lag values will not be available,
since the index t=0 denotes a month in the future. This
limitation is overcome by substituting climatological averages
for N, RH and P when future values are required. This process
allows us to create estimates for 1 to 4 months ahead forecast
scenarios. The 1-month forecast uses 1 month of climatic
average data, and 4 months of past rainfall and RH values. The
4-month model uses 1 month of observed data and 4 months of
climatic average data.
An advantage of this modeling approach is the simplicity
with which climate forecast values could be incorporated. These
values can replace the climatic averages with estimates derived
from any reasonable climate forecast. This application remains
to be explored in future work.

3.3. Forecast validation—definition of the cross-validated skill
metric

It is important to note that Eqs. (1) and (2) convolve the
seasonal cycle and anomalous conditions into a single estimate
of NDVI change. We assess the model therefore using leave-
one-out cross-validated skill statistics based on NDVI anoma-
lies (Michaelsen, 1987). Leave-one-out cross-validation is an
iterative procedure in which one sample is held out on each run,
and the rest of the sample data are used to predict the value of
the excluded datum. The variance of these errors is accumulated
and used to estimate the ratio variance of the NDVI anomalies
explained (R2).



Fig. 2. Regression multiple r of simple model (Eq. (1)) applied quasi-globally.
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4. Analysis of model results

This section presents the results of the model and evaluates
its effectiveness. Section 4.1 quantifies the cross-validated
forecast skill associated with the 5-month NDVI projections
(Eq. (2)) at 1- to 4-month forecast lags in Africa. Section 4.2
applies the simple month ahead model (Eq. (1)) to a quasi-
global grid, identifying other regions in which the model might
be applied successfully with few modifications.

4.1. Cross-validated skill assessment for Africa

Fig. 1 shows results for the cross-validated projections based
on the 0.1° NASA NDVIe and CPC ARC datasets. These
results are based on the full NDVI projection model (Eq. (2)).
These skill values are based on the monthly NDVI anomalies
and thus have the seasonal cycle removed. Panels A and B show
the 2-month and 4-month forecast skills. These skills are high
over many parts of semi-arid Africa. These areas, which tend to
be poorly explained by the seasonal cycle alone, correspond to
portions of Eastern Africa (especially Kenya, Somalia and
Ethiopia), along the northern Sahel, and in drought prone
regions of southern Africa stretching from southern Mozambi-
que to the northwest corner of Namibia. While these areas are
relatively small in spatial extent, they contain important food
security hot spots.

4.2. The near-global NDVI model analysis

Fig. 2 shows the shows the simple 1-month ahead
forecast model multiple r on a quasi-global scale. The
simple model works well across large stretches of the semi-
arid and semi-humid sub-tropics within ±40°N/S. Large
areas of Mexico, portions the Llanos and Guiana highlands
in Venezuela, large areas of southeastern Brazil and
Paraguay and the dry coastal regions of equatorial and
sub-tropical areas of eastern South America are modeled
well. Most of sub-tropical Africa is also captured fairly well
(rN0.6), with notable exceptions being the Zaire basin and
the Kalahari and Somali deserts. Most of India and portions
Tibetan plateau have high correlations as does the Irrwaddy
basin in Myanmar. Northern Australia NDVI change also
appears to be highly predictable at a 1-month lag. These
Fig. 1. Cross-validated skill for projections at 2 (A) and 4 (B) month lags. The seas
shown with heavy black lines. Malaria areas were provided by the USGS FEWS N
regions seem likely candidates for operational NDVI
projection applications.

5. Model case studies

This section illustrates the utility of the model in an NDVI-
food security application in Ethiopia and an evaluation of the
NDVI projections for the early identification of Rift Valley
Fever conditions the Greater Horn.

