NISTIR 4730

Routine for Analysis of the People Movement Time for Elevator Evacuation

John H. Klote

Daniel M. Alvord

Prepared for:
U.S. Department of Commerce

Technology Administration
National Institute of Standards and Technology Gaithersburg, MD 20899

General Services Administration
Public Buildings Service
Office of Real Property Management and Safety Washington, DC 20405

Routine for Analysis of the People Movement Time for Elevator Evacuation

John H. Klote

Daniel M. Alvord

February 1992

Building and Fire Research Laboratory
Gaithersburg, Meryland 20899
U.S. Department of Commerce

Rockwell A. Schnabel, Acting Secretary
Technology Administration
Robert M. White, Under Secretary for Technology
National Institute of Standards and Technology
John W. Lyons, Director
Prepared for:
General Services Administration Richard G. Austin, Administrator Public Buildings Service William C. Coleman, Commissioner Office of Real Property Management and Safety Washington, D.C. 20405

Table of Contents

Page
List of Figures iv
List of Tables v
Abstract 1

1. Introduction 2
2. Evacuation Time 3
3. Start Up Time 4
4. Elevator Round Trip Time 4
4.1 Standing Time 5
4.2 Travel Time 7
5. Computer Elevator Evacuation Analysis 13
6. Summary 13
7. Acknowledgements 14
8. References 15
Appendix A 23
Appendix B 49
Appendix C 55
Appendix D 58

List of Figures

Page
Figure 1. Commonly accepted elevator arrangements 20
Figure 2. Unusual elevator arrangements resulting in inefficient people movement 21
Figure 3. Types of elevator doors 21
Figure 4. Velocity of elevator reaching normal operating velocity. V_{m} 22
Figure 5. Velocity of elevators not reaching normal operating velocity 22

List of Tables

Page

Table 1. Door Operating Time and Transfer Inefficiency . 16
Table 2. Car size and observed loading in SI Units . 17
Table 3. Car size and observed loading in English Units . 17
Table 4. Parameters for Example 3 . 18
Table 5. Elevator trip and evacuation time calculated by ELVAC computer program 19

Routine for Analysis of the People Movement Time for Elevator Evacuation

John H. Klote
Daniel M. Alvord

Abstract

This paper is part of a project sponsored by the U.S. General Services Administration (GSA) to study occupant use of elevators during building evacuations. A detailed method of analysis of people movement by elevators during emergency building evacuation is presented including the time for people to enter and exit elevators and the equations of elevator car motion. Also a computer program for people movement during elevator evacuation and examples. Runs of this are listed in appendices. The method and computer routine presented in this paper are intended to be used in a later part of the GSA elevator project to help study the feasibility of elevator fire evacuation.

Nomenclature

$a \quad$ acceleration, $\mathrm{m} / \mathrm{s}^{2}\left(\mathrm{ft} / \mathrm{s}^{2}\right)$
$J \quad$ number of elevators
$m \quad$ number of round trips
$\boldsymbol{N} \quad$ number of people entering or leaving the elevator
$N_{d w} \quad$ number of people entering or leaving the elevator during the dwell time
\boldsymbol{S} distance, $\mathrm{m}(\mathrm{ft})$
S_{T} total floor to floor travel distance for trip, $\mathrm{m}(\mathrm{ft})$
t time, s (s)
$\boldsymbol{t}_{\boldsymbol{a}} \quad$ elevator evacuation start up time, $\mathrm{s}(\mathbf{s})$
$\boldsymbol{t}_{\boldsymbol{d}} \quad$ time for elevator doors to open and close, $\mathrm{s}(\mathrm{s})$
$t_{d w}$ dwell time for elevator doors, $\mathbf{s}(\mathbf{s})$
$\boldsymbol{t}_{\boldsymbol{e}} \quad$ evacuation time, $s(\mathbf{s})$
$t_{\boldsymbol{h}} \quad$ time for leveling elevator of elevator car, $s(s)$
$\boldsymbol{t}_{\boldsymbol{i}} \quad$ time for \boldsymbol{N} people to enter elevator car, $\mathbf{s}(\mathbf{s})$
$t_{i o} \quad$ time for one person to enter elevator car, $s(s)$
$t_{0} \quad$ travel time from elevator lobby to outside or to other safe location, $\mathrm{s}(\mathrm{s})$
$t_{r} \quad$ time for elevator car to make a round trip, $\mathrm{s}(\mathrm{s})$
$t_{s} \quad$ standing time, $\mathrm{s}(\mathrm{s})$
$\boldsymbol{t}_{\boldsymbol{u}} \quad$ time for \boldsymbol{N} people to leave elevator car, $\mathrm{s}(\mathrm{s})$
$t_{\text {uo }} \quad$ time for one person to leave elevator car, $\mathrm{s}(\mathrm{s})$
$V \quad$ velocity, $\mathrm{m} / \mathrm{s}(\mathrm{ft} / \mathrm{s})$
$\boldsymbol{V}_{\boldsymbol{m}}$ normal operating velocity, $\mathrm{m} / \mathrm{s}(\mathrm{ft} / \mathrm{s})$
$\boldsymbol{\alpha} \quad$ basic transfer inefficiency
$\mu \quad$ total transfer inefficiency, $\mu=\alpha+e+\gamma$
e door transfer inefficiency
$\gamma \quad$ other transfer inefficiency
$\eta \quad$ trip inefficiency
Subscripts
T end of leveling car motion (also end of travel)
1 end of constant acceleration motion
2 end of transitional acceleration motion
3 . end of constant velocity motion
4 end of transitional deceleration motion
5 end of constant deceleration motion

1. Introduction

Throughout most of the world, signs next to elevators indicate they should not be used in fire situations; stairwells should be used for fire evacuation. These elevafors are not intended as means of fire egress, and they should not be used for fire evacuation (Sumka 1987). The idea of using elevators to speed up fire evacuation and to evacuate persons with disabilities has gained considerable attention (Bazjanac 1974, Bazjanac 1977, Pauls 1977, Pauls, Gatfield and Juillet 1991, Garfeld 1991, Degenkolb 1991, and Fox 1991).

This paper is part of a project sponsored by the U.S. General Services Administration (GSA) to study occupant use of elevators during building evacuations. Aspects of emergency elevator evacuation to be addressed in this project are systems concepts, engineering design considarations, and human behavior. Smoke control for elevators has alresdy been addressed under this project (Klote and Tamura 1991).

This paper presents a detailed method of analysis of people movement by elevators during emergency building evacuation, based on principles of elevator engineering (Strakosch 1983). Bazjanac (1977) and Pauls (1977) have developed methods of calculation of evacuation time by elevator, but the method presented here incorporates more detail about elevator motion and elevator loading and unloading. Also a computer program, ELVAC, for people movement during eleyator evacuation is described and example calaulations are presented. Appeodix A is a listing of the ELVAC program, and appendices B, C and D are example applications of the program. The method and computer routine presented in this paper are intended to be used in a later part of the GSA elevator project to help study the feasibility of elevator fire evacuation. Other people wanting to evaluate the extent to which elevators can speed up evacuation may also want to use the methods presented in this paper.

The sequence of elevator operation for emergency evacuation is complicated and has many possible variations. The following general sequence is presented to provide a framework for the method of analysis presented in this paper. Upon activation of emergency evacuation, elevators in normal service will go to a discharge floor where any passengers on the elevators will exit. This discharge floor may either lead to the outside or lead to an area of relative safety where people may stay during the fire. The elevators will make a number of round trips to transfer occupants from other floors to the discharge floor.

During evacuation, the elevators may be under a special emergency evacuation mode of automatic control or under manual control.

The evacuation time addressed in this paper is an idealized time for people movement which does not account for the complex human behavior that often occurs during emergencies. It is believed that the analysis of this paper is about as accurate as that for evacuation by stairs*. There is little guidance available regarding the extent to which actual evacuation time is greater than the idealized times for stairs or elevators, but Nelson and MacLennan (1988) indicate that actual evacuation time can be two or even three times as long. The approximate nature of such calculations should be taken into account in any applications of the methods presented in this paper.

2. Evacuation Time

Analysis of people movement during elevator evacuation must take into account the number and arrangement of elevators in a building. Generally elevators are located in groups of up to eight elevators. Elevators in a group are located near each other and are controlled together to efficiently move people. Arrangements of elevator groups are discussed later. The method of analysis and the computer program of this paper are for the calculation of the evacuation time for one group of elevators. For buildings with multiple groups of elevators, the approach presented in this paper can be applied separately to each group of elevators.

Ideally the time to evacuate a number of people using one group of elevators consists of the sum of all the round trip times divided by the number of elevators plus the time needed to start up the elevator evacuation and the travel time from the elevator lobby to the outside (or to another safe location). Accounting for inefficiencies of elevator operation, this evacuation time can be expressed as

$$
\begin{equation*}
t_{c}=t_{d}+t_{0}+\frac{(1+\eta)}{J} \sum_{j=1}^{m} t_{r, j} \tag{1}
\end{equation*}
$$

where $t_{r, \sigma}$ is the time for round tripj, \boldsymbol{m} is the number of round trips, J is the number of elevators, η is the trip inefficiency, $\boldsymbol{t}_{\boldsymbol{a}}$ is elevator evacuation start up time, and $\boldsymbol{t}_{\boldsymbol{o}}$ is the travel time from the elevator lobby to the outside or to another safe location. The round trip time depends on the travel time of the elevator and on the number of people carried by the elevator as discussed later. The travel time from the elevator lobby to a safe location can be evaluated by conventional methods of people movement (i.e. Nelson and MacLennan (1988) or Pauls (1988)]. The trip inefficiency accounts for trips to empty floors and trips to pick only a few stragglers. The elevator evacuation start up time is discussed in the next section.

[^0]The aumber of elevators, \mathbf{J}, used in equation (1) may be less than the number of elevators in the group to account for out-of-service elevators. The probability of elevators being out-of-service depends on a number of factors including the age of the elevators and the quality of maintenance. Because the out-ofservice condition can significantly increase elevator evacuation time, any analysis of elevator evacuation should take this condition into account.

3. Start Up Time

The elevator evacuation start up time is the time from activation to the start of the round trips that evacuate people. For automatic elevator operation during evacuation, a simple approach is to start elevator evacuation after all of the elevators have been moved to the discharge floor. For this approach, the start up time, $\boldsymbol{t}_{\boldsymbol{a}}$, consists of the time for elevators to go to the discharge floor plus the time for the passengers to leave the elevators. This can be expressed as

$$
\begin{equation*}
t_{e}=t_{T}+\left(t_{\mu}+t_{\mu}\right)(1+\mu) \tag{2}
\end{equation*}
$$

where $\boldsymbol{t}_{\boldsymbol{T}}$ is the travel time for the elevator car to go from the farthest floor to the discharge floor, s_{4} is the time for passengers to leave the elevator, t_{d} is the time for the doors to open and close once, and μ is the total transfer inefficiency. These terms are discussed in detail later.

An alternative to the simple approach discussed above consists of starting the evacuation operation individually for each elevator when it reaches the discharge floor. This alternative could result in slightly reduced syacuation time. However, this altertative is not discussed further here, because of its limited benefit and added complexity.

For manual elevator operation, the time for elevator operators to be alerted and then get to the elevators must be included in the estimate of start up time. This additional time may be considerably greater than that calculated from equation (2).

4. Elevator Round Trip Time

The round trip starts at the discharge floor and consists of the following sequence: elevator doors close, car travels to apother floor, elevator doon open, passengers enter the car, doors close, car travels to discharge floor, doon open, and passengers leave the car. The round trip time, t , is can be written as

$$
\begin{equation*}
t_{r}=2 t_{T}+t_{s} \tag{3}
\end{equation*}
$$

where t_{s} is the standing time and t_{T} is the travel time for one way of the round trip. This equation is based on the elevator only stopping at one floor to pick up passengers. It is expected that most elevators will fill up on one floor and proceed to the discharge floor. What constitutes a full elevator is discussed later. If an elevator stops to pick up passengers at more than one floor during a round trip, equation (3) can be modified accordingly. However, the trip inefficiency accounts for such multiple stops.

4.1 Standing Iime

The standing time is the sum of the time to open and close the elevator doors twice, the time for people to enter the elevator, and the time for people to leave the elevator. Considering transfer inefficiencies, the standing time for a round trip can be expressed as

$$
\begin{equation*}
t_{s}=\left(t_{i}+t_{\mu}+2 t_{d}\right)(14 \mu) \tag{4}
\end{equation*}
$$

where

```
\mu=\alpha+\varepsilon+\gamma
```

The basic transfer inefficiency, α, allows for rounding off of probable stops, door operating time, door starting and stopping time, and the unpredictability of people. Typically a value of 0.10 is used for the basic transfer inefficiency for commonly accepted arrangements of elevator groups as illustrated in figure 1. For each of these arrangements, the configuration of the elevator lobby is such that passengers can recognize which elevator has arrived and get on the elevator without excessive delay. Further, these lobbies have sufficient space so that people exiting one elevator will have a minimal impact on the flow of people leaving another elevator.

Arrangements of elevator groups other than those commonly accepted can be less efficient and require an increased value of the basic transfer inefficiency. These unusual arrangements include cars separated [fig 2(a)], too many cars in a line [fig 2(b)], angular arrangement [fig 2(c)], and cornered arrangement [fig 2(d)]. Separation of elevators results in increased boarding time for passengers waiting by one elevator to walk to another when it arrives. If the separation is too large, some passengers choose to let elevators go by without boarding. Use of too many elevators in a line has similar inefficiencies. With the angular arrangement [fig $2(\mathrm{c})$], cars a the narrow end tend to be to close together while cars at the wide end tend to be too far apart. In the cornered arrangement [fig 2(d)], passengers entering or leaving comer cars tend to interfere with each other.

The door inefficiency, \mathbf{e}, is used to adjust for any increase in transfer time over that of a 1200 mm (48 in) wide center opening door. Values of e are listed in table 1 . The inefficiency, $\boldsymbol{\gamma}$, is used to account for any other inefficiencies in people transfer into or out of elevators, such as increased movement times within an elevator car due to an unusual elevator car shape or limited physical capability of passengers. For example, $\boldsymbol{\gamma}$ often is chosen to be $\mathbf{0 . 0 5}$ for hospital elevators. Generally for office buildings, $\boldsymbol{\gamma}$ is taken as zero.

The time, t_{d}, for the doors to open and close depends on the width and type of the doors as listed in table 1. The kinetic energy of closing doors is limited by elevator safety codes and is usually not more than 0.29 J (7 ft poundal ${ }^{* *}$). This is why doors from different manufacturers take about the same time to open and close. Types of elevator doors are shown in figure 3. Door operating time is important because of the many times that doors open and close during an evacuation. Further, an elevator can not teave a floor before the doors are closed and locked, and passengers can not leave an elevator until the doors are fully opened or nearly fully opened. Generally elevator doan do not open until the car has stopped and is level with the floor. However, some center opening doors start opening while the car is leveling, and the times listed in table 1 should be reduced by one second for these preopening doors.

The time, $\boldsymbol{t}_{\boldsymbol{i}}$, for people to enter an elevator depends on the number, \boldsymbol{N}, of people entering and on the door operation. As previously stated, it is expected that most elevators will fill up on one floor and proceed to the discharge floor. However, elevators will be less than full when there are not enough people waiting in the lobby to fill an elevator or elevators. Thus the analysis must include partially filled elevators. Strakosch (1983) has observed elevator loadings for which passengers will not board an elevator and choose to wait for the next one. These observed values are based on $0.22 \mathrm{~m}^{2}\left(2.3 \mathrm{ft}^{2}\right)$ of floor space in the elevator car per person. It should be noted that the ASME A17.1 (1987) elevator standard allows a maximum loading $\boldsymbol{t} 0.14 \mathrm{~m}^{2}\left(1.5 \mathrm{ft}^{2}\right)$ per person, but this high density is not achieved in normal practice. For this study, the observed values of Strakosch are used as the number of persons in a full elevator car, and these loadings are listed in tables 3 and 4.

When elevator doors opin, the doors remain open for a least fixed time referred to as the dwell-time. $t_{d w}$. The time that the door is open can be extended beyond the dwell-time by blocking of the light beam across the door opening or by pushing the door safety edge. The time, t_{i}, for \boldsymbol{N} people to enter an elevator car can be expressed as

$$
t_{i}= \begin{cases}t_{d w} & \text { for } N \leq 2 \tag{5}\\ t_{d w}+t_{b}\left(N-N_{d w}\right) & \text { for } N>2\end{cases}
$$

where the $N_{d w}$ is the number of people entering the elevator during the dwell time, and t_{10} is the average time for one person to enter the elevator. The number of people entering the elevator during the dwell time is the term $\left(t_{d w} / t_{i d}\right)$ rounded down to the nearest integer. The time for \boldsymbol{N} people to leave an elevator can be express in a similar manner.

[^1]\[

t_{u}=\left\{$$
\begin{array}{lr}
t_{d w} & \text { for } N \leq 2 \tag{6}\\
t_{\alpha w}+t_{w w}\left(N-N_{\alpha w}\right) & \text { for } N>2
\end{array}
$$\right.
\]

For the computer program of this paper, the dwell-time is taken to be 4 seconds, the average time for one passenger to enter an elevator is taken to be 1 second, and the average time for one passenger to leave an elevator is taken to be 0.6 seconds.

4.2 Travel Time

Elevator motion is depicted in figure 4 for most trips. Motion starts with constant acceleration, followed by transitional acceleration, and constant velocity motion. Constant acceleration ends when the elevator reaches a predetermined velocity which is typically about 60% of the normal operating velocity ($V_{1}=$ $0.6 V_{m}$). For office buildings, the normal operating velocity is generally from 1 to $9 \mathrm{~m} / \mathrm{s}$ (200 to 1800 $\mathrm{fpm})$, and acceieration is from 0.6 to $2.4 \mathrm{~m} / \mathrm{s}^{2}\left(2\right.$ to $\left.8 \mathrm{ft} / \mathrm{s}^{2}\right)$. Deceleration has the same magnitude as the acceleration, and the total acceleration time equals the total deceleration time $\left(t_{2}=t_{5} \cdot t_{3}\right)$. The method of analysis that follows takes advantage of this symmetry.

Analysis of elevator motion that reaches the normal operating velocity is presented next. For short trips elevators do not always reach the normal operating velocity, and methods of analysis for these short trips are presented later.

Motion Reaching Normal Operating Velocity

The time to complete constant acceleration motion (going to point 1 on figure 4) is

$$
\begin{equation*}
t_{1}=\frac{V_{1}}{\mathrm{a}} \tag{7}
\end{equation*}
$$

The distance traveled during constant acceleration is

$$
\begin{equation*}
S_{1}=\frac{V_{1}^{2}}{2 a} \tag{8}
\end{equation*}
$$

Transitional acceleration is approximated by considering the product of velocity and acceleration to be a constant. The time to reach the end of transitional acceleration (point 2 of figure 4) is

$$
\begin{equation*}
t_{2}=\frac{V_{m}^{2}-V_{1}^{2}}{2 V_{1} a}+t_{1} \tag{9}
\end{equation*}
$$

The distance traveled by the end of transitional acceleration is

$$
\begin{equation*}
S_{2}=\frac{1}{3 a}\left(\frac{V_{m}^{3}}{V_{1}}-V_{1}^{2}\right)+S_{1} \tag{10}
\end{equation*}
$$

The one way travel time is

$$
\begin{equation*}
t_{s}=2 t_{2}+\frac{S_{T}-2 S_{2}}{V_{m}} \tag{11}
\end{equation*}
$$

The leveling time must be added to the above time to get the total travel time for a one way trip.

$$
\begin{equation*}
t_{T}=t_{5}+t_{h} \tag{12}
\end{equation*}
$$

Usually elevators do not stop exactly at the desired floor at the end deceleration, so the elevator must be moved slowly up or down to get it nearly level with the floor. For calculations in this paper, leveling time, t_{h}, is taken to be 0.5 seconds.

Motion Reaching Transitional Acceleration

If the trip is too short for the elevator to reach the cormal operating velocity, but it reaches transitional acceleration, the velocity is represented by either ifgre $5(\mathbf{a})$. The time, t_{1}, and distance, S_{1}, traveled during constant acceleration are given by equations (7) and (8). The velocity at the end of transitional acceleration is

$$
\begin{equation*}
V_{2}=\left[V_{1}^{3}+3 a V_{1}\left(\frac{S_{T}}{2}-S_{1}\right)\right]^{1 / 3} \tag{13}
\end{equation*}
$$

The time \pm the end of transitional acceleration is

$$
\begin{equation*}
t_{2}=\frac{V_{2}^{2}-V_{1}^{2}}{2 a V_{1}}+t_{1} \tag{14}
\end{equation*}
$$

The one way travel time is

$$
\begin{equation*}
t_{r}=2 t_{2}+t_{h} \tag{15}
\end{equation*}
$$

Motion Not Reaching Transitional Acceleration

When the trip does not go beyond constant acceleration, the motion is illustrated in figure 5(b). The one way travel time is

$$
\begin{equation*}
t_{T}=2 \sqrt{\frac{S_{T}}{a}}+t_{h} \tag{16}
\end{equation*}
$$

Example 1. Round Trip Time in SI Units

A 1600 kg elevator in an office building makes a round trip from the ground floor to pick up a full load of passengers from the 21 st floor and return them to the ground floor. The operating velocity is $3 \mathrm{~m} / \mathrm{s}$ with an acceleration of $1.2 \mathrm{~m} / \mathrm{s}^{2}$, and the elevator door is 1200 mm wide centeropening. The distance between floors is 3.2 m , and the total travel distance, S_{τ}, is 64 m .

From table 2, the number of people in the full elevator is approximated at 16. From table $1, t_{d}$ is 5.3 s , and e is $\mathbf{0}$. The elevator shape is not unusual and the passenger capability is normal, so $\boldsymbol{\gamma}$ is $\mathbf{0}$. The total transfer inefficiency is

$$
\mu=\alpha+\varepsilon+\gamma=0.10+0+0=0.10
$$

From equation (5), the time for 16 people to enter the elevator is

$$
t_{i}=N=16 \mathrm{~s}
$$

From equation (6), the time for 16 people to leave the elevator is

$$
t_{u}=4+0.6(N-6)=4+0.6(16-6)=10 \mathrm{~s}
$$

From equation (4), the standing time is

$$
t_{s}=\left(t_{i}+t_{\Delta}+2 t_{d}\right)(1+\mu)=(16+10+2(5.3))(1+0.1)=40.26 \mathrm{~s}
$$

Consider V_{1} is 60% of V_{m}, then

$$
V_{1}=0.6 V_{m}=0.6(3)=1.8 \mathrm{~m} / \mathrm{s}
$$

From equation (7), the time at the end of constant acceleration is

$$
t_{1}=\frac{V_{1}}{a}=\frac{18}{1.2}=1.5 \mathrm{~s}
$$

From equation (8), the distance traveled during constant acceleration is

$$
S_{1}=\frac{V_{1}^{2}}{2 a}=\frac{(1.8)^{2}}{2(1.2)}=1.35 \mathrm{~m}
$$

From equation (9), the time at the end of transitional acceleration is

$$
t_{2}=\frac{V_{m}^{2}-V_{1}^{2}}{2 V_{1} a}+t_{1}=\frac{(3)^{2}-(1.8)^{2}}{2(1.8)(1.2)}+1.5=2.83 \mathrm{~s}
$$

Fram equation (10), the distance traveled by the end of transitional acceleration is

$$
S_{2}=\frac{1}{3 a}\left(\frac{V_{m}^{3}}{V_{1}}-V_{1}^{2}\right)+s_{1}=\frac{1}{3(1.2)}\left(\frac{3^{3}}{1.8}-1.8^{2}\right)+1.35=4.62 \mathrm{~m}
$$

The one way travel time is calculated from equation (11).

$$
t_{s}=2 t_{2}+\frac{S_{T}-2 S_{2}}{V_{m}}=2(2.83)+\frac{64-2(4.62)}{3}=23.9 \mathrm{~s}
$$

The total travel time is calculated from equation (12).

$$
t_{T}=t_{s}+t_{h}=23.9+0.5=24.4 \mathrm{~s}
$$

The round trip time is calculated from equation (3).

$$
t_{r}=2 t_{T}+t_{s}=2(24.4)+40.3=89.1 \mathrm{~s}
$$

Example 2. Round Trip Time in English Units

A 3500 lb elevator in an office building makes a round trip fram the ground floor to pick up a full load of passengers from the 21st floor and return them to the ground floor. The operating velocity is 600 frm with an acceleration of $4 \mathrm{ft} / \mathrm{s}^{2}$, and the elevator door is 48 in wide centeropening. The distance between floors is 10.5 ft , and the total travel distance, S, is 210 ft .

From table 3, the number of people in the full elevator is approximated at 16 . From table $1 . t_{d}$ is 5.3 s , and e is 0 . The elevator shape is not unusual and the passenger capability is normal, so γ is 0 . The total transfer inefficiency is

$$
\mu=\alpha+\varepsilon+\gamma=0.10+0+0=0.10
$$

From equation (5), the time for 16 people to enter the elevator is

$$
t_{i}=N=16 \mathrm{~s}
$$

From equation (6), the time for 16 people to leave the elevator is

$$
t_{u}=4+0.6(N-6)=4+0.6(16-6)=10 \mathrm{~s}
$$

From equation (4), the standing time is

$$
t_{s}=\left(t_{1}+t_{k}+2 t_{d}\right)(1+\mu)=(16+10+2(5.3))(1+0.1)=40.26 \mathrm{~s}
$$

Consider V_{1} is 60% of V_{m}, then

$$
V_{1}=0.6 V_{m}=0.6(3)=1.8 \mathrm{~m} / \mathrm{s}
$$

The normal operating velocity is

$$
V_{m}=600 \frac{\mathrm{ft}}{\min } \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=10 \mathrm{ft} / \mathrm{s}
$$

From equation (7), the time t the end of constant acceleration is

$$
t_{1}=\frac{V_{1}}{a}=\frac{6}{4}=1.5 \mathrm{~s}
$$

From equation (8), the distance traveled during constant acceleration is

$$
S_{1}=\frac{V_{1}^{2}}{2 a}=\frac{(6)^{2}}{2(4)}=4.5 \mathrm{ft}
$$

From equation (9), the time at the end of transitional acceleration is

$$
t_{2}=\frac{V_{m}^{2}-V_{1}^{2}}{2 V_{1} a}+t_{1}=\frac{(10)^{2}-(0)^{2}}{2(6)(4)}+1.5=2.83 \mathrm{~s}
$$

From equation (10), the distance traveled by the end of transitional acceleration is

$$
S_{2}=\frac{1}{3 a}\left(\frac{V_{m}^{3}}{V_{1}}-V_{1}^{2}\right)+s_{1}=\frac{1}{3(4)}\left(\frac{10^{3}}{6}-6^{2}\right)+4.5=15.4 \mathrm{ft}
$$

The one way travel time is calculated from equation (11).

$$
t_{s}=2 t_{2}+\frac{S_{T}-2 S_{2}}{V_{m}}=2(2.83)+\frac{210-2(15.4)}{10}=23.6 \mathrm{~s}
$$

The total travel time is calculated from equation (12).

$$
t_{T}=t_{s}+t_{h}=23.6+0.5=24.1 \mathrm{~s}
$$

The round trip time is calculated from equation (3).

$$
t_{r}=2 t_{T}+t_{s}=2(24.1)+40.3=88.5 \mathrm{~s}
$$

5. Computer Elevator Evacuation Analysis

A computer program (ELVAC), written in Quick BASIC, for analysis of elevator evacuation is listed in appendix A. This program calculates evacuation time for one group of elevators. For buildings with multiple groups of elevators, the program can be used a number of times to calculate the evacuation time for each group.

Example 3. Elevator evacuation time

Estimate the time needed for elevator evacuation of all the people from the upper 11 floors of a 21 story building to the outside of the building. Additionally, 3% of the people on the other fioors are included in the elevator evacuation. The rest of the people on the lower floors will use the stairs. Each floor is occupied by 90 people. A group of six 1600 kg (3500 lb) elevators are used for the evacuation, and the elevator doors are 1200 mm (48 in) wide, center opening. One of the six cars is considered out-of-service, thus only five of the cars are used in the analysis. Other parameters of this example are listed in table 4.

Table 5 lists trip times and the evacuation time calculated by ELVAC. The evacuation time using five elevators is calculated at 1258 s or about 21 minutes.

Discussion of table 5 provides insight into the computer program. The round trip time for floor 21 is 89.1 \mathbf{s} (the same as calculated in example 1). In order to move 90 people from floor 21 , the elevator trips are considered to consist of five trips with a full car (16 people) plus one trip of a partially filled (10 people) car. The time for the partially filled round trip is 78.6 s (not shown in table 5). Thus the total trip time to move 90 people from floor 21 is $5(89.1)+78.6=524.1 \mathrm{~s}$. This time is listed under the heading "Time per Floor" for floor 21 in the table.

On floor 10 of this example 3% of 90 people are evacuated, this is rounded up to three people. Because this is done by one trip, the round trip time of 45.8 s listed in table 5 is for moving 3 people rather than the full car load of 16 . The total round trip time of 5395.6 s is sum of all the round trips to move people from all the floors. The evacuation time of 1258.3 s using 5 elevators was calculated from equation (1).

6. Summary

A detailed method of analysis of people movement by elevators during emergency building evacuation is presented. This method is for one group of elevators. For buildings with multiple groups of elevators, the approach presented in this paper can be applied separately to each group. The time to evacuate a number of people using one group of elevators includes the sum of all the round trip times divided by the number of elevators plus the times needed to start up the elevator evacuation and to travel from the elevator lobby to the outside or to another safe location. A trip inefficiency is used to account for trips to empty floors and trips to pick up a few stragglers.

The round trip starts at the discharge floor and consists of the following sequence: elevator doors close, car travels to another floor, elevator doors open, passengers enter the car, doors close, car travels to discharge floor, doors open, and passengers leave the car. The round trip time is the sum of the standing
time plus twice the one way travel time. The standing time is the sum of the time to open and close the elevator doors twice, the time for people to enter the elevator, and the time for people to leave the elevator. Elevator travel time is described by equations of motion under conditions of constant acceleration, constant velocity, and transitional acceleration between the first two. The computer program ELVAC can be used to calculate people movement during elevator evacuations.

7. Acknowledgements

The authors acknowledge the support and encouragement of David Frable of the General Services Administration concerning many aspects of the elevator evacuation research. Harold Nelson of NIST provided valuable advice about fire evacuation analysis. Jake Pauls of Hughes Associates also provided valuable advice and comments. Special thanks are due to George Strakosch of Elevator World Magazine, for his advice and guidance concerning almost every aspect of elevator engineering.

8. References

ASME 1987. American Standard Safety Code for Elevators, Escalators, Dumbwaiters and Moving Walks, A 17.1, American Society of Mechanical Engineers, New York.

Bazjanac, V. 1974. Another Way Out? Progressive Architecture, April, pp 88-89.
Bazjanac, V. 1977. Simulation of Elevator Performance in High-Rise Buildings Under Conditions of Emergency, Human Response to Tall Buildings, Ed by D.J.Conway. Dowden, Hutchinson \& Ross, Stroudsburg, PA, pp 316-328.

Degenkolb, J. 1991. Elevator Usage During a Building Fire, ASME Symposium on Fire and Elevators, Baltimore, MD, February 19-20, 1991, American Society of Mechanical Engineers, New York, NY, pp 76-79.

Fox C.C. 1991. Handicapped Use of Elevators, ASME Symposium on Fire and Elevators, Baltimore, MD, February 19-20, 1991, American Society of Mechanical Engineers, New York, NY, pp 80-82.

Gatfield, A.J. 1991. Elevators and Fire: Designing for Safety, ASME Symposium on Fire and Elevators, Baltimore, MD, February 19-20, 1991, American Society of Mechanical Engineers, New York, NY, pp 95-107.

Klote, J.H.and Tamura, G.T. 1991. Smoke Control for Elevator Fire Evacuation, ASME Symposium on Fire and Elevators, Baltimore, MD, February 19-20, 1991, American Society of Mechanical Engineers, New York, NY, pp 83-94.

Nelson, H.E. and MacLennan, H.A. 1988. Emergency Movement, SFPE Handbook of Fire Protection Engineering, Society of Fire Protection Engineers, Boston, MA.

Pauls, J. 1977. Management and Movement of Building Occupants in Emergencies, DBR Paper No. 788, National Research Council, Ottawa, Canada.

Pauls, J. 1988. People Movement, SFPE Fandbook of Fire Protection Engineering, Society of Fire Protection Engineers, Boston, MA.

Pauls, J., Gatfield A.J., Juillet, E. 1991. Elevator Use for Egress: The Human-Factors Problems and Prospects, ASME Symposiumon Fire and Elevators, Baltimore, MD, February 19-20, 1991, American Society of Mechanical Engineers, New York, NY, pp 63-75.

Strakosch, G.R. 1983. "Vertical Transportation: Elevators and Escalators",2nd Edition, Wiley \& Sons, New York, NY.

Sumka, E.H. 1987. Presently, elevators are not safe in fire emergencies, ASHRAE Transactions, Vol. 93, Part 2, pp. 2229-2234.

Table 1. Door Operating Time and Transfer Inefficiency

	Width mm (in)	Time' to Open and Close $t_{d}(\mathrm{~s})$	Door Transfer Inefficiency e
Door Type	$900(36)$	6.6	0.10
Single-Slide	$900(36)$	5.9	0.10
Two-Speed	$900(36)$	4.1	0.08
Center-Opening ${ }^{2}$	$1100(42)$	7.0	0.07
Single-Slide	$1100(42)$	6.6	0.07
Two-Speed	$1100(42)$	4.6	0.05
Center-Opening ${ }^{2}$	$1200(48)$	7.7	0.02
Two-Speed	$1200(48)$	5.3	0
Center-Opening ${ }^{2}$	$1400(54)$	8.8	0.02
Two-Speed	$1400(54)$	6.0	0
Center-Opening ${ }^{2}$	$1600(60)$	9.9	0.02
Two-Speed	$1600(60)$	6.5	0
Center-Opening2	$1600(60)$	6.0	0
Two-Speed, Center-			
Opening2			

'Time to open and close doon includes $\mathbf{0 . 5}$ second. for car to start.
${ }^{2}$ When preopening can be used, the time to open and close these doon can be reduced by 1 second.

Table 2. Car size and observed loading in SI Units

Capacity Kg (lb)	Car Inside (mm)			Observed Loading (people)
$1200(2640)$	Wide	Deep	Area (m²)	(ma $1400(3080)$
$1600(3520)$	2100	1300	2.73	10
$1600($ alt.)	2100	1450	3.05	12
$1800(3960)$	2350	1450	3.47	16
$1800($ alt.)	2100	1800	3.41	16
$2000(4400)$	2350	1650	3.78	18
$2250(4950)$	2350	1800	4.23	18
$2700(5940)$	2350	1950	4.58	20

'See footnote on table 3.
Thle 3. Car size and observed loading in English Units

Capacity (lb)	Car Inside (in) Wide	Deep	Area $\left(\mathrm{ft}^{2}\right.$)	Cosserved Loading ${ }^{1}$ (people)
2000	68	51	24.1	8
2500	82	51	29.0	10
3000	82	57	32.5	12
3500	82	66	37.6	16
3500 (alt.)	92	57	36.4	16
4000	82	73	41.6	19
4000 (alt.)	92	66	42.2	19
4500	92	72	46.0	21
5000	92	77	49.2	23
6000	92	90	57.5	27

'This loading is given by Strakosch (1983) as that for which passengers will not board an elevator and choose to wait for the next one.

Table 4. Parameters for Example 3

Number of Stories	21
Number of Elevator Cars	5
Number of People Per Floor	90
Percent of People Evacuating by Elevators From Floors $\mathbf{2}$ to $\mathbf{1 0}$	3
Percent of People Evacuating by Elevators From Floors 11 to 21	100
Height Between Floors	$3.2 \mathrm{~m}(10.5 \mathrm{ft})$
Operating Velocity of Elevator Car, V_{m}	$3.0 \mathrm{~m} / \mathrm{s}(590 \mathrm{fpm})$
Car Acceleration, a	$1.20 \mathrm{~m} / \mathrm{s}^{2}\left(3.94 \mathrm{ft} / \mathrm{s}^{2}\right)$
Other Transfer Inefficiency, γ	0
Trip Inefficiency, η	0.10
Car Full Load	16 people

Table 5. Elevator trip and evacuation time calculated by ELVAC computer program

Floor	Elevation		One Way Trip Time (s)	$\begin{aligned} & \text { Round } \\ & \text { Trip } \\ & \text { Time (s) } \end{aligned}$	People on Floor	Percent Elevator Evacuation	Number of Round Trips	Time per Floor (s)
21	64.0	210.0	24.4	89.1	90	100	6	524.1
20	60.8	199.5	23.4	87.0	90	100	6	511.3
19	57.6	189.0	22.3	84.8	90	100	6	498.5
18	54.4	178.5	21.2	82.7	90	100	6	485.7
17	51.2	168.0	20.2	80.6	90	100	6	472.9
16	48.0	157.5	19.1	78.4	90	100	6	460.1
15	44.8	147.0	10.2	76.3	90	100	6	447.3
14	41.6	136.5	17.0	74.2	90	100	6	434.5
13	38.4	126.0	15.9	72.0	90	100	6	42 I .7
12	35.2	115.5	14.2	69.9	90	100	6	408.9
11	32.0	105.0	13.8	67.8	90	100	6	396.1
10.	28.8	94.5	12.7	45.8	90	3	1	45.8
9	25.6	84.0	11.6	43.7	90	3	1	43.7
8	22.4	73.5	10.6	41.6	90	3	1	41.6
7	19.2	63.0	9.5	39.4	90	3	1	39.4
6	16.0	52.5	8.4	37.3	90	3	1	37.3
5	12.8	42.0	7.4	35.2	90	3	1	35.2
4	9.6	31.5	6.3	33.0	90	3	1	33.0
3	6.4	21.0	5.2	30.8	90	3	1	30.8
2	3.2	10.5	3.8	28.0	90	3	1	28.0
1	0.0	0.0						
Ttal round trip time								5395.6
					Startu	time =		41.3
Time to get outside after leaving the elevator								30.0
Evacuation time using 5 elevators								1258.3

Figure 1. Commonly accepted elevator arrangements

Figure 2. Unusual elevator arrangements resulting in inefficient people movement

Figure 3. Types of elevator doors

Figure 4. Velocity of elevator reaching normal operating velocity, v

(a) Car Reeching Transitional Acceloration

(b) Car Not Reeching Transitional Acceleration

Figure 5. Velocity of elevators not reaching normal operating velocity

```
DEFDBL A-Z
    '********************************
    ' PROGRRAM ELVACN*
    \prime*******************************
    .
,
```



```
    | A RATE OF CAR ACCELERATION IN FT/S**2.
    - Asi RATE OF CAR ACCELERATION IN M/S**2.
    E BASTRANSIN BASIC TRANSFER INEFFICIENCY. CHOSEN TO O.1.
    b BOTTOEXIT DISTANCE FROM BOTTOMMOST FLOOR TO EXIT.
    ' DISTANTFLR THE NUMBER OF THE FLOOR MOST DISTANT FROM THE EXIT FLOOR.
    ' DOORINEFF() DOOR INEFFICIENCY VALUES, SELECTED BY THE USER FROM A TABLE.
    ' DOORTIME() TIME IN SECONDS REQUIRED FOR THE OPENING AND CLOSING OF THE
    ' DOORPTYPESS DIFFERENT TYPES OF ELEVATOR DOORS, IN A FORMAT USED FOR
    PRINTING.
    DOORTYPESS CHARACTER STRING ARRAY WHICH CONTAINS THE DIFFFRENT TYPES OF
    ELEVATOR DOORS AS WELL AS THEIR CHARACTERISTICS.
    DRTIME TIME (8) REQUIRED FOR THE OPENING AND CLOSING OF THE ELEVATOR
    CAR DOOR.
    , ELCARS TOTAL NUMBER OF ELEVATOR CARS WITHIN THE GROUP, INPUT BY THE
        USER.
    ELEVATION(I) ELEVATIONS OF THE VARIOUS FLOORS ABOVE THE LOWEST FLOOR,
        WHICH IS ASSUMED TO HAVE AN ELEVATION OF O. I IS Ith FLOOR.
    EXITDELAY TIME (a) TO OUTSIDE AFTER LEAVING ELEVATOR.
    - EXITFLR POSITION OF'THE EXIT FLOOR RELATIVE TO THE LOWEST FLOOR
        IN THE BUILDING. FOR EXAMPLE, IF EXITFLR IS 3, IT IS TWO
        FLOORS ABOVE THE LOWEST ONE.
    EXITIMEFLRI TIME (8) FOR ALL RESIDENTS OF FLOOR I TO REACH EXIT FLOOR.
    EXITNAMES
        NAME OF FLOOR CHOSEN TO BE THE EXIT FLOOR.
        TOTAL EVACUATION TIME USING ALL ELEVATOR CARS IN THE BANK.
        SET TO "Y" WHEN THE MODEL USER WISHES TO CONTINUE THE RUN
        WITH NEW ELEVATOR PERCENTAGE VALUES.
        THE CHARACTER VARIABLE CONTAINING THE LINE OF FLOOR NAMES.
    - FLRNAMES$(I) CHARACTER ARRAY WHICH HOLDS THE FLOOR NAMES AFTER THE RANGES
        HAVE BEEN EXPANDED BY THE PROGRAM.
    / FULLOAD NUMBER OF PEOPLE THAT FULLY LOAD THE ELEVATOR CAR.
    [ HGTDIF(I) HEIGHT DIFFERENCE BETWEEN FLOOR I AND FLOOR I+1.
    , INFOPATHS THE LOCATION WHERE GENERAL INFORMATION ABOUT THE PROGRAM
        IS SENT.
    - KILLEXP A VARIABLE THAT IS SET TO 1 IF ANY ERRORS ARE FOUND IN THE
        SPECIFIED LINE OF FLOOR NAMES.
    EEVELTME TIME (s) REQUIRED FOR THE LEVELING OF THE ELEVATOR CAR. IT
        CURRENTLY IS SET TO . }5\mathrm{ SECONDS.
    b METELEV ELEVATION OF CURRENT FLOOR IN METERS. RECOMPUTED FOR EACH
```

- MTITLE1S	FIRST TITLE ROW FOR OUTPUT TA
- MTITIE2S	SECOND TITLE ROW FOR OUTPUT
- MTITLE3\$	THIRD TITLE ROW FOR OUTPUT
- NPPLELAST	THIS IS THE NUMBER OF PEOPLE IN THE ELEVATOR CAR DURING THE LAST TRIP, AND IS RECOMPUTED FOR EACH FLOOR.
, NTRIPSFUL	THE NUMBER OF ROUND TRIPS WITH A FULLY LOADED ELEVATOR CAR, RECOMPUTED FOR EACH FLOOR.
-	A FLAG THAT IS SET TO "YES" IF THE OUTPUTOPTION IS NOT 1 OR 2.
, OTHER	OTHER TRANSFER INEFFICIENCY VALUE, DUE TO ELEVATOR CAR SHAPE AND OCCUPANT USE.
\% OUTPUTO	AN INTEGER BETWEEN 1 AND 2 WHICH IS CHOSEN BY THE USER TO DETERMINE WHERE STORED OUTPUT IS SENT.
- PATHSELS	"N" IF ONLY SCREEN OUTPUT IS DESIRED, "PRN" IF THE FINAL OUTPUT RESULTS ARE TO BE PRINTED, OR A DOS FILENAME IF THE FINAL OUTPUT RESULTS ARE TO BE SENT TO A FILE.
- PEOPLE	N
- PERCNT	PERCENT OF PEOPLE ON Ith FLOOR WHO USE ELEVATOR CARS TO LEA THE BUILDING.
- PPLEFL	TYPICAL NUMBER OF PEOPLE ON A FLOOR, GIVEN BY THE USER.
${ }^{8}$ PPLEI	ACTUAL NUMBER OF PEOPLE ON Ith FLOOR WHO USE THE ELEVATOR CAR. IT IS THE PRODUCT OF PEOPLE(I) AND PERCNT(I).
PRINTINF	A FLAG SET TO Y IF THE USER WISHES TO READ ABOUT THE MODEL.
- RERUNPER	FLAG SET EQUAL TO O WHEN THE USER WISHES TO LEAVE THE MAIN DO LOOP, OR 1 WHEN HE WISHES TO RERUN IT WITH NEW ELEVATOR USAGE PERCENTAGE VALUES .
- RERUNOUTPUTS	SET EQUAL TO Y WHEN THE USER DESIRES TO SEND THE OUTPUT RESULTS TO THE PRINTER OR A FILE.
- RERUNPROC	SET EQUAL TO "Y" WHEN THE USER WISHES TO RERUN THE PROGRAM.
- RNDTIMES(I)	TOTAL TIME (a) FOR THE TRIPS REQUIRED TO EVACUATE FLOOR I.
- STARTUPTIME	TIME SPENT BEFORE THE ACTUAL EVACUATION BY ELEVATOR CARS
	BEGINS. IT IS COMPUTED FIRST TO BE THE TIME REQUIRED TO BRING A FULLY LOADED ELEVATOR CAR FROM THE MOST DISTANT
	OOR TO THE EXIT FLOOR. IF THIS IS NOT SATISFACTORY, THE
	USER INPUTS A LARGER
STNDTY	STANDING TIME CALCULATED FOR A FULLY LOADED ELEVATOR.
- TIMEP	SUM OF THE TIMES OF FULEY LOADED ROUND TRIPS. RECOMPUTED FOR EACH FIOOR.
- TIMELAS	TIME REQUIRED FOR THE LAST ROUND TRIP FROM A FLOOR.
- TIMES(I)	TIME FOR A ONE WAY TRIP TO FLOOR I.
- TITLES	TITLE OF THE CURRENT RUN.
TORENS\$ (I)	NON-BLANK SUBSTRINGS CONTAINED WITHIN EACH PARSED LINE (SEE PARSING ROUTINE) 。
TOPTOEX	DISTANCE FROM TOP FLOOR TO EXIT FLOOR.
TOTFI	TOTAL NUMBER OF FLOORS IN THE BUILDING.
TOTINEFF	BASIC TRANSFER INEFFICIENCY + DOOR INEFFICIENCY + OTHER TRANSFER INEFFICIENCY.
TOTTIME	TOTAL TIME TO EVACUATE BUILDING BY ELEVATOR.
${ }^{8}$ TRANS	TRANSITIONAL COEFFICIENT. V1 = TRANS
TRIP INEFF	TRIP INEFFICIENCY DUE TO GATHERING STRAGGLERS, TRAVEL TO
	RS,

```
, TRIPS NUMBER OF ROUND TRIPS NEEDED TO EVACUATE A FLOOR.
| TYPDIF
- TYPDIFsi
- TYPPERCNT
, UNITS
- vmax
- vmaxsi
```

- TYPDIF
- TYPDIFsi
- TYPPERCNT
- UNITS
- Vmax

NUMBER OF ROUND TRIPS NEEDED TO EVACUATE A FLOOR.
TYPICAL FLOOR TO FLOOR HEIGHT IN FEET.
TYPICAL FLOOR TO FLOOR HEIGHT IN METERS.
TYPICAL PERCENT OF ELEVATOR USAGE.
1 IF SI UNITS ARE DESIRED, 2 IF ENGLISH UNITS ARE REQUESTED.
MAXIMUM ELEVATOR CAR VELOCITY IN ft./second.
MAXIMUM ELEVATOR CAR VELOCITY IN m./second.

```
FIRST, DECLARE THE FIVE SUBROUTINES AND THE FUNCTION CALLED BY THE MAIN PROGRAM. THESE SIX SUBPROGRAMS AND THEIR ARGUMENTS WILL BE DESCRIBED BY COMMENT STATEHENTS APPEARING LATER.
DECLARE SUB CHECK (NUMTOR\#, LLIMIT\#, UPLIMIT\#, ARRPTR*)
DECLARE SUB PARSE (STORES, NUMTOKS*)
DECLARE SUB HEIGHTS ()
DECLARE SUB RANGEEXP (FLRSTRS, FLRSUB1, FLRSUB2, FLR1S, FLR2S, EXPEXCP)
DECLARE SUB TRIPTIME ()
DECLARE FUNCTION CALCSTANDX (PEOPX)
```

THESE ARE THE VARIABLES SHARED WITH OTHER ROUTINES.
DIM SHARED TOKENSS(200), FLOORSS, UNITS
DIM SHARED FLRNAMES $\$(200)$, HGTDIF(200), ELEVATION(200)
DIM SHARED TIMES(200), people(200), PERCNT(200)
DIM SHARED KILLEXP, TOTFLRS, EXITFLR
DIM SHARED TYPDIF, TYPDIFsi, VMAX, TRANS, A, LEVELTME, FULLOAD
DIM SHARED DRTIME, TOTINEFF
DIMENSION THE ARRAYS WHICH ARE NOT SHARED.
DIM DOORTYPES\$(15), DOOrtime(14), DCORINEFF(14), RNDTIMES(200)
DIM DOORPTYPESS(13)

- DATA STATEMENTS INITIALIZING THE DOORTIME AND DOOR TRANFER INEFFICIENCY ARRAY NOW APPEAR.
DATA 6.6,5.9,4.1,7.0,6.6,4.6,7.7,5.3,8.8,6.0,9.9,6.5,6.0
DATA . 10,.10,.08,.07,.07,.05,.02,0,.02,0,.02,0,0
FOR I = 1 TO 13: READ Doortime(I): NEXT I
FOR I = 1 TO 13: READ DOORINEFF(I): NEXT I

DATA STATEMENTS USED IN INITIALIZING THE DOOR TYPE ARRAY
ARE NOW GIVEN. THE ARRAY IS THEN INITIALIZED.

DATA" A Single-Slide	900 mm	(36in)	6.6	$0.10 "$
DATA" B Two-Speed	900 mm	(36in)	5.9	$0.10{ }^{\prime \prime}$
DATA" C Center-Opening	900 mm	(36in)	4.1	$0.08 "$
DATA" D Single-Slide	1100 mm	(42in)	7.0	0.07"
DATA" E Two-Speed	1100 mm	(42in)	6.6	0.07"
DATA" F Center-Opening	1100 mm	(42in)	4.6	$0.05{ }^{\prime \prime}$
DATA" G Two-Speed	1200 mm	(48in)	7.7	0.02 "
DATA" H Center-Opening	1200 mm	(48in)	5.3	0
DATA" I Two-Speed	1400 mm	(54in)	0.0	0.02"
DATA" J Center-Opening	1400 mm	(54in)	6.0	0

DATA" :	R Two-Speed	$1600 \mathrm{~mm}(60 \mathrm{in})$	9.9	0.02 "
DATA" I	L Center \longrightarrow ning	1600 mm (60in)	6.5	0
DATA" M	M Two-Speed,	1600 mm (60in)	6.0	0
DATA"	Center-Opening			
DATA" N	N OTHER			
FOR I z 1 TO 15: READ 000RTY?				

```
- DATA STATEMENTS TO INITIALIZE THE DOOR TYPE PRINTING ARRAY NOW
APPEAR. INITIALIZATION OF THE ARRAY IS PERFORMED.
DATA" A Single-Slide 900mm (36in) wide"
DATA" swo-Speed 900mm (36in) wide"
DATA" C Center-opening 900mm (36in) wide"
DATA" D single-siide 1100mm (42in) wide"
DATA" E Two-Speed ll00m (42in) wide"
DATA" F Center-Opening 1100mm (42in) wide"
DATA" G Two-Speed
DATA" H Center-Opening
DATA" I Two-Speed
DATA" J Center-Opening 1400mm (54in) wide"
DATA" K Two-speed 1600m (60in) wide"
DATA" L Center-opening 1600mm (60in) wide"
DATA" M Two-Sped, Center-Opening 1600mm (60in) wide"
FOR I = 1 TO 13: READ OCORPTYPES$(!)! NEXT !
SET THE DEFAULT VALUES OF SOME OF THE VARIABLES.
BASTRANSIN =,\(\downarrow \neq\)
TRANS = .6券
LEVETTME =.5\#
RERUNOUT?
PATHSELS : "SCRN:"
THE MAIN TITLES FOR THE OUTPUT TABLE ARE NOW CREATED.
```



```
MTITLE!S = WTTTLE!$ + " THE*
MTTTLES = "Floor Elevation Way Trip on"
MTITLE2S = MTITLE2S + " Percent Round per"
MTITLE3S = "Name m ft Time s Time s"
WTITLES$ : MTITLE3S + * Floor Usage Trip. Floor s"
```

```
| *******************************************************
***
            MAIN PROGRAX EXECUTION DO LOOP.
                THIS LOOP RUNS THE ENT!RS PRONRAM, AT THE END,
                THE USER IS ASKED IF HE WISHES TO RERUN !T, IF
                so, THz PROGRAM IS RERUN. OTHERWISE, THE LOOP
                IS EXITED AND THE PROORAN STOPS.
```

 DO
 INITIALLY SEND COMPUTED OUTPUT TO THE SCREEN.
CLS
OPEN "SCRN:" FOR OUTPUT AS $\ddagger 1$

```
PRINT "n
PRINT "*******************************************************************
PRINT " ELVAC VERSION 1.00
PRINT " WRITTEN BY DANIEL M. ALVORD AND "
PRINT " JOHN H. KLOTE "
PRINT " "
PRINT "CONTRIBUTION OF THE NATIONAL INSTITUTE OF STANDARDS AND .
PRINT " TECHNOLOGY. (U.S.)
PRINT " NOT SUBJECT TO COPYRIGHT
PRINT "
PRINT "FOR COMPILED VERSION ONLY - PORTIONS (C) COPYRIGHT MICROSOFT *
PRINT "CORPORATION, 1988. ALL RIGHTS RESERVED.
PRINT "
PRINT "DOCUMENTATION: KLOTE,J.H., ALVORD,D.M., AND DEAL,S., ANALYSIS OF"
PRINT "PEOPLE MOVEMENT DURING ELEVATOR EVACUATION, NATIONAL INSTITUTE
PRINT "OF STANDARDS AND TECHNOLOGY, (U.S.), NISTIR 4730, 1992.
PRINT n********************************************************************
PRINT "n
```

THE USER NOW INDICATES IF HE WISHES TO READ GENERAL INFORMATION ABOUT PARTICUIAR CONCEPTS OF THE ELEVATOR MODEL.
INPUT "Do you want to read about the model (Y or N) ? ", PRINTINFOS PRINTINFOS = UCASES(PRINTINFOS)

THE USER NOW SPECIFIES WHERE THE GENERAL INFORMATION SHOULD BE PLACED.
PRINT ${ }^{n}$
IF PRINTINFOS = "Y" THEN
PRINT "Where do you wish the general information to appear?" PRINT " (a filename, PRN for printer, or ENTER for output" INPUT " to the screen.) m, INFOPATHS
INFOPATHS = UCASES(INFOPATHS)
IF INFOPATHS $={ }^{n}$ n THEN INFOPATHS $=$ "SCRN:"
OPEN INFOPATHS FOR OUTPUT AS $\$ 2$
END IF

GENERAL INFORMATION ABOUT THE MODEL AND ITS COMPUTER IMPLEMENTATION IS NOW GIVEN, IF THE USER SO SPECIFIES.
IF PRINTINFOS = "Y" THEN
CLS
PRINT n n
 PRINT ${ }^{2}$, " Basic tranafer inefficiency- a factor that allows for "

PRINT *2, " rounding off of probable stops, door operating time, door"
 PRINT $\ddagger 2, "$ people. A value of 0.10 is ured for commonly accepted " PRINT \#2, " astangements of eleyator groups. " PRINT *2, " Discharge floor- When emesgency evacuation etarts, n PRINT \#2, " leyaeozs will eake people to a dischasge floor where n PRINT \#2, " passengess on the eleyatoss will exit. This floor may " PRINT $\ddagger 2,{ }^{n}$ lead to the outside or to an area of relative safety. " PRINT *2," Door besticieney-Adjurtr for any bnesease in transfer "
 PRINT \#2, " door.

IF INFOPATHS = "SCRN:" THEN
PRINT "n
INPUT "Press ENTER to conelnue........", junk\$
CLS
PRINT *"
END IF
PRINT *2, " Dwell time The minimu time an elevator car doorremains
PRINT F2," open. The time used in this program bs 4 seconds. " PRINT *2, " Groups- Elevator8 aze loeated in groups of up to eight " PRINT $\# 2, \cdots$ leyatozs, The eleyators in a group are located near each" PRINT $\# 2, \cdots$ other and ase controlled together to move people ". PRINT F_{2}, " efficiently.
PRINT $\# 2, *$ Elevator evacuation start up time- The time from activation" PRINT $\# 2, \cdots$ of che alasms (tor example) to che start of the round trips"
 PRINT $\ddagger 2,{ }^{\prime \prime}$ automatically during eqacuation, one starts the elevator " PRINT \#2, " evaeuation atter all of th8 eleyatozs naye been moved " PRINT \$2, " to she discharge floor and tho people in them have left. PRINT \#2, " In the ease Of manual elevator operation, the time for PRINT $\ddagger 2, n$ elevators operators to roach she eazs must b8 included. PRINT $\mathbf{F}^{2, *}$ Motion- Elevator motion stasts with conrtant acceleration, PRINT \#2, " soblowed by trantitional aceelesation until constant ". PRINT $\$ 2, \quad$, yelocity motion at the normal operating velocity of the PRINT ${ }^{2}$, ${ }^{n}$ car ls attained.
"

```
IF INFOPATHS = "SCRN:" THEN
    PRINT "*
    INPUT "Prese ENTER to conthnue....", junk$
    CLS
    PRINT "N
END IF
PRINT #2, " Oehez ezanstez bnetflelency- accounts for bnetfleiencies "
PRINT $2," due to unusual elevator ear shape or limited physical "
PRINT #2," capability of passengers, In office building., a value of"
PRINT #2," 0 bs used.
PRINT *2, " Round trip- a round trip stazes at th8 discharge floor and "
PRINT #2," consists Of the sequence: elevator doors close, car
PRINT #2," tsavels to anothes floor, door8 open, passengess enter
PRINT #2," ehe eas, doorr close, car tzavels to discharge floor,
PRINT *2," doors open, and oassengess beave the car. Alternatively,
PRINT #2," it may b8 detined as two one way erips and a standing
```

PRINT C2, " period.
PRINT ${ }^{2}$, " Standing time- Twice the time required to open and close " PRINT $\neq 2, n \quad$ the elevator doors, $p l u s$ the time for people to enter the"
PRINT \neq, " elevator, plus the im for people to leave the elevator."
PRINT \#2, " Trip inefficiency- a multiplicative factor that accounts "
PRINT $\neq 2$, " for trips to empty floors and for tripe to pick up only a"
PRINT $\neq 2$, " few stragglers.

```
    IF INFOPATHS = "SCRN:" THEN
    PRINT **
    INPUT "Prese ENTER to continue..." , junk$
    CLS
    PRINT **
END IF
```



```
PRINT #2," Range- A range is a set of floor names that is expanded by ,
PRINT *2," the program into a set of contiguous floor numbers. For "
PRINT #2, " example, the range 2-10 is expanded into 2,3,4,5,6,\ldots..., "
PRINT *2," 9,10.
PRINT #2, " Typical- Used to save effort in the input. It is best shown"
PRINT #2," by example. The typical inter floor height of a building "
PRINT #2, " typical inter floor height of a building is the most "
PRINT #2," commonly occurring height between floors (12 feet is an "
PRINT *2," example). There is a typical inter floor height, a "
PRINT *2," typical number of people on a floor, and a typical "
PRINT #2, " elevator uage percent.
```

```
END IF
```

IF INFOPATHS = "SCRN:" THEN PRINT *": PRINT m": PRINT " ${ }^{\text {n }}$

READ IN THE TITLE OF THE CURRENT RUN.
PRINT "Enter the title of this sun。"
LINE INPUT TITIE

ENTER VALUE INDICATING WHETHER METRIC! OR ENGLISH UNITS ARz DESIRED. DO

PRINT ${ }^{\text {п }}$
INPUT ${ }^{\text {renter }} 1$ for SI units or 2 for English units: ", UNITS
IF UNITS <> 1 AND UNITS <> 2 THEN
PRINT " ***INVALID UNIT INDICATOR."
END IF
LOOP UNTIL UNITS : 1 OR UNITS = 2

READ IN THE LINE OF FLOOR NAMES. THE LINE IS EXAMINED BY THE PROGRAM

- AND, IF ANY ERRORS ARE DISCOVERED, THE USER MUST REENTER THE LINE.
- IF NO ERRORS ARE FOUND, THE PROGRAM WILL USE THE FLOOR NAME LINE
- TO CREATE THE INDIVIDUAL FLOOR NAMES. THE HEIGHTS SUBROUTINE IS THEN
- CALLED TO READ IN THE TYPICAL FLOOR HEIGHT, ANY HEIGHT EXCEPTIONS, AND THEN TO COMPUTE THE ELEVATIONS OF EACH FLOOR.

DO
PRINT **
PRINT "Enter floor8 that the elevators serve (for example- B G 1-6)"
LINE INPUT FLOORS\$
CALL HEIGHTS
LOOP UNTIL KILLEXP : 0

```
    THE USER IS NOW PROXPTED 3Y THE PROGRAX TO KEY IN THE EXIT (DISCHARGE)
    FLOOR NAME. IF THE NAME IS NOT FOUND IN THE LIST OF FLOOR NAMES, AN
    ERROR WSSAGE APPEARS AND THE USER MUST RETYPE THE EXIT FLOOR NAME.
DO
    PRINT **
    INPUT "Discharge floor"; EXITNAMES
    EXITFLR = 0
    FOR I = 1 TO TOTFLRS
        IF EXITNAXES = FLRNAMESS(I) THEN
            EXITFLR = I
            EXIT FOR
        END IF
    NEXT I
    IF EXITFLR : O THEN
        PRINT **
        PRINT * FLOOR NAME "; EXITNAMES; " NOT FOUND."
        PRINT * VALID NAMES- * RTORS$
    END IF
LOOP UNTIL EXITFLR <> 0
```

 THE EXIT DELAY TIME MUST NOW BE INPUT. IF IT IS NOT WITHIN A CERTAIN
 RANGE, THE PROGRAM PROKFTS THE USER TO RETYPE IT.
 DO
PRINT **
INPUT "Time to outside tite: beay!ng elevator (a)"; EXITDELAY

PRINT ****T! *E TO OTTSIDE IS OUT OF RANGE."
END IF
LOOP UNTIL EXITDELAY > O

THE TRIP INEFFICIENCY FACTOR IS NOW ENTERED.
DO
PRINT **
INPUT "Trip inefficiency factor (for example.1)? ", TRIPINEFF
IF $O \neq>$ TRIPINEFF OR TRIPINEFF > $>$ (\ddagger THEN PRINT * *****TRIP IHETTIC!EHEG FACTOR IS OUT OF RANGE."
END IF

THE TOTAL NUMBER OF ELEVATOR CARS IN THE GROUP IS NOW INPUT. DO

PRINT "*
INPUT "Number of elevator cars in the group? ", ELCARS
IF ELCARS $<=0 *$ OR 100* < ELCARS THEN
PRINT ******TOTAL NUMBER OF ELEVATOR CARS IS OUT OF RANGE.'*
END IF
LOOP UNTIL ELCARS > O* AND ELCARS < $>$ 100

THE USER NOW ENTERS THE NORMAL OPERATING VELOCITY OF THE ELEVATOR CAR.
DO
PRINT ${ }^{* *}$
IF UNITS = 1 THEN
INPUT "Normal operating velocity of car (m/s)"; VMAXsi VMAX $=$ VMAXsi • (1/.3048䍀)
ELSE
INPUT "Normal operating velocity of car (fpm)"; VMAX
VMAX $=$ VMAX / 60
VMAXsi $=$ VMAX • .3048*
END IF
IF OF $>=$ VMAX UR 60000 $<$ VMAX THEN PRINT " ${ }^{* * * * * N O R M A L ~ C A R ~ V E L O C I T Y ~ I S ~ O U T ~ O F ~ R A N G E . " ~}$
END IF
LOOP UNTIL VMAX > O\# AND VMAX < <60000

NOW THE RATE OF ACCELERATION OF THE ELEVATOR CAR IS INPUT.
DO
PRINT **
IF UNITS $=1$ THEN
INPUT "Car acceleration (m/s**2)"; Asi
$A=A s i{ }^{*}(1 / .3048 *)$
ELSE
INPUT "Car Acceleration (ft/s**2)"; A
Asi $=A^{*} .3048$ *
END IF
IF O* $>=$ A OR 1000* $<$ A THEN PRINT " *****CAR ACCELERATION RATE IS OUT OF RANGE."
END IF
LOOP UNTIL $0 *<$ A AND $A<=1000$ 丰

NEXT, ENTER THE DESIRED FULL LOAD FOR THE ELEVATOR CAR. IT MUST BE INTEGER .
DO
PRINT "*
FLAG $=0$
INPUT "Elevator Full Load (people)"; FULIOAD
IF $O *>=F U L L O A D$ OR SO\# < FULLOAD THEN

PRINT " *****ELEVATOR FULL LOAD VALUE IS OUT OF RANGE."
FLAG $=1$

END IF

IF INT(FULLOAD) <> FULLOAD THEN
PRINT " *****ELEVATOR FULL LOAD VALUE MUST BE AN INTEGER."
FLAG $=1$
END IF
LOOP UNTIL FLAG $=0$

```
    THE TIME REQUIRED TO OPEN AND CLOSE THE ELEVATOR CAR DOORS IS NOW
    ENTERED.
DO
    PRINT "*
    PRINT " -\infty-\infty-\infty MRNU OF DOOR TYPES -.......*****
    PRINT STRING$(69, "-")
    PRINT " Door Eype" + STRINGS(16, " ");
    PRINT " Door width Time to Open Door Transfer"
    PRINT STRING$(39, " ") + " and Close, a Inefficiency"
    PRINT STRING$(69, "-")
    FOR I = 1 TO 15
        PRINT DOORTYPES$(I)
    NEXT I
    PRINT " . ***Pick one of the door choices A - M. "
    INPUT " If you wish to specify another type, enter N. ", R$
    RS = UCASES(RS)
    IF LEN(RS) = 1 THEN
        DOORCHOICE = ASC(RS) - 64
        IF DOORCHOICE < 1 OR DOORCHOICE > 14 THEN
            PRINT "n
            PRINT " *****DOOR CHOICE INVALID."
        ELSEIF DOORCHOICE = 14 THEN
            PRINT "n
            PRINT * *** ANOTHER DOOR TYPE SPECIFIED***"
            PRINT "n
            INPUT " New doortime value (s)? ", Doortime(14)
            DO
                    PRINT **
                    INPUT " New door inefficiency value? ", DOORINEFF(14)
                    MM = DOORINEPF(14)
                    IF KMS < Of OR MM > 1F THEN
                        PRINT "n
                        PRINT " ***Door inefficiency value is out of range."
                    END IF
            LOOP UNTIL MM >= O# AND NM <= 1#
        END IF
    ELSE
        PRINT "*
        PRINT " *****DOOR CHOICE: CONTAINS MORE THAN ONE CHARACTER."
    END IF
LOOP UNTIL LEN(R$) = 1 AND DOORCHOICE >= 1 AND DOORCHOICE <= 14
```

THE OTHER TRANSFER INEFFICIENCY FACTOR IS NOW INPUT. DO

PRINT " "
INPUT "Other transfer inefficiency? ", OTHERTRANSIN
IF OTHERTRANSIN < O\# OR OTHERTRANSIN > $1 \neq$ THEN
PRINT " *****OTHER TRANSFER INEFFICIENCY IS OUT OF RANGE,"
END IF
LOOP UNTIL O\# <= OTHERTRANSIN AND OTHERTRANSIN <= 1*

THE DOORTIME AND TOTAL TRANSFER INEFFICIENCY ARE NOW COMPUTED.
DRTIME = DOOrtime (DOORCHOICE)
TOTINEFF = BASTRANSIN + DOORINEFF(DOORCHOICE) + OTHERTRANSIN

THE STANDING TIME REQUIRED TO FULLY LOAD AN ELEVATOR CAR IS NOW COMPUTED AND STORED.
STNDTMEFULL = CALCSTAND* (FULLOAD*)

NEXT, THE ONE WAY TRIP TIMES ARE COMPUTED FOR EACH FLOOR. CALL TRIPTIME

NOW THE START UP TIME IS COMPUTED OR INPUT. THIS IS THE TIME REQUIRED


```
TOPTOEXIT = ELEVATION(TOTFLRS) - ELEVATION(EXITFLR)
BOTTOEXIT = ELEVATION(EXITFLR) - ELEVATION(1)
IF TOPTOEXIT > BOTTOEXIT THEN DISTANTFLR = TOTFLRS ELSE DISTANTFLR = 1
IF FULLOAD > 6 THEN OVER6FACT = .6 * (FULLOAD - 6)
UNLOADTIME = 4# + OVER6FACT
STARTUPTIME = (1 + TOTINEFF) * (DRTIME + UNLOADTIME) + TIMES(DISTANTFLR)
PRINT "The startup time for automatically operated elevators ";
PRINT USING "is ####.## seconds."; STARTUPTIME
INPUT " Do you want to enter another value (Y or N)? ", NEWFLAGS
NEWFLAGS = UCASES(NEWFLAGS)
IF NEWFLAGS = "Y" THEN
    DO
        INPUT " ? ", STARTUPTIME
        IF STARTUPTIME < O OR STARTUPTIME > 10000 THEN
            PRINT "*
            PRINT " VALUE FOR START UP TIME IS NOT IN CORRECT RANGE. "
            END IF
            PRINT "n
    LOOP UNTIL STARTUPTIME >= 0 AND STARTUPTIME <= 10000
ELSE
    PRINT ""
END IF
```

THE TYPICAL NUMBER OF PEOPLE ASSIGNED TO EACH FLOOR MUST NOW BE

```
    ENTERED. IT MUST BE AN INTEGER.
DO
    FLAG = 0
    INPUT "Typical Number of People per Floor"; PPLEFLR
    IF O# >= PPLEFLR OR 100000* < PPLEFLR THEN
        PRINT " *****TYPICAL PEOPLE PER FLOOR VALUE IS OUT OF RANGE."
        FLAG = 1
    END IF
    IF INT(PPLEFLR) <> PPLEFLR THEN
        PRINT " *****TYPICAL PEOPLE PER FLOOR VALUE MUST BE AN INTEGER."
        FLAG = 1
    END IF
LOOP UNTIL FLAG = 0
FOR I = 1 TO TOTFLRS: people(I) s PPLEFLR: NEXT I
    NEXT, THE PEOPLE PER FLOOR EXCEPTIONS ARE INPUT. THESE OVERRIDE
    THE TYPICAL PEOPLE NUMBER.
FOR I = 1 TO 1000
    PRINT " People p8r floor exception:"
    PRINT " Floor Range, people (enter END to atop)"
    LINE INPUT STORES
    CALL PARSE(STORES, NUMTORS*)
    CALL CHECR(NUMTORS*, O#, 100000$, 2#)
    IF TORENS$(1) = "STOP" THEN EXIT FOR
NEXT I
```

```
    * MAIN DO LOOP
```

 * MAIN DO LOOP
 * READS IN A NEW SET OF ELEVATOR USE PERCENTAGES. THIS LOOP
 * READS IN A NEW SET OF ELEVATOR USE PERCENTAGES. THIS LOOP
 IS RERUN UNTIL THE CURRENT INPUT VALUES TOGETHER WITH THE
 IS RERUN UNTIL THE CURRENT INPUT VALUES TOGETHER WITH THE
 NEW PERCENTAGE VALUES PRODUCE SATISFACTORY RESUUTS.
    ```
        NEW PERCENTAGE VALUES PRODUCE SATISFACTORY RESUUTS.
```

 DO
 THE TYPICAL ELEVATOR USAGE IS NOW KEYED IN. THIS IS THE PERCENT OF
 PEOPLE ON EACH FLOOR WHO USE ELEVATOR CARS TO EGRESS. IT MUST BE
 A VALUE BETWEEN 0 AND 100.
 DO
PRINT ${ }^{* *}$
INPUT "Percent of people on typical floor using elevator"; TYPPERCNT
IF TYPPERCNT < O\# OR TYPPERCNT > 100 THEN
PRINT " *****ELEVATOR USAGE PERCENT IS OUT OF RANGE."
END IF
LOOP UNTIL O\# <a TYPPERCNT AND TYPPERCNT <
FOR I = 1 TO TOTFLRS: PERCNT(I) = TYPPERCNT: NEXT I
- NEXT, EXCEPTIONS TO THE TYPICAL ELEVATOR USAGE PERCENT ARE ENTERED.

- THESE OVERRIDE THE TYPICAL PERCENT.

FOR I = 1 TO 1000
PRINT " Percent usage exceptions:"
PRINT " Floor Range, Percent (enter END to stop)"
LINE INPUT STORES
CALL PARSE(STORES, NUMTOKS\#)
CALL CHECK (NUMTOKS\#, O\#, 100\#, 3\#)
IF TOKENS $\$(1)=$ "STOP" THEN EXIT FOR
NEXT I

MAIN OUTPUT LOOP

FIRST, CLEAR THE SCREEN. NEXT, EXECUTE THE OUTPUT LOOP UNTIL THE VALUE OF RERUNOUTPUTS IS Y. THE VALUE OF THIS VARIABLE IS 1 ONLY WHEN THE USER WANTS TO PRINT OR STORE THE OUTPUT RESULTS.

```
CLS
```

DO

IMPORTANT PROGRAM PARAMETERS ARE NOW PRINTED. THESE APPEAR BEFORE
THE TABLE OF FLOOR INFORMATION.
PRINT ${ }^{(1, n}$
PRINT \#1, TITLE
PRINT \#1, "n
PRINT $\ddagger 1$, USING "People per floor is $\# \# \# \# \# \# . \quad " ;$ PPLEFLR
PRINT \#1, USING "Distance between floors is $\# \# \# .{ }^{*} \mathrm{m"}$; TYPDIFsi;

PRINT \#1, USING "Elevator usage percent ig $\# \# \# . \neq \# \neq n ;$ TYPPERCNT
PRINT \#1, USING "Normal car velocity is \quad * $\# \# \neq \# \mathrm{~m} / \mathrm{s}$ "; VMAXsi;

PRINT $\# 1$, USING "Car acceleration is \quad **.* $\mathrm{m} / \mathrm{s} 2 \mathrm{~m}$; Asi;

PRINT \#1, USING "Car full load is \ddagger people."; FULLOAD

PRINT \#1, USING "Trip inefficiency is \#.\#\#\# "; TRIPINEFF
IF DOORCHOICE <> 14 THEN
PRINT \#1, "Door type:"; DOORPTYPES\$(DOORCHOICE)
PRINT \#1, USING " Doortime s ***.\#\#\# "; DOortime(DOORCHOICE);
 ELSE

PRINT \#1, "Door type: OTHER "
PRINT \#1, " Doortime s";
PRINT \#1, USING "\#\#\#. \#\#\# Door inefficiency"; Doortime(14);
PRINT \#1, USING "\#.\#\#\# "; DOORINEFF(14)
END IF
PRINT \#1, ""
PRINT $\# 1$, STRINGS (78, "-")

```
    NOW THE VALUES FOR THE OUTPUT TABLE ARE COMPUTED AND PRINTED. THE
    FIRST ROW CORRESPONDS TO THE TOP FLOOR OF THE BUILDING, THE NEXT
    ROW TO THE FLOOR BENEATH THE TOP FLOOR, ETC.
PRINT #1, MTITLE1S
PRINT #1, MTITLE2S
PRINT #1, MTITIE3$
PRINT /1, STRING$(78, "-")
TOTTIME = O#
FOR I = TOTFLRS TO 1 STEP -1
    PPLEI = people(I) \bullet PERCNT(I) * .01*
    IF INT(PPLEI) <> PPLEI THEN PPLEI = INT(PPLEI + .5#) + 1
    TRIPS = PPLEI / FULLOAD
    IF INT(TRIPS) <> TRIPS THEN TRIPS = CINT(TRIPS + .5*)
    NTRIPSFULL = INT(PPLEI / FULLOAD)
    NPPLELAST = PPLEI - NTRIPSFULL - FULLOND
    RNDTIMES(I) = 2#* TIMES(I)
    IF NTRIPSFULL = O# THEN
        TIMELAST = RNDTIMES(I) + CALCSTAND(NPPLELAST#)
        RNDTIMES(I) = TIMELAST
        TIMEFULL = O#
    ELSEIF NTRIPSFULL > O# AND NPPLELAST = O# THEN
        TIMELAST = O&
        RNDTIMES(I) = RNDTIMES(I) + STNDTMEFULL
        TIMEFULL = NTRIPSFULL * RNDTIMES(I)
    ELSEIF NTRIPSFULL > O* AND NPPLELAST > O# THEN
        TIMELAST = RNDTIMES(I) + CALCSTAND(NPPLELAST#)
        RNDTIMES(I) = RNDTIMES(I) + STNDTMEFULL
        TIMEFULL = NTRIPSFULL • RNDTIMES(I)
    END IF
    IF PPLEI = O& THEN
        EXITIMEFLRI = O#
    ELSE
        EXITIMEFLRI = TIMEFULL + TIMELAST
    END IF
    PRINT #1, USING "\\ \ "; FLRNANESS(I);
    METELEV = ELEVATION(I) \bullet .3048*
    PRINT #1, USING "####.# ####.# "; METELEV; ELEVATION(I);
    IF I * EXITFLR THEN
        PRINT #1, " "
    ELSE
        PRINT 目, USING "####### ######### "; TINES(I); RNDTIMES(I);
```



```
        PRINT #1, USING "笋楼 #####,#"; TRIPS; EXITIMEFLRI
        TOTTIME = TOTTIME + EXITIMEFLRI
    END IF
NEXT I
PRINT #1, STRINGS(78, "-")
EVACTIME = (TOTTIME / ELCARS) * (1# + TRIPINEFF) + EXITDELAY
EVACTIME = EVACTIME + STARTUPTIME
```

THE TOTAL BUILDING EVACUATION TIME NOW APPEARS.
PRINT \#1, STRING (43, * *);
PRINT $\# 1,{ }^{\text {nTotal }}$ round trip time $={ }^{n}$;
PRINT *1, USING " \ddagger \#\#\#\#\#\#.\#"; TOTTIME
PRINT *1, STRING\$(51, " ");
PRINT *1, "Start up time=";

PRINT \#1, STRINGS(11, " ");
PRINT $\ddagger 1$, "Time to get to the outside after leaving the elevator=";
PRINT *1, USING " \#\#\# .*" ; EXITDELAY
PRINT *1, STRING\$(30, * *);
PRINT $\# 1$, USING "Evacuation time using ** elevators="; ELCARS;

PRINT *1, STRING $\$(53, * *)$;
PRINT \#1, USING "(Or \#\#\#\#\#F\# minutes)"; EVACTIME / 60

```
    DETERMINE IF THE PROGRAM USER WISHES TO SAVE THE OUTPUT SHOWN ON THE
    SCREEN. IF THIS IS THE CASE, THE OUTPUT LOOP IS RERUN. THE USER MAY
    PRINT THE OUTPUT, SEND IT TO A FILE, OR DO BOTH.
PRINT "*
IF PATHSELS = "SCRN:" THEN
    INPUT "Do you want to save the output (Y or N)? ", RERUNOUTPUTS
ELSE
    INPUT "Do you want to save the output again (Y or N)? ", RERUNOUTPUTS
END IF
RERUNOUTPUTS = UCASES(RERUNOUTPUT$)
IF RERUNOUTPUTS = "Y" THEN
    DO
        OPTIONERRORS = "NO"
        PRINT "*
        PRINT " The options for saving the output now follow. "
            PRINT " Enter a number corresponding to one of the following: "
            PRINT * 1. Send the output to the printer. "
            PRINT " 2. Store the output in a file.
            PRINT "*
            INPUT "Output option? ", OUTPUTOPTION
            IF OUTPUTOPTION < 1 OR OUTPUTOPTION > 2 THEN
        PRINT "n
        PRINT * *** Incorrect option number. Must be 1 OR 2. ***"
        OPTIONERRORS = "YES"
            END IF
            IF OUTPUTOPTION = 1 THEN
        PATHSELS = "PRN"
        CLOSE #1
        OPEN PATHSELS FOR OUTPUT AS #1
            ELSEIF OUTPUTOPTION = 2 THEN
                PRINT ""
                INPUT " What is the filename? ", PATHSELS
                PATHSELS = UCASES(PATHSELS)
                CLOSE *1
```

```
                OPEN PATHSELS FOR OUTPUT AS $1
                END IF
            LOOP UNTIL OPTIONERRORS = "NO"
        ELSE
            PATHSELS = "SCRN:"
            CLOSE #1
            OPEN PATHSELS FOR OUTPUT AS #1
            RERUNOUTPUTS = "N"
        END IF
    **************************
    * END OF MAIN OUTPUT LOOP
    **************************
    LOOP UNTIL RERUNOUTPUTS = "N"
D DETERMINE IF THE USER WISHES TO RERUN THE PROGRAM WITH NEW ELEVATOR
, USAGE PERCENTAGES.
    PRINT "n
    INPUT "Rerun program with new usage percentages (Y or N)? ", FINPCTS
    FINPCTS = UCASES(FINPCTS)
    IF FINPCTS = "Y" AND PATHSELS <> "SCRN:" THEN
        CLOSE #1
        OPEN "SCRN:" FOR OUTPUT AS #1
        END IF
        IF FINPCTS = "Y" THEN RERUNPERCNT = 1
        IF FINPCTS <> "Y" THEN RERUNPERCNT = 0
```



```
. *** END OF MAIN DO LOOP
```



```
    LOOP UNTIL RERUNPERCNT = 0
```



```
*** END OF PROGRAM EXECUTION LOOP
```



```
    PRINT "n
    INPUT "Do you wish to rerun the entire program (Y or N)? ", RERUNPROGS
    RERUNPROGS = UCASES(RERUNPROGS)
    CLOSE *1
LOOP UNTIL RERUNPROGS = "N"
```

 END
    ```
, FUNCTIONCALCSTAND
\prime-------------------------------------------------------------------------------------
                    THIS FUNCTION COMPUTES THE STANDING TIME PORTION OF AN ELEVATOR'S
        TRIP. IT IS DEFINED AS FOLLOWS:
- STANDING TIME = (1 + TOTINEFF) * (2*DOORTIME+LOADING TIME+UNLOADING TIME)
'---------------------------------------------------------------------------------------
, LOCAL VARIABLES:
, LOADTIME TIME (8) TO LOAD AN ELEVATOR CAR.
- PEOP# NUMBER OF PEOPLE FOR WHICH THE STANDING TIME IS COMPUTED.
- OVERGFACT EXTRA TIME REQUIRED WHEN PEOPF IS OVER 6.
U UNLOADTIME TIME (■) TO UNLOAD AN ELEVATOR CAR AT THE EXIT FLOOR.
    GLOBAL VARIABLES:
        DRTIME TIHE (a) REQUIRED FOR THE OPENING AND CLOSING OF THE
                        ELEVATOR CAR DOOR.
        TOTINEFF TOTAL TRANSFER INEFFICIENCY.
        FUNCTION CALCSTAND* (PEOP*)
        OVER6FACT = O
        IF PEOP# > 6# THEN OVERGFACT = .6* * (PEOPX - 6)
        IF PEOP# < 2 2* THEN LOADTIME = 2* ELSE LOADTIME = PEOPX
        UNLOADTIME = 4* + OVER6FACT
    CALCSTAND# = (1# + TOTINEFF) * (2# * DRTIME + LOADTIME + UNLOADTIME)
    END FUNCTION
'------------------------------------------------------------------------------------------
    S U BROUT I NE CHE C K
'--------------------------------------------------------------------------------------
                    THIS SUBROUTINE CHECKS HEIGHT, PEOPLE PER FLOOR, AND
                    ELEVATOR USAGE PER FLOOR EXCEPTIONS.' THESE EXCEPTIONS 'ARE
                    ENTERED IN THE FORM nm,val , WHERE nm IS A FLOOR NAME AND val
                    IS AN EXCEPTION VALUE. THE STRING VALUE "END" STOPS EXCEPTION
                    INPUT FOR EACH OF THE THREE CATEGORIES OF EXCEPTIONS.
| ----------------------------------------------------------------------------------------
```



```
    SUB CHECK (NUMTOK#, LLIMIT#, UPLIMIT#, ARRPTR#)
    IF NUMTOR# = O THEN
        PRINT n BLANK LINE HAS BEEN ENTERED OR GENERATED."
        EXIT SUB
    END IF
    IF THE INFORMATION ON THE LINE IS SUCH THAT NO FURTHER ANALYSIS
```

IS POSSIBLE, EXIT THE SUBROUTINE. IF THERE IS ONE ITEM, AND IT IS THE CORRECT END INDICATOR, SET A FLAG TO STOP SUBROUTINE CALLS FOR THIS TYPE OF EXCEPTION.
IF NUMTOK* > 2 THEN
PRINT " MORE THAN TWO ITEMS ON LINE."
EXIT SUB
ELSEIF NUMTOK* = 2 AND UCASES(TOKENS $(1))=$ "END" THEN
PRINT " TWO ITEMS ON LINE, BUT FIRST ONE IS THE END INDICATOR."
EXIT SUB
ELSEIF NUMTOR\# = 1 AND UCASES(TORENS $(1))=$ "END" THEN
TORENS $(1)=$ "STOP"
EXIT SUB
ELSEIF NUMTOR* 1 AND UCASES(TORENS\$(1)) <> "END" THEN
PRINT " ONE ITEM ON LINE, NOT CORRECT END INDICATOR."
EXIT SUB
END IF

THE FIRST ITEM ON THE LINE SHOULD BE THE FLOOR NAME OR RANGE. CHECX TO SEE IF IT MATCHES A NAME THAT HAS BEEN PREVIOUSLY SPECIFIED. THE RANGE EXPANSION SUBROUTINE IS CALLED TO CHECX THE FLOOR RANGE SPECIFIED. IF THE VALUE OF EXPECP IS O, THE RANGE WAS EXPANDED. IF 1, THE RANGE COULD NOT BE EXPANDED DUE TO CERTAIN ERRORS FOUND IN ITS COMPONENTS. IF IT IS 2, THE FLOOR NAME IS A SINGLE ITEM.
CALL RANGEEXP(TORENS\$(1), FLRSUB1, FLRSUB2, FLREXCP1S, FLREXCP2S, EXPECP)

PRINT OUT AN ERROR MESSAGE IF ONE OR MORE OF THE NAMES IN THE FLOOR RANGE COULD NOT BE FOUND IN THE FLOOR NAME TABLE.
IF FLRSUB1 = 0 AND EXPECP = 0 THEN
PRINT " FLOOR NAME "; FLREXCP1S; " NOT FOUND."
PRINT ${ }^{\circ}$ VALID NAMES- ${ }^{*}$; FLOORS
END IF
IF FLRSUB2 = 0 AND EXPECP = 0 THEN
PRINT " SECOND FLOOR NANE "; FLREXCP2S; " NOT FOUND."
PRINT " VALID NAMES— "; FLOORS
END IF
IF FLRSUBI = 0 AND EXPECP = 2 THEN
PRINT " FLOOR NAME " ; FLREXCP1S; " NOT FOUND."
PRINT " VALID NANES- "; FLOORS
END IF

ERRFLAG = 0

DETERMINE IF THE SECOND ITEM IS A VALID NUMBER-
FOR I 1 TO LEN(TOKENSS(2))
PTRS = MIDS(TOKENSS(2), I, 1)
IF INSTR(".0123456789", PTRS) $=0$ THEN
PRINT " INVALID NUMBER AFTER FLOOR NAME."
ERRFLAG $=1$ EXIT FOR
END IF
IF INSTR(".", PTRS) = 1 AND ARRPTR\# = 2* THEN

PRINT " NO DECIMAL POINTS ALLOWED IN PEOPLE/FLR NUMBER." ERRFLAG $=1$
END IF
NEXT I

IF THE ITEM IS A VALID NUMBER, DETERMINE IF IT LIES BETWEEN THE LOWER AND UPPER LIMITS.
IF ERRFLAG $=0$ THEN
NUMB $=$ VAL (TOKENS $\$(2)$)
IF NUMB < LIIMIT\# OR NUMB > UPLIMIT\# THEN
PRINT " NUMBER AFTER FLOOR NAME IS OUT OF RANGE."
ERRFLAG $=1$
END IF
END IF
IF ANY ERRORS HAVE BEEN DETECTED, LEAVE THE SUBROUTINE.
IF ERRFLAG $=1$ THEN EXIT SUB

SET THE APPROPRIATE ARRAY ROW(S) TO THE VALUE OF THE EXCEPTION.
FOR I = FLRSUB1 TO FLRSUB2
IF ARRPTRX $=1 *$ AND UNITS $=1$ THEN $\operatorname{HGTDIF}(I)=$ NUMB * (1 / .3048*)
IF ARRPTRX $=1$ AND UNITS $=2$ THEN HGTDIF $(I)=$ NUMB
IF ARRPTRX $=2 X$ THEN people(I) $=$ NUMB
IF ARRPTRX $=3 *$ THEN PERCNT $(I) \neq$ NUMB
NEXT I

END SUB

,

THIS SUBROUTINE FIRST CALLS THE PARSING ROUTINE TO ISOLATE ALL

- ALL FLOOR NAMES WHICH CONTAIN THE CHARACTER "-n. THESE ARE TERMED RANGES (such as 2-10 is the sange of floats from 2 through 10). ANY RANCES FOUND ARE EXAMINED CAREFULLY FOR POSSIBLE AMBIGUITIES,
 HEIGHT EXCEPTIONS. AFTER THESE HAVE BEEN ENTERED THE ELEVATIONS ARE , COMPUTED AND THE SUBROUTINE IS EXITTED.

LOCAL VARIABLES, AND GLOBAL VARIABLES CHANGED HERE:
CURTORS CONTAINS STRING VALUE BEING TESTED AS A POSSIBLE RANGE.
ELEMENT NUMBER OF SUBSTRINGS FOUND ON THE FLOOR NAME LINE.
ELEVATION(I) ELEVATXON OF Ith FLOOR ABOVE LOWEST FLOOR.
FLOORS $\$$ INITIALLY CONTAINS THE FLOOR NAME LINE INPUT BY THE USER, THEN IT IS COMPRESSED TO REMOVE EXTRA BLANKS. FLRNAMES (I) ARRAY CONTAINING THE FLOOR NAMES AFTER RANGE EXPANSION. HGTDIF(I) ARRAY WHOSE Ith ROW IS THE HEIGHT DIFFERENCE BETWEEN FLOOR I AND FLOOR I+1, WHERE THE LOWEST FLOOR IS 1.

KILLEXP	If this is Set to 1, the main program keeps on prompting THE USER FOR A NEW FLOOR NAME LINE.
PTR	COUNTER USED WHEN FLRNAMESS ARRAY IS CREATED.
RANGE1\$(I)	CONTAINS THE FIRST RANGE VALUE OF Ith RANGE FOUND. FOR EXAMPLE, IF THE 4th RANGE FOUND IS 7-10, RANGE1S(4)="7"
RANGE2\$ (I)	SIMILAR TO RANGE1\$(I), BUT STORES SECOND RANGE VALUES.
RANGEMK	LOCATION OF THE CHARACTER "-" IN A SUBSTRING. IF IT IS NOT O, THE SUBSTRING IS ASSUMED TO BE A RANGE.
STORES	CONTAINS THE HEIGHT EXCEPTION LINE.
TOTFLRS	SET EQUAL TO THE TOTAL NUMBER OF FLOORS FOUND AFTER EXPANSION.
TYPDIF	TYPICAL FLOOR TO FLOOR HEIGHT. CAN BE OVERRIDDEN BY HEIGHT EXCEPTIONS FOR INDIVIDUAL FLOORS.

SUB HEIGHTS

DIM RANGE1\$(200), RANGE2\$(200)
KILLEXP $=0$

PARSE THE LINE OF FLOOR NAMES.
CALL PARSE(FLOORS $\$$, NUMTORA)
ELEMENT = NUMTOKI

IF NO ITEMS ARE FOUND ON THE FLOOR NAME LINE, PRINT ERROR MESSAGE AND EXIT SUBROUTINE.
IF ELEMENT $=0$ THEN
PRINT "-
PRINT * BLANK LINE HAS BEEN ENTERED OR GENERATED."
KILLEXP = 1
EXIT SUB
END IF

IF ONE ITEM IS FOUND, AND IT IS NOT A RANGE, THEN ONLY ONE FLOOR
NAME HAS BEEN INPUT,
IF ELEMENT = 1 AND INSTR(TORENS $\left.\$(1),{ }^{(1)}{ }^{*}\right)=0$ THEN
PRINT ${ }^{n n}$
PRINT " ONLY ONE FLOOR IS GIVEN."
KILLEXP = 1
EXIT SUB
END IF

FLOORS\$ = ${ }^{n n}$

CHECR EACH SUBSTRING TO SEE IF IT IS A RANGE. IF SO, TEST FOR COMMON ERROR SITUATIONS.

PRINT ${ }^{n}$

FOR I = 1 TO ELEMENT
CURTORS = TORENSS(I)
CALL RANGEEXP(CURTOKