Chapter IV Screen Reclamation Products: Functional Groups

The intent of this chapter is to define the characteristics associated with each ink remover, emulsion remover and haze remover. Because of the specific functions these three types of products perform, they have been designated as functional groups in a screen reclamation system. Information on the characteristics associated with each of these functional groups is presented in a format that will allow comparison of several types of products within each functional group. For example, given a hazard summary, purchase cost, exposure analysis and risk characterization for several different types of ink removers, decisions regarding which one of these products would work best in an individual facility could be made. However, to gain a better understanding of all the issues associated with the ink removers, performance information in Chapter V should be referenced. In this chapter information about the different ink removers is combined with emulsion and haze removers, forming a product system by which they are typically sold. In this way the variables of performance and total cost can be fully evaluated.

In the sections below, characteristics of many of the different formulations associated with ink, emulsion and haze removers are described. However, these formulations are not all-inclusive; other formulations may be available commercially. These particular formulations were selected by a workgroup consisting of screen printing manufacturers who participated in the performance demonstration, SPAI and DfE staff. For the purposes of this document, an ink remover has been defined as any chemical, set of chemicals, process or technology that removes ink from the screen surface. Ink removers can also be referred to as ink degradants. Because the final screen reclamation process is being considered, not press-side in-process activities, some of the ink removers may also remove emulsions. An emulsion or stencil remover has been defined as any chemical, set of chemicals, process or technology that removes an emulsion from the screen surface. Lastly, a haze remover has been defined as any chemical, set of chemicals, process or technology that can remove the residual pigment and resin in screen mesh so as to eliminate ghost images.

Each functional group is evaluated as follows:

- Hazard Summary and Cost
- Occupational Exposure
- Occupational Risk Conclusions and Observations
- Environmental Releases in Screen Cleaning Operations
- Ecological Risks from Water Releases
- General Population Exposure Conclusions and Observations

At the end of this chapter is a brief discussion of the process of manufacturing screen reclamation chemical products and a general source release assessment on product formulation. Energy and natural resources use in product formulation is also discussed. Information on these areas could not be discussed for each formulation or technology due to limited data availability.

Information about pollution prevention opportunities through workpractice changes and equipment modifications is discussed in Chapter VI.

Ink Removal Function

Substitute Comparative Assessment

Table IV-1 below lists some of the chemical ink removers that are available to screen printers. In addition to chemical ink removers, specific technologies, such as high-pressure water wash systems, are commercially available. Reference Method 4 in Chapter V for a discussion of this option. In Table IV-1, a brief hazard summary and a list of purchase prices is included for each ink remover. For information on the chemical properties and industrial synthesis of the bulk chemicals, refer to Chapter II and for performance information on these products in a given system see Chapter V. Market information on the volume of specific ink remover products sold is not available.

		Hazard Sumr	nary	
Formulation	% VOC Flash Pt. V.P.a	Health Effects Description	Aquatic Hazard Rankings⊾	Purchase Cost
Traditional Systems				
<u>System 1</u> 100% Mineral spirits	100 % 109 F 1 mm Hg	limited hazard data	High	\$4.00/gallon
<u>System 2</u> 100% Acetone	100 % 0 F 185 mm Hg	neurotoxicity; chronic toxicity	Low	\$3.00/gallon
System 3 & System 4 100% Lacquer Thinner, consisting of: 30% Methyl ethyl ketone 15% Butyl acetate 5% Methanol 20% Naphtha, light aliphatic 20% Toluene 10% Isobutyl isobutyrate	100 %	developmental toxicity; genetic toxicity?; neurotoxicity; chronic toxicity	Low Medium Low High Medium Medium	\$3.50/gallon
Alternative Systems				
<u>Alpha</u> Aromatic solvent naphtha Propylene glycol series ethers	100 % 101 F < 4 mm Hg	developmental toxicity; neurotoxicity	Low Low/Medium	\$18.18/gallon (5 gallons/ \$91 55 gallons/ \$850)
Beta 2-Octadecanamine, N,N-dimethyl-, N- oxide or a modified amine from unsaturated soy bean oil fatty acid Water	0 % 205 F NA°	limited hazard data	High	\$15.10/gallon (estimated)
<u>Chi</u> Diethylene glycol series ethers Propylene glycol series ethers N-methyl pyrrolidone Ethoxylated nonylphenol	96 % < 200 F < 0.1 mm Hg	developmental toxicity; reproductive toxicity; neurotoxicity; chronic toxicity	Low/Medium Low/Medium Low Medium	\$31.20/gallon (5 gallons/\$156 55 gallons/\$1,315)
Delta Dibasic esters Propylene glycol series ethers Ethoxylated nonylphenol	94 % < 200 F < 1.0 mm Hq	developmental toxicity; chronic toxicity	Medium Low/Medium Medium	\$20.00/gallon (5 gallons/\$100 55 gallons/\$900)

Table IV-1 Hazard Summaries and Costs: Ink Removers

		Hazard Summ	ary	
Formulation	% VOC Flash Pt. V.P.a	Health Effects Description	Aquatic Hazard Rankings₀	Purchase Cost
Epsilon Cyclohexanone Methoxypropanol acetate Diethylene glycol Benzyl alcohol Diacetone alcohol Aromatic solvent naphtha Derivatized plant oil	65 % 115 F unknown	developmental toxicity; reproductive toxicity; genetic toxicity; neurotoxicity; chronic toxicity	Low Medium Low Medium Low Medium Low/High	\$7.80/gallon (5 gallons/\$39)
Gamma Tripropylene glycol methyl ether Diethylene glycol butyl ether acetate Dibasic esters Fatty alcohol ethers Derivatized plant oil	40 % 76 F 10.9 mm Hg	developmental toxicity; chronic toxicity	Low Medium Medium Medium/High Low/High	\$10.90/gallon (25 liters/\$72)
<u>Mu</u> Dibasic esters Methoxypropanol acetate d-Limonene Ethoxylated nonylphenol Derivatized plant oil	50 % 131 F < 0.3 mm Hg	developmental toxicity; chronic toxicity	Medium Medium Medium High Low/High	\$7.76/gallon (20 liters/\$41)
<u>Phi</u> Dibasic esters	NA < 160 F NA	developmental toxicity; chronic toxicity	Medium	\$24.95/gallon
Omicron AE & Omicron AF Diethylene glycol butyl ether Propylene glycol	30 % 214 F 0.04 mm Hg	developmental toxicity; chronic toxicity	Low Low	\$13.40/gallon (5 gallons/\$67 55 gallons/\$540)
Zeta Propylene glycol series ethers	100 % 101 F 0.4-10.5 mm Hg	developmental toxicity; neurotoxicity; chronic toxicity	Low/Medium	\$23.00/gallon

Table IV-1Hazard Summaries and Costs: Ink Removers

^aV.P. means vapor pressure.

^bThe hazard rankings shown identify the categories (low, medium, or high) into which the individual components of the product system fall. The aquatic hazard ranking for each chemical is listed on the same line as the chemical name. When an alternative system includes chemicals from a chemical category (see Table II-2), the hazard ranking shown is the range of the rankings of all of the individual chemicals comprising the category. This analysis did not estimate the aquatic hazard ranking of the product systems as mixtures.

°NA means not available.

Exposure Analysis & Risk Characterization

Exposure Analysis & Risk Characterization

For specific assumptions and details of the occupational exposure, environmental releases and risk assessment, please reference Chapter III.

	Inhalation Exposures, by Scenario (mg/day)				Dermal Expo	Dermal Exposures, (mg/day)		
System	I	II	III	IV	Routine	Immersion		
Traditional Systems	-							
System 1 Mineral spirits- light hydrotreated	26	0.1	0	0.3	1560	7280		
<u>System 2</u> Acetone	539	11	5	38	1560	7280		
<u>Systems 3 & 4</u> Methyl ethyl ketone Butyl acetate, normal Methanol Naphtha, light aliphatic Toluene Isobutyl isobutyrate	165 44 27 98 110 7	5.3 1.3 4.7 1.6 2.3 0.4	3 1 2 1 1 0	20 5.3 15 6.2 9.2 1.7	468 234 78 312 312 156	2180 1090 364 1460 1460 728		
Alternative Systems								
<u>Alpha</u> Aromatic solvent naphtha Propylene glycol series ethers	13 56	0.1 0.6	0 0	0.2 2.6	1250 312	5820 1460		
Beta 2-Octadecanamine, N,N-dimethyl-, N-oxide or a modified amine from unsaturated soy bean oil fatty acid Water	292 0	4.3 0	3	0	1530	7130 146		
Chi	0	0	0	0	31	140		
Diethylene glycol series ethers Propylene glycol series ethers N-methylpyrrolidone Ethoxylated nonylphenol	0 0 3 0	0 0 0	0 0 0	0 0 0.1 0	312 858 312 78	1456 4000 1460 364		
Delta Dibasic esters Propylene glycol series ethers Ethoxylated nonylphenol	2 0 0	0 0 0	0 0 0	0.1 0 0	702 780 78	3280 3640 364		

Table IV-2 Occupational Exposures: Ink Removers

	Inhalation Exposures, by Scenario (mg/day)				Dermal Expo	Dermal Exposures, (mg/day)		
System	-	I		IV	Routine	Immersion		
Epsilon Cyclohexanone Methoxypropanol acetate Diethylene glycol Benzyl alcohol Derivatized plant oil Aromatic solvent naphtha Diacetone alcohol	39 17 0 0.1 1.6 4.6	0.3 0.4 0 0 0 0.1 0.1	0.2 0.2 0 0 0 0 0 0.1	1.4 1.7 0 0.2 0.2 0.4	468 234 312 101 55 156 234	2180 1090 1460 473 255 728 1090		
Gamma Diethylene glycol butyl ether acetate Tripropylene glycol methyl ether Derivatized plant oil Fatty alcohol ethers Dibasic esters	0 0.2 0.4 1.3	0 0 0 0	0 0 0 0	0 0.2 0.1 0.2	62 780 62 187 468	291 3640 291 873 2184		
Mu Dibasic esters Methoxypropanol acetate <i>d</i> -Limonene Ethoxylated nonylphenol Derivatized plant oil	3 31 21 0 0	0 0.4 0.6 0	0 0 0 0	0.2 1.7 2.4 0 0.2	1014 312 156 94 62	4728 1460 728 437 291		
<u>Phi</u> Dibasic esters	4	0	0	0.2	1561	7270		
Omicron AE & Omicron AF Diethylene glycol butyl ether Propylene glycol	0 17	0 0.1	0 0	0 0.4	984 576	4590 2690		
Zeta Propylene glycol series ethers	139	0.6	0	2.8	1560	7280		
Method 5 (Automatic Screen Washer) Ink remover solvent (mineral spirits or lacquer thinner) ^a		2	66		3900			

Table IV-2 Occupational Exposures: Ink Removers

^aOccupational exposure from automatic screen washers are estimated to be the same for either mineral spirits or lacquer thinner. See traditional system 3 for the composition of lacquer thinner. This analysis did not consider alternative exposure routes for automatic screen washers.

Scenario I = reclaiming 6 screens per day; each screen is approximately 2100 in²; Scenario II = pouring 1 ounce of fluid for sampling; Scenario III = transferring chemicals from a 55 gallon drum to a 5 gallon pail; Scenario IV = transferring waste rags from a storage drum to a "laundry bag."

System	Observations
Traditional Systems	
System 1	Dermal exposures to workers using mineral spirits in ink removal can be very high, although the risks from mineral spirits could not be quantified because of limitations in hazard data.
System 2	Hazard quotient calculations indicate clear concerns for chronic dermal and inhalation exposures to workers using acetone in ink removal.
Systems 3 & 4	Hazard quotient calculations indicate clear concerns for both toluene and methyl ethyl ketone with respect to chronic dermal and inhalation exposures to workers using these chemicals in ink removal.
	Hazard quotient calculations indicate marginal concerns for chronic inhalation exposure to workers using methanol in ink removal.
Alternative Systems	
Alpha	Hazard quotient calculations indicate marginal concerns for chronic inhalation exposure to workers using propylene glycol series ethers in ink removal. Possible concerns also exist for chronic dermal exposure to propylene glycol series ethers based on the calculated hazard quotients, which assume 100% dermal absorption. If the actual dermal absorption rate of propylene glycol series ethers is significantly lower, this concern would be significantly reduced or eliminated.
	Inhalation exposures to propylene glycol series ethers also present possible concerns for developmental toxicity risks, based on margin-of-exposure calculations.
	Dermal exposures to other chemicals used in ink removal or haze removal can be high, although the risks could not be quantified because of limitations in hazard data.
Beta	Both inhalation and dermal exposures to workers using 2-octadecanamine, N,N-dimethyl-, N-oxide in ink removal can be high, although the risks could not be quantified because of limitations in hazard data.
Chi	Clear concerns exist for chronic dermal exposures to diethylene glycol series ethers used in ink removal based on the calculated margins-of-exposure.
	Concerns exist for developmental toxicity risks from dermal exposures to N-methylpyrrolidone based on the calculated margin-of-exposure. Similar calculations for inhalation exposures to N- methylpyrrolidone indicate very low concern.
	Inhalation exposures to other ink remover components are very low.
	Dermal risks from other ink remover components could not be quantified because of limitations in hazard data, but exposures can be high.
Delta	Although no risks could be quantified because of limitations in hazard data, relatively high dermal exposures to ink remover components could occur.
	Inhalation exposures to all components are very low.

System	Observations
Epsilon	Hazard quotient calculations indicate marginal concerns for chronic dermal exposures to cyclohexanone and benzyl alcohol during ink removal. Similar calculations for inhalation exposures to cyclohexanone and benzyl alcohol indicate low concern.
	Margin-of-exposure calculations indicate a marginal concern for developmental toxicity risk from inhalation exposures to cyclohexanone during ink removal. Reproductive and developmental toxicity risks from dermal exposures to cyclohexanone could not be quantified.
	Hazard quotient calculations indicate marginal concerns for chronic dermal exposures and low concern for chronic inhalation exposures to methoxypropanol acetate.
	Risks from other ink remover components could not be quantified because of limitations in hazard data, although dermal exposures to all components could be relatively high.
Gamma	Clear concerns exist for chronic dermal exposures to diethylene glycol butyl ether acetate used in ink removal based on the calculated margin-of-exposure.
	Developmental toxicity risks from dermal exposures to diethylene glycol butyl ether acetate are very low based on the calculated margin-of-exposure.
	Risks from other ink remover components could not be quantified because of limitations in hazard data, although dermal exposures to all components could be relatively high.
	Inhalation exposures to all components are very low.
Mu	Concerns exist for chronic risks from both inhalation and dermal exposures to <i>d</i> -limonene during ink removal based on the calculated margins-of-exposure.
	Hazard quotient calculations for methoxypropanol acetate used in ink removal indicate a marginal concern for chronic dermal exposures and low concern for chronic inhalation exposures.
	Margin-of-exposure calculations show possible concerns for developmental toxicity risks from inhalation exposures to methoxypropanol acetate.
	Risks from other ink remover components could not be quantified because of limitations in hazard data, although dermal exposures to all components could be relatively high.
Phi	Risks from ink remover components could not be quantified because of limitations in hazard data, although dermal exposures to all components could be relatively high.
	Inhalation exposures to all components are very low.

System	Observations
Omicron AE & Omicron AF	Margin-of-exposure calculations indicate clear concerns for chronic dermal exposures to workers using diethylene glycol butyl ether in ink removal.
	Margin-of-exposure calculations also show possible concerns for developmental toxicity risks from dermal "immersion" exposures to diethylene glycol butyl ether. Routine dermal exposures, however, represent a very low concern for developmental toxicity risks.
	Hazard quotient calculations for inhalation and dermal exposures to propylene glycol during ink removal indicate very low concern.
	Inhalation exposures to other components are very low.
	Risks from other components could not be quantified because of limitations in hazard data, although dermal exposures to all components could be relatively high.
Zeta	Hazard quotient calculations indicate marginal concerns for chronic inhalation exposure to workers using propylene glycol series ethers in ink removal. Possible concerns also exist for chronic dermal exposure to propylene glycol series ethers based on the calculated hazard quotients, which assume 100% dermal absorption. If the actual dermal absorption rate of propylene glycol series ethers is significantly lower, this concern would be significantly reduced or eliminated.
	Inhalation exposures to propylene glycol series ethers also presents possible concerns for developmental toxicity risks, based on margin-of-exposure calculations.
	Inhalation exposures to other components are very low.
	Risks from other ink remover components could not be quantified because of limitations in hazard data, although dermal exposures to all components could be relatively high.

System	Observations
Method 5 (Automatic Screen Washer)	Mineral spirits Inhalation exposures were significantly lower (reduced by about 70%) than the exposures during manual use of this system. Risks could not be quantified because of limitations in hazard data. Dermal exposures can still be relatively high. Lacquer Thinner Hazard quotient calculations indicate marginal concerns for chronic inhalation exposures to toluene, methyl ethyl ketone, and methanol. Hazard quotient calculations indicate clear concerns for chronic dermal exposures to toluene and methyl ethyl ketone and marginal concerns for dermal exposures to methanol. The risks described above are slightly lower than the corresponding risks during manual use of this system. Risks from other components could not be quantified because of limitations in hazard data, although dermal exposures to all components could be relatively high.

Exposure Analysis & Risk Characterization

Table IV-4
Environmental Releases in Screen Cleaning Operations:
Ink Removers

	Release Under Each Scenario (g/day)						
		I		I	II		V
System	Air	Water	Land	Air	Air	Air	Water
Traditional Systems	Traditional Systems						
<u>System 1</u> Mineral spirits - light hydrotreated	54	0	1050	0.2	0.1	0.6	1350
<u>System 2</u> Acetone	1120	0	0	22	11	80	1270
<u>Systems 3 & 4</u> Methyl ethyl ketone Butyl acetate, normal Methanol Naphtha, light aliphatic Toluene Isobutyl isobutyrate	344 92 57 204 229 15	0 0 0 0 0	0 80 0 25 0 100	11 2.6 9.8 3.2 4.8 0.8	5.7 1.5 4.1 1.7 2.6 0.5	42 11 30 13 19 3.4	363 191 37 257 251 132
Alternative Systems							
<u>Alpha</u> Aromatic solvent naphtha Propylene glycol series ethers	27 117	0 0	473 8	0.1 1.3	0.1 0.7	0.5 5.4	1080 265
Beta 2-Octadecanamine, N,N-dimethyl-, N- oxide or a modified amine from unsaturated soy bean oil fatty acid	609	0	0 12	9.1 0	6.3	0	0
Water <u>Chi</u> Diethylene glycol series ethers Propylene glycol series ethers N-methylpyrrolidone Ethoxylated nonylphenol	0 0.1 0.1 6.8 0	0 0 0 0	138 381 132 35	0 0 0.1 0	0 0 0 0 0	0 0 0.2 0	270 742 270 67
<u>Delta</u> Dibasic esters Propylene glycol series ethers Ethoxylated nonylphenol	3.7 0.1 0	0 0 0	319 359 36	0 0 0	0 0 0	0.2 0 0	608 675 67

Table IV-4
Environmental Releases in Screen Cleaning Operations:
Ink Removers

	Release Under Each Scenario (g/day)						
	I			Ш	II	I	v
System	Air	Water	Land	Air	Air	Air	Water
Epsilon Cyclohexanone Methoxypropanol acetate Diethylene glycol Benzyl alcohol Derivatized plant oil Aromatic solvent naphtha Diacetone alcohol	82 36 0.2 0.2 3.2 9.6	0 0 0 0 0 0	126 68 138 45 24 66 94	0.7 0.8 0 0.1 0.1 0.2	0.4 0.5 0 0 0 0.1 0.1	2.9 3.6 0 0.3 0.5 0.8	402 199 270 88 47 135 202
<u>Gamma</u> Diethylene glycol butyl ether acetate Tripropylene glycol methyl ether Derivatized plant oil Fatty alcohol ethers Dibasic esters	0 0.1 0.3 0.8 2.7	0 0 0 0	28 355 28 84 210	0 0 0.1 0 0	0 0 0 0	0 0 0.3 0.1 0.3	54 675 54 162 405
<u>Mu</u> Dibasic esters Methoxypropanol acetate <i>d</i> -Limonene Ethoxylated nonylphenol Derivatized plant oil	5.1 64 43 0 0.3	0 0 0 0	446 75 27 42 27	0 0.8 1.2 0 0.1	0 0.5 0.7 0 0	0.3 3.6 5.1 0 0.3	877 266 130 81 54
<u>Phi</u> Dibasic esters	8.1	0	766	0	0	0.3	1349
Omicron AE & Omicron AF Diethylene glycol butyl ether Propylene glycol	0 35	0 0	440 222	0 0.2	0 0.1	0 0.7	852 497
Zeta Propylene glycol series ethers	290	0	375	1.4	0.8	5.8	1345
<u>Method 5 (Automatic Screen Washer)</u> <u>Using Mineral Spirits</u> Mineral Spirits	15.1	NAª	NA	NA	NA	NA	NA

Table IV-4
Environmental Releases in Screen Cleaning Operations:
Ink Removers

	Release Under Each Scenario (g/day)							
		I II III IV						
System	Air	Water	Land	Air	Air	Air	Water	
Method 5 (Automatic Screen Washer)								
Using Lacquer Thinner								
Methyl ethyl ketone	335	NA ^a	NA	NA	NA	NA	NA	
Butyl acetate, normal	27.7	NA	NA	NA	NA	NA	NA	
Methanol	91.5	NA	NA	NA	NA	NA	NA	
Naphtha, light aliphatic	57.7	NA	NA	NA	NA	NA	NA	
Toluene	80.7	NA	NA	NA	NA	NA	NA	
Isobutyl isobutyrate	4.6	NA	NA	NA	NA	NA	NA	

^aThis analysis did not estimate releases to water or land from automatic screen washing.

Scenario I = reclaiming 6 screens per day; each screen is approximately 2100 in², Scenario II = pouring 1 ounce of fluid for sampling; Scenario III = transferring chemicals from a 55 gallon drum to a 5 gallon pail; Scenario IV = transferring waste rags from a storage drum to a "laundry bag."

Ecological Risks from Water Releases of Screen Reclamation Chemicals

- Cumulative releases of mineral spirits from Traditional System 1 present a concern for risk to aquatic species. The largest contributor to these releases is the hypothetical commercial laundry that launders the shop rags used by the area's screen printers.
- None of the other components of any of the four traditional systems reached an ecotoxicity concern concentration, even when considering the cumulative releases from all shops in the area.
- None of the single facility releases of either traditional or alternative systems reach an ecotoxicity concern concentration.

General Population Exposure Conclusions and Observations

• Health risks to the general population from both air and water exposures are very low for all of the ink removers evaluated.

Emulsion Removal Function

Substitute Comparative Assessment

Table IV-5 below lists some of the chemical emulsion removers that are available to screen printers. Table IV-5 includes a summary of key physical properties, a brief hazard summary, and a list of purchase prices for each emulsion remover. For information on the chemical properties

IV. SCREEN RECLAMATION PRODUCTS: FUNCTIONAL GROUPS

Emulsion Removal Function

Substitute Comparative Assessment

and industrial synthesis of the bulk chemicals, refer to Chapter II. Market information on the volume of specific emulsion remover products sold is not available.

Table IV-5					
Hazard Summaries and Cost: Emulsion Removers					

	% VOC, Flash Pt.,	Hazard Summary		
Formulation ^a	V.P. _b , (per formulation)	Health Effects Description	Aquatic Hazard Rankings₀	Purchase Cost
Traditional Systems				
<u>Systems 1, 2, & 3</u> 12% Sodium hypochlorite (bleach) 88% Water	0 % NA NA	developmental toxicity; genetic toxicity; chronic toxicity	Medium	\$1.80/gallon
<u>System 4</u> 1% Sodium periodate 99% Water (as applied)	0 % NA NA	NA	High	\$23.00/gallon (5% sodium periodate)
Alternative Systems				
<u>Alpha</u> Sodium periodate Water	0 % NA	NA	High	\$4.00/gallon
<u>Chi</u> Sodium periodate Water	0 % NA NA	NA	High	\$32.00/gallon (5 gallons/\$160 15 gallons/\$438 55 gallons/\$1,238)
<u>Delta</u> Sodium periodate Water	0% NA NA	NA	High	\$32.00/gallon (5 gallons/\$160 15 gallons/\$438 55 gallons/\$1,238)
<u>Epsilon</u> Sodium periodate Sulfate salt Water	0 % NA unknown	corrosive	High Medium	\$13.54/pound (5 kg/\$149)
<u>Gamma</u> Sodium periodate Sulfate salt Phosphate salt Water	0 % NA 23.4 mm Hg (water)	chronic toxicity; corrosive	High Medium High	\$1.60/pound (15 kg/\$53)

	% VOC, Hazard Summary		nmary	
Formulation _a	V.P. _b , (per formulation)	Health Effects Description	Aquatic Hazard Rankings₀	Purchase Cost
<u>Mu</u> Periodic acid Water	0 % NA NA	NA	High	\$10.34/gallon (three 5-liter units/\$41 (5 gallons/\$51.73))
<u>Phi</u> Sodium periodate Ethoxylated nonylphenol Other Water	0% NA 23.4 mm Hg (water)	NA	High Medium Low	\$24.95/gallon
Omicron AE & Omicron AF Sodium periodate Ethoxylated nonylphenol Water	0 % NA 23.4 mm Hg (water)	NA	High Medium	\$11.00/gallon (5 gallons/\$55 55 gallons/\$530)
<u>Theta</u> Sodium periodate Water	0% NA NA	NA	High	\$21.95/gallon ^e
<u>Zeta</u> Sodium periodate Water	0 % NA 20 mm Ha	NA	High	\$23.00/gallon

Table IV-5
Hazard Summaries and Cost: Emulsion Removers

^aWhile many of these formulations may seem similar, they may vary in the composition of specific components.

^bV.P. means vapor pressure.

^bThe hazard rankings shown identify the categories (low, medium, or high) into which the individual components of the product system fall. The aquatic hazard ranking for each chemical is listed on the same line as the chemical name. When an alternative system includes chemicals from a chemical category (see Table II-2), the hazard ranking shown is the range of the rankings of all of the individual chemicals comprising the category. This analysis did not estimate the aquatic hazard ranking of the product systems as mixtures.

^dNA means not available.

^eProduct system also requires a fixed cost of \$13,165. Reference Method 4 in Chapter V.

Exposure Analysis & Risk Characterization

For specific assumptions and details of the occupational exposure, environmental releases and risk assessment, please reference Chapter III.

	Inhalation Exposures, by Scenario (mg/day)				Dermal Expo	osures, (mg/day)
System	Ι	II	III	IV	Routine	Immersion
Traditional Product Systems						
<u>Systems 1 & 3 (Bleach)</u> ^a Sodium hypochlorite (12%) Water	0 0	0 0	0 0	0 0	187 1370	874 6410
<u>Systems 2 & 4 (Zeta diluted 1:4)</u> Sodium periodate (1%) Water	0 0	0 0	0 0	0 0	16 1540	73 7210
Alternative Systems		-	-			
<u>Alpha (diluted to 0.8%)</u> Sodium periodate Water	0 0	0 0	0 0	0 0	12 1550	58 7220
<u>Chi (diluted 1:4)</u> Sodium periodate Water	0 0	0 0	0 0	0 0	16 1540	73 7210
<u>Delta (diluted 1:4)</u> Sodium periodate Water	0 0	0 0	0 0	0 0	39 1520	182 7100
Epsilon (3% chemicals, 97% water) Sodium periodate Sulfate salt Water	0 0 0	0 0 0	0 0 0	0 0 0	23 23 1510	109 109 7060
<u>Gamma</u> Sodium periodate Sulfate salt Phosphate salt Other Water	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	39 16 117 117 1270	182 73 546 546 5930
<u>Mu</u> Periodic acid Water	0 0	0 0	0 0	0 0	156 1400	728 6550
Phi Sodium periodate Water Ethoxylated nonylphenol Other	0 0 0 0	0 0 0	0 0 0 0	0 0 0	47 1210 123 181	218 5640 575 844

Table IV-6 Occupational Exposures: Emulsion Removers

	Inhalation Exposures, by Scenario (mg/day)				Dermal Exposures, (mg/day)	
System	Ι	I	Ш	IV	Routine	Immersion
Omicron AE & Omicron AF Sodium periodate Ethoxylated nonylphenol Water	0 0 0	0 0 0	0 0 0	0 0 0	47 31 1480	218 146 6920
<u>Zeta (diluted 1:4)</u> Sodium periodate Water	0 0	0 0	0 0	0 0	16 1540	73 7210
<u>Theta (Method 4)</u> ^b Sodium periodate Water	0 0	0 0	0 0	0 0	1250 312	5820 1460
<u>Theta (Method 4) (diluted 1:3)</u> Sodium periodate Water	0 0	0 0	0 0	0 0	312 1250	1460 5820

Table IV-6Occupational Exposures: Emulsion Removers

^aDermal exposures presented are worst-case and the use of gloves is expected due to irritation and corrosive effects.

^bThis system can be used with or without diluted emulsion remover, depending on the needs of the facility. Scenario I = reclaiming 6 screens per day; each screen is approximately 2100 in²; Scenario II = pouring 1 ounce of fluid for sampling; Scenario III = transferring chemicals from a 55 gallon drum to a 5 gallon pail; Scenario IV = transferring waste rags from a storage drum to a "laundry bag."

Occupational Risk Conclusions and Observations

All of the systems that employ an emulsion remover use either a strong oxidizer such as hypochlorite or periodate or a strong base such as sodium hydroxide. The haze removers in Alpha, Epsilon, Gamma, Mu, Omicron, and Theta also contain these compounds. All of these materials present a high concern for skin and eye irritation and tissue damage if workers are exposed in the absence of proper protective clothing. None of the emulsion removers present significant inhalation risks.

Exposure Analysis & Risk Characterization

Table IV-7
Environmental Releases in Screen Cleaning Operations:
Emulsion Removers

	Release Under Each Scenario (g/day)							
		I		Ш	ш		V	
System	Air	Water	Land	Air	Air	Air	Water	
Traditional Product Systems								
<u>Systems 1 & 3 (Bleach)</u> Sodium hypochlorite Water	0 0	75 546	0 0	0 0	0 0	0 0	0 0	
<u>System 2 & 4 (Zeta diluted 1:4)</u> Sodium periodate Water	0 0	6 615	0 0	0 0	0 0	0 0	0 0	
Alternative Systems								
<u>Alpha (diluted to 0.8%)</u> Sodium periodate Water	0 0	5 616	0 0	0 0	0 0	0 0	0 0	
<u>Chi (diluted 1:4)</u> Sodium periodate Water	0 0	6 615	0 0	0 0	0 0	0 0	0 0	
<u>Delta (diluted 1:4)</u> Sodium periodate Water	0 0	16 605	0 0	0 0	0 0	0 0	0 0	
<u>Epsilon (diluted to 3%)</u> Sodium periodate Sodium salt Water	0 0 0	9 9 602	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	
<u>Gamma</u> Sodium periodate Sulfate salt Phosphate salt Other Water	0 0 0 0 0	16 6 47 47 506	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	
<u>Mu</u> Periodic acid Water	0 0	62 559	0 0	0 0	0 0	0 0	0	

		Release Under Each Scenario (g/day)						
		I		Ш	Ш	I	v	
System	Air	Water	Land	Air	Air	Air	Water	
<u>Phi</u> Sodium periodate Water Ethoxylated nonylphenol Other	0 0 0 0	19 481 49 72	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0	
Omicron AE & Omicron AF Sodium periodate Ethoxylated nonylphenol Water	0 0 0	19 13 603	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	
<u>Zeta (diluted 1:4)</u> Sodium periodate Water	0 0	6 615	0 0	0 0	0 0	0 0	0 0	
<u>Theta (Method 4)</u> Sodium periodate Water	0 0	177 44	0 0	0 0	0 0	0 0	0 0	
<u>Theta (Method 4) (diluted 1:3)</u> Sodium periodate Water	0 0	44 177	0 0	0 0	0 0	0 0	0 0	

Table IV-7 Environmental Releases in Screen Cleaning Operations: Emulsion Removers

Scenario I = reclaiming 6 screens per day; each screen is approximately 2100 in²; Scenario II = pouring 1 ounce of fluid for sampling; Scenario III = transferring chemicals from a 55 gallon drum to a 5 gallon pail; Scenario IV = transferring waste rags from a storage drum to a "laundry bag."

General Population Exposure Conclusions and Observations

• Health risks to the general population from both air and water exposures are very low for all of the emulsion removers evaluated.

Ecological Risks from Water Releases of Screen Reclamation Chemicals

 \circ $\,$ None of the single facility releases of emulsion removers reach an ecotoxicity concern concentration.

Haze Removal Function

Substitute Comparative Assessment

Table IV-8 below lists some of the chemical haze removers that are available to screen printers. Table IV-8 includes a summary of key physical properties, a brief hazard summary, and a list of purchase prices for each emulsion remover. For information on the chemical properties and industrial synthesis of the bulk chemicals, refer to Chapter II. Market information on the volume of specific haze remover products sold is not available.

		Hazard Summa	Hazard Summary		
Formulation	% VOC Flash Pt. V.P.a	Health Effects Description	Aquatic Hazard Rankings⋼	Purchase Cost	
Traditional Product Systems					
Systems 1, 2, 3, & 4 10% Xylene 30% Acetone 30% Mineral spirits 30% Cyclohexanone	100%	developmental toxicity; reproductive toxicity; genetic toxicity; neurotoxicity; chronic toxicity	Medium Low High Low	\$5.12/gallon	
Alternative Systems					
<u>Alpha</u> Alkali/caustic Tetrahydrofurfuryl alcohol Water	< 15 % 183 F NA ^c	corrosive	Low Medium	\$9.39/gallon (5 kg/\$50)	
<u>Chi</u> Diethylene glycol series ethers Propylene glycol series ethers N-methyl pyrrolidone Ethoxylated nonylphenol	94 % < 200 F < 0.1 mm Hg	developmental toxicity; reproductive toxicity; chronic toxicity	Low/Medium Low/Medium Low Medium	\$31.20/gallon (5 gallons/\$156 55 gallons/\$1,315)	
Delta Dibasic esters Propylene glycol series ethers Ethoxylated nonylphenol	94 % < 200 F < 1.0 mm Hg	developmental toxicity; chronic toxicity	Medium Low/Medium Medium	\$20.00/gallon (5 gallons/\$100 55 gallons/\$900)	

Table IV-8Hazard Summaries and Cost: Haze Removers

		Hazard Summa	ry	
Formulation	% VOC Flash Pt. V.P.a	Health Effects Description	Aquatic Hazard Rankings₀	Purchase Cost
Epsilon Alkyl benzene sulfonates Ethoxylated nonylphenol Phosphate salt Sodium hydroxide Derivatized plant oil Cyclohexanone Methoxypropanol acetate Diethylene glycol Benzyl alcohol Diacetone alcohol Aromatic solvent naphtha Derivatized plant oil Water	unknown NA unknown	developmental toxicity; reproductive toxicity; genetic toxicity; neurotoxicity; chronic toxicity; corrosive	Medium Medium High Low Low/High Low Medium Low Medium Low Medium Low/High	\$1.09/lb (15 kg/\$36)
<u>Gamma</u> Sodium hypochlorite Alkali/caustic Sodium alkyl sulfate Water	0 % NA < 0.2 mm Hg (@ 70 F)	developmental toxicity; genetic toxicity; chronic toxicity; corrosive	Medium Low Medium	\$9.39/gallon (25 liters/\$62))
<u>Mu</u> Sodium hypochlorite Alkali/caustic Sodium alkyl sulfate Water	0 % NA NA	developmental toxicity; genetic toxicity; chronic toxicity; corrosive	Medium Low Medium	\$7.57/gallon (five 5-liter units/\$50))
<u>Phi</u> N-methyl pyrrolidone Dibasic esters	NA > 185 F 0.195	developmental toxicity; reproductive toxicity; chronic toxicity	Low Medium	\$39.95/gallon
Omicron AE Ethoxylated nonylphenol Phosphate surfactant Other Water	unknown 210 F 0.1 mm Hg	limited hazard data	Medium High Low	\$18.00/gallon (5 gallons/\$90)
Omicron AF Ethoxylated nonylphenol Phosphate surfactant Alkali/caustic Other Water	unknown unknown < 1 mm Hg	corrosive	Medium High Low Low	\$18.00/gallon 5 gallons/\$90

Table IV-8
Hazard Summaries and Cost: Haze Removers

		Hazard Summa		
Formulation	% VOC Flash Pt. V.P.a	Health Effects Description	Aquatic Hazard Rankings⋼	Purchase Cost
<u>Theta</u> Alkali/caustic Cyclohexanone Furfuryl alcohol	unavailable 171 F NA	developmental toxicity; reproductive toxicity; genetic toxicity; neurotoxicity; chronic toxicity; corrosive	Medium Low Medium	\$43.00/gallon ^d
<u>Zeta</u> Alkali/caustic Propylene glycol Water	100 % 101 F 0.4-10.5 mm Hg	corrosive	Low Low	\$30.00/gallon

Table IV-8Hazard Summaries and Cost: Haze Removers

^aV.P. means vapor pressure.

^bThe hazard rankings shown identify the categories (low, medium, or high) into which the individual components of the product system fall. The aquatic hazard ranking for each chemical is listed on the same line as the chemical name. When an alternative system includes chemicals from a chemical category (see Table II-2), the hazard ranking shown is the range of the rankings of all of the individual chemicals comprising the category. This analysis did not estimate the aquatic hazard ranking of the product systems as mixtures.

^cNA means not available.

^dProduct system also requires a fixed cost of \$13,165. Reference Method 4 in Chapter V.

Exposure Analysis & Risk Characterization

For specific assumptions and details of the occupational exposure, environmental releases and risk assessment, please reference Chapter III.

	Inhalat	ion Expos (mg	sures, (mg/day)			
System	Ι	I		IV	Routine	Immersion
Traditional Systems						
Systems 1, 2, 3, and 4 Xylenes (mixed) Acetone Mineral spirits-light hydrotreated Cyclohexanone	21 64 7 27	0.9 11 0.1 0.3	1 5 0	0 0 0 0	156 468 468 468	728 2180 2180 2180 2180
Alternative Systems						
<u>Alpha</u> Alkali/caustic ^a Tetrahydrofurfuryl alcohol Water	0 1 0	0 0.1 0	0 0 0	0 0 0	390 234 936	1820 1090 4370
<u>Chi</u> Diethylene glycol series ethers Propylene glycol series ethers N-methylpyrrolidone Ethoxylated nonylphenol	0 0 3 0	0 0 0	0 0 0	0 0 0	312 858 312 78	1456 4000 1460 364
<u>Delta</u> Dibasic esters Propylene glycol series ethers Ethoxylated nonylphenol	2 0 0	0 0 0	0 0 0	0 0 0	702 780 78	3280 3640 364
Epsilon Cyclohexanone Methoxypropanol acetate Diethylene glycol Benzyl alcohol Derivatized plant oil Aromatic solvent naphtha Diacetone alcohol Alkyl benzene sulfonates Ethoxylated nonylphenol Phosphate salt Alkali/caustic ^a Water	12 5.2 0 0 0 0 5 1.4 0 0 0 0 0 0	0.3 0.4 0 0 0 0.1 0.1 0.1 0 0 0 0	0.2 0.2 0 0 0 0 0.1 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	234 117 156 51 27 78 62 140 62 117 408 109	109 546 728 273 127 364 291 655 291 546 1890 510
<u>Gamma</u> Sodium hypochlorite ^a Alkali/caustic ^a Water Sodium alkyl sulfate	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	585 39 827 109	2730 182 3860 510

Table IV-9 Occupational Exposures: Haze Removers

	Inhalat		sures, by S I/day)	cenario	Dermal Expo	Dermal Exposures, (mg/day)		
<u>Mu</u> System Sodium hypochlorite ^a Alkali/caustic ^a Water Sodium alkyl sulfate	0 0 0	0 0 0	0 0 0	0 0 0	585 39 827 109	2730 182 3860 510		
<u>Phi</u> N-methylpyrrolidone Dibasic esters	6 1	0 0	0 0	0 0	780 780	3640 3639		
Omicron AE Other Ethoxylated nonylphenol Phosphate surfactant Water	0 0 0	0 0 0	0 0 0	0 0 0	109 16 78 1360	510 73 364 6330		
Omicron AF Ethoxylated nonylphenol Alkali/caustic ^a Phosphate surfactant Other Water	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	16 156 78 109 1200	73 728 364 510 5610		
<u>Zeta</u> Alkali/causticª Propylene glycol Water	0 0 0	0 0.1 0	0 0 0	0 0 0	234 62 1260	1090 291 5900		
<u>Theta (Method 4)</u> Alkali/caustic ^a Cyclohexanone Furfural alcohol	0 25 0	0 0.3 0	0 0 0	0 0 0	515 515 530	2400 2400 2480		

Table IV-9Occupational Exposures: Haze Removers

^aDermal exposures presented are worst-case and the use of gloves is expected due to irritation and corrosive effects.

Scenario I = reclaiming 6 screens per day; each screen is approximately 2100 in²; Scenario II = pouring 1 ounce of fluid for sampling; Scenario III = transferring chemicals from a 55 gallon drum to a 5 gallon pail; Scenario IV = transferring waste rags from a storage drum to a "laundry bag."

System	Observations
Traditional Pr	oduct Systems
<u>Systems 1,</u> 2, 3, & 4	Hazard quotient calculations indicate clear concerns for chronic dermal and inhalation exposures to workers using acetone in haze removal.
	Hazard quotient calculations indicate marginal concerns for chronic dermal exposures to workers using xylene and cyclohexanone in haze removal.
	Margin-of-exposure calculations indicate very low concern for developmental and reproductive toxicity risks from inhalation of cyclohexanone. Reproductive and developmental toxicity risks from dermal exposures to cyclohexanone could not be quantified.
	Dermal exposures to workers using mineral spirits in haze removal can be very high, although the risks from mineral spirits could not be quantified because of limitations in hazard data.
Alternative Sy	stems
<u>Alpha</u>	Dermal exposures to other chemicals used in haze removal can be high, although the risks could not be quantified because of limitations in hazard data.
<u>Chi</u>	Clear concerns exist for chronic dermal exposures to diethylene glycol series ethers used in haze removal based on the calculated margins-of-exposure.
	Concerns exist for developmental toxicity risks from dermal exposures to N-methylpyrrolidone based on the calculated margin-of-exposure. Similar calculations for inhalation exposures to N-methylpyrrolidone indicate very low concern.
	Inhalation exposures to other haze remover components are very low.
	Dermal risks from other haze remover components could not be quantified because of limitations in hazard data, but exposures can be high.
<u>Delta</u>	Although no risks could be quantified because of limitations in hazard data, relatively high dermal exposures to haze remover components could occur.
	Inhalation exposures to all components are very low.
<u>Epsilon</u>	Hazard quotient calculations indicate marginal concerns for chronic dermal exposures to cyclohexanone and benzyl alcohol during haze removal. Similar calculations for inhalation exposures to cyclohexanone and benzyl alcohol indicate low concern.
	Hazard quotient calculations indicate marginal concerns for chronic dermal exposures and low concern for chronic inhalation exposures to methoxypropanol acetate.
	Risks from other haze remover components could not be quantified because of limitations in hazard data, although dermal exposures to all components could be relatively high.

System	Observations
<u>Gamma</u>	Developmental and chronic toxicity risks from dermal exposures to sodium alkyl sulfate in haze remover are very low based on the calculated margin of exposure.
	Inhalation exposures to all components are very low.
	Risks from other haze remover components could not be quantified because of limitations in hazard data, although dermal exposures to all components could be relatively high.
<u>Mu</u>	Developmental and chronic toxicity risks from dermal exposures to sodium alkyl sulfate in haze remover are very low based on the calculated margin of exposure.
	Risks from other haze remover components could not be quantified because of limitations in hazard data, although dermal exposures to all components could be relatively high.
<u>Phi</u>	Dermal exposures to N-methylpyrrolidone during haze removal present a concern for developmental toxicity risk based on the calculated margins-of-exposure. Similar estimates for inhalation exposures to N-methylpyrrolidone indicate very low concern.
	Inhalation exposures to all other components are very low.
	Risks from other haze remover components could not be quantified because of limitations in hazard data, although dermal exposures to all components could be relatively high.
Omicron AE	Inhalation exposures to components are very low.
	Risks from components could not be quantified because of limitations in hazard data, although dermal exposures to all components could be relatively high.
Omicron AF	Inhalation exposures to components are very low.
	Risks from components could not be quantified because of limitations in hazard data, although dermal exposures to all components could be relatively high.
<u>Zeta</u>	Hazard quotient calculations for chronic inhalation and dermal exposures to propylene glycol during haze removal indicate very low concern.
	Inhalation exposures to other components are very low.
	Risks from other haze remover components could not be quantified because of limitations in hazard data, although dermal exposures to all components could be relatively high.

System	Observations
<u>Theta</u> (Method 4)	Hazard quotient calculations indicate marginal concerns for chronic dermal exposures and very low concern for chronic inhalation exposures to cyclohexanone during haze removal.
	Margin-of-exposure calculations show low concern for developmental and reproductive toxicity risks from inhalation exposures to cyclohexanone. Reproductive and developmental toxicity risks from dermal exposures to cyclohexanone could not be quantified.
	Inhalation exposures to other components are very low.
	Risks from other haze remover components could not be quantified because of limitations in hazard data, although dermal exposures to all components could be relatively high.

Table IV-11
Environmental Releases in Screen Cleaning Operations:
Haze Removers

	Release Under Each Scenario (g/day)							
	I II III IV							
System	Air	Water	Land	Air	Air	Air	Water	
Traditional Product Systems								
<u>Systems 1, 2, 3, & 4</u> Xylenes (mixed isomers) Acetone Mineral spirits- light hydrotreated Cyclohexanone	44 133 15 57	0 0 119 76	0 0 0	1.9 22 0.2 0.7	1.1 11 0.1 0.4	0 0 0 0	0 0 0 0	
Alternative Systems								
<u>Alpha</u> Alkali/caustic Tetrahydrofurfuryl alcohol Water	0 1.5 0	133 78 319	0 0 0	0 0.1 0	0 0.1 0	0 0 0	0 0 0	
<u>Chi</u> Diethylene glycol series ethers Tripropylene glycol series ethers N-methylpyrrolidone Ethoxylated nonylphenol	0.1 0.1 6.8 0	104 286 97 26	0 0 0 0	0 0 0.1 0	0 0 0 0	0 0 0 0	0 0 0 0	
<u>Delta</u> Dibasic esters Tripropylene glycol series ethers Ethoxylated nonylphenol	3.7 0.1 0	239 269 27	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	
Epsilon Cyclohexanone Methoxypropanol acetate Diethylene glycol Benzyl alcohol Derivatized plant oil Aromatic solvent naphtha Diacetone alcohol Alkyl benzene sulfonates Ethoxylated nonylphenol Alkali/caustic Water Phosphate salt	25 11 0.1 1 2.9 0 0 0 0 0 0	55 29 53 17 9.3 26 37 48 21 138 37 21		0.7 0.8 0 0.1 0.1 0.2 0 0 0 0 0	0.7 0.8 0 0.1 0.1 0.2 0 0 0 0 0	0.4 0.5 0 0 0 0.1 0.1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	

Table IV-11
Environmental Releases in Screen Cleaning Operations:
Haze Removers

	Release Under Each Scenario (g/day)							
		l		11 111		IV		
System	Air	Water	Land	Air	Air	Air	Water	
<u>Gamma</u> Sodium hypochlorite Alkali/caustic Water Sodium alkyl sulfate	0 0 0	200 13 282 37	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	
<u>Mu</u> Sodium hypochlorite Alkali/caustic Water Sodium alkyl sulfate	0 0 0	200 13 282 37	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	
<u>Phi</u> N-methylpyrrolidone Dibasic esters	12 3.1	270 279	0 0	0.1 0	0 0	0 0	0 0	
<u>Omicron AE</u> Other Ethoxylated nonylphenol Phosphate surfactant Water	0 0 0	43 6.2 31 540	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	
Omicron AF Ethoxylated nonylphenol Alkali/caustic Phosphate surfactant Other Water	0 0 0 0	5.6 56 28 39 428	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	
<u>Zeta</u> Alkali/caustic Propylene glycol Water	0 0.7 0	80 21 431	0 0 0	0 0.2 0	0 0.1 0	0 0 0	0 0 0	
<u>Theta (Method 4)</u> Alkali/caustic Cyclohexanone Furfural alcohol	0 53 0	291 239 300	0 0 0	0 0.7 0	0 0.4 0	0 0 0	0 0 0	

Scenario I = reclaiming 6 screens per day; each screen is approximately 2100 in²; Scenario II = pouring 1 ounce of fluid for sampling; Scenario III = transferring chemicals from a 55 gallon drum to a 5 gallon pail; Scenario IV = transferring waste rags from a storage drum to a "laundry bag."

Manufacturing of Screen Reclamation Chemical Products

General Population Exposure Conclusions and Observations

• Health risks to the general population from both air and water exposures are very low for all of the haze removers evaluated.

Ecological Risks from Water Releases of Screen Reclamation Chemicals

 \circ $\,$ None of the single facility releases of haze removal chemicals reach an ecotoxicity concern concentration.

Manufacturing of Screen Reclamation Chemical Products

Manufacturing Process

Most screen reclamation chemical products are formulated in facilities outside of the United States.¹ The basic process description that follows is based primarily on conversations with two formulation manufacturers in the United States and may not describe the range of manufacturing processes used by formulation manufacturers elsewhere.^{2,3}

Screen reclamation chemical products typically consist of a mixture of two or more liquid and/or solid chemicals. In some cases, the mixture may include water used as a diluent or to dissolve solids and facilitate the spray application of the product. Regardless of whether the product is an ink remover, emulsion remover or haze remover, the basic manufacturing process is the same, as described below.

Chemical ingredients are received from a chemical manufacturer or distributor in small (55 gallon drums or 350 gallon totes) or large (tanker trucks) quantities and stored on-site. Small quantities are typically stored on pallets or racks on the process floor in a designated area without separate ventilation. Large quantities may be stored in dedicated storage tanks.

Chemicals are pumped or emptied by weight into a mixing vessel. The mixing vessel is covered and ingredients are agitated or mixed using turbine or rotary blade/propeller mixing, aeration and shear dispersion. The addition of heat or pressure is not normally required to accomplish the mixing step. Typically, mixing vessels do not have a separate ventilation system (e.g., ventilation is to the process room).

Products are usually packaged in 55 gallon drums, 15 gallon drums, 5 gallon pails and one gallon jugs, although other sizes are available if requested by the customer. Containers are filled manually with a hand-held pump and semi-automated fillers or by pouring from smaller mixing

³Correspondence between Clark King, Kiwo, and Dean Menke, University of Tennessee, June 1994.

¹Correspondence between Marci A. Kinter, SPAI, and Lori Kincaid, University of Tennessee, June 1994.

²Correspondence between Oliver Nichols, Nichols and Associates, and Dean Menke, University of Tennessee, June 1994.

Manufacturing of Screen Reclamation Chemical Products Energy and Natural Resources Issues

vessels (e.g., 55 gallon drums). Employees wear gloves, goggles, and respirators when needed. Packaged products may be inventoried on the process floor, in a separate designated area or stored outside of the process area pending distribution.

Source Release Assessment: Product Formulation

Process air emissions of volatile organic compounds from product formulation processes can originate from the venting of mixing vessels. Fugitive air emissions can result when process fluid leaks from plant equipment such as pumps, compressors and process valves. Air emissions from storage and handling operations can also occur where screen reclamation products are formulated. Other potential sources of environmental releases or transfers include:

- wastewater discharges from a facility into rivers, streams or other bodies of water or transfers to a publicly-owned treatment works (POTW);
- on-site releases to landfills, surface impoundments, land treatment or another mode of land disposal; and
- transfer of wastes to off-site facilities for treatment, storage or disposal.

Energy and Natural Resources Issues

The use of different chemical products, processes or technologies in a use cluster can result in changes in the rate of energy and natural resources consumption, either in the product use stage, manufacture stage, or other life cycle stages (e.g., extraction of raw materials, transportation, disposal, etc.). The processes used to formulate traditional versus alternative screen reclamation chemical products appear to be similar, however, with no differences that would significantly influence the rate of energy or natural resources consumption during product manufacturing. The following lists potential energy and natural resources issues that should be considered when choosing among alternatives.

- The energy required to manufacture the chemical ingredients of screen reclamation products can vary substantially. For example, the energy required to manufacture solvents derived from plants using a cold-press process may be less than that required in a hot-press process.
- Products manufactured from petrochemicals have an energy equivalence, as do other products with sufficient energy content to be used as fuel. The amount of petrochemicals used to manufacture screen reclamation products, however, is small compared to other uses of petroleum-based products.
- Products manufactured from petrochemicals are also derived from a nonrenewable resource, petroleum. However, products manufactured from renewable resources, such as plants, frequently use petrochemicals at some point in the chemical manufacturing process. In either case, the amount of petrochemicals used to manufacture screen reclamation products is small compared to other uses of petroleum-based products.

IV. SCREEN RECLAMATION PRODUCTS: FUNCTIONAL GROUPS

Manufacturing of Screen Reclamation Chemical Products

Energy and Natural Resources Issues

- Products that are formulated using heat or pressure to dissolve product ingredients or cause a chemical reaction consume more energy than those manufactured using simple mixing processes.
- Compared to undiluted products, formulations that are diluted with water prior to shipping result in greater energy consumption during transportation of the product from the manufacturer to the printing facility.