5.1. Ethiopia food security application

Fig. 3 combines two sets of information: average May–June
NDVI from 1981 to 2005 (vertical columns), and FEWS NET
estimates of millions of people needing food aid (black line)
from 1996 to 2004. Previous analyses have suggested a
surprising dependence of Ethiopian crop production and food
needs to Belg (March–April–May) rains (Funk et al., 2003a).
Recent reductions in these Belg rains have been observed in
precipitation time series, and may be related to increasing sea
surface temperatures in the Indian Ocean (Funk et al., 2005;
Verdin et al., 2005). This recent dryness is also apparent in the
May–June NDVI shown in Fig. 3.

The May–June NDVI explains 72% of the annual variance
in food aid needs. Bivariate regression-based food aid
projections are plotted as a light gray line. Also shown are
food security forecasts based on projected NDVI (black bars in
Fig. 3). These values use observed RH and CPC precipitation
fields to predict the May–June NDVI growth. These growth
estimates may be combined with observed April NDVI and then
expressed as an indicator (68% variance explained) of food aid
needs based on production shortfall. Given that crop
onal cycle has been removed. Sub-Saharan African epidemic malaria areas are
ET program.



Fig. 4. Observed and projected NDVI anomalies for December (top) and all
months (bottom) averaged over northeastern Kenya.

Fig. 3. Ethiopian May–June NDVI and millions need food aid, observed (black
lines), predicted via observed NDVI (gray line), and predicted via projected
NDVI (black dashes).
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assessments are typically carried out in October, NDVI can be
used to provide earlier early warning. Observed May–June
NDVI leads crop assessment information by approximately 3
months. NDVI projections can reasonable extend this lead-time
by another month or two. Many factors convolve to create food
insecurity, but NDVI and NDVI projections can provide early
warning of environmental shocks.

5.2. NDVI projections of Rift Valley Fever conditions

In 1997/1998 an extensive outbreak of Rift Valley Fever
(RVF) occurred in the Greater Horn of Africa, with more than
27,500 cases occurring in the Garissa district of Northeastern
Kenya (Woods et al., 2002) costing the region more than $100
million, and endangering fragile pastoral livelihoods. RVF is a
vector-borne disease, which has been shown to be linked to
above normal NDVI (Linthicum et al., 1999). GCM-based
NDVI forecasts may be useful future indicators of RVF risk
(Thomson et al., 2003). NDVI projections averaged over a large
(222,000 km2) region of northeastern Kenya represent well the
monthly variation of NDVI anomalies (Fig. 4). Note the time-
lag of the predictions—this is typical of auto-regressive models.
The overall correlation between the 4-month forecasts and the
observed NDVI anomalies has an r2 value of 0.83. The large
positive excursion in the winter of 1997/1998 is captured
effectively 4 months in advance, suggesting a good opportunity
for preparedness and mitigation. Note, however, that the
forecast value does under-estimate the maximum value. Future
research may show that this tendency to under-estimate the
extremes can be alleviated by using minimum and maximum
NDVI values slightly beyond the historical range.

6. Approach and limitations

Consideration of linearized biomass functions used in the
Sahel (Zeng et al., 1999), the semi-empirical conductance
expressions (Sellers et al., 1997) used in sophisticated
biological models led to the formulation described here.
NDVI is well related to the past several months of rainfall in
semi-arid regions (Nicholson et al., 1990; Richard & Poccard,
1998) and NDVI maximum and minimum values are heavily
constrained by environmental conditions and can therefore be
assumed as stationary for short range forecasting applications.
The model, as formulated, is only applicable to semi-arid and
semi-humid regions of the tropics. Both Fig. 2 and previous
research (Potter & Brooks, 1998) suggest a transition between
‘cold’ and ‘warm’ regions at about 40° N/S. The semi-arid
regions of Africa, Asia and North and South America all stand
out in Fig. 2 as regions that are controlled by precipitation and
humidity. In these regions NDVI is closely coupled to net
primary productivity (NPP) and canopy structure (Tucker &
Sellers, 1986). The spatial distribution of regions phenologi-
cally limited by available water vapor (Jolly et al., 2005)
corresponds well with regions showing strong correlations in
Fig. 2. Alternately, areas with low correlations tend to be either
not water limited (tropics) or limited by photoperiod and
minimum temperature (mid-latitudes). Thus, in water limited
regions precipitation is tightly coupled to inter-annual variabil-
ity in ecosystem dynamics (Lotsch et al., 2003a; Trenberth,
1998), and therefore useful for predicting NDVI.

It is important to note that the model presented is diagnostic,
not prognostic. It makes projections based on observed values
for NDVI, precipitation and relative humidity. The observed
state of NDVI is an important input, as are the NDVI minimum
and maximum constraints. This appears reasonable from an
early warning perspective, but the current formulation is not
directly applicable to biogeophysical modeling applications.
The assumption of stationarity in minimum and maximum
NDVI is not strictly true. Changes in Max NDVI in Senegal, for
example, have been related to changes in crop and rangeland
use (Fuller, 1998), while positive trends in NDVI values in
Tanzanian woodland and forest pixels have been related to
changes in conservation policies (Pelkey et al., 2000). Since the
model depends heavily on the NDVI, it will inherit known
NDVI shortcomings. In humid areas the NDVI will tend to
saturate, and in arid or semi-arid regions soil, surface moisture
and aerosol signals may limit the accuracy of the observed
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NDVI. Decadal variability and climate change can also affect
the stability of the maximum and minimum constraints.

6.1. Potential model extensions

The present formulation could be extended by adding
additional environmental parameters, modeling the maximum
and minimum NDVI values explicitly and better specifying the
functional form of the transfer functions. Temperature and
surface radiation terms are natural candidates for extensions,
and the fairly large number of degrees of freedom (240+ in
AVHRR time series) could support a modest increase in model
complexity. Alternately, simple models could be applied to
higher resolution, shorter period of record NDVI time series, or
fit seasonally. Another obvious area of potential development
could replace the climatological averages of precipitation and
relative humidity used in Eq. (2) with forecast values. Further
studies into the optimal fitting function (linear, log, etc.)
between the RHD and precipitation terms could also yield
modest improvements in forecast skill.

6.2. Potential applications for pastoral, malaria and Rift Valley
Fever monitoring in Africa

As population pressure, climate change and land degradation
place increasing pressure on fragile pastoral and agro-pastoral
environments, the need to improve monitoring and early
warning increases. The proposed model, or some close relative,
could be implemented operationally to improve early warning
systems. The spatial distribution of forecast skill (Fig. 1) seems
applicable to pastoral applications. Positive rainfall and
associated NDVI anomalies have been identified as a key risk
indicator (Linthicum et al., 1999) for epizootic RVF andMalaria
(Hay et al., 2003). These diseases in epidemic form tend to arise
in semi-arid regions where the model performs well.

7. Conclusion

Because food insecurity typically results from a combina-
tion of climate events and societal vulnerabilities, crises
almost always arise in areas with limited in situ data. Satellite
information is thus the first line of defense for many of the
world's millions of food insecure. Information on the progress
of the growing season as measured by meteorological
satellites combined with extensive social science and
livelihood information provides actionable guidance and
early warning of food security crises (Mathys, 2005). These
assessments are often needed for deadlines imposed by the
budgetary cycle of large international donor organizations
such as the US Agency for International Development or the
UN World Food Program. Early assessments of large
potential crop losses are key to finding the funds and to
sending local assessment teams to trouble spots and for
arranging for early and adequate shipments of food aid to
regions in need. These practical timing and budgetary
considerations are the impetus of this research and define
the user community for new products.
The study results presented here are quite promising,
suggesting that useful projections can be made over most
semi-arid regions of Africa, with potential extensions to drought
prone areas of Asia, Australia and South America. These
projections will be integrated into existing early warning
systems, allowing for the advance identification of climate
impacts affecting agricultural and pastoral regions. As moni-
toring activities expand into new regions, the extended model
may become an important tool for protecting the lives and
livelihoods of agricultural communities in semi-arid zones
throughout the world.
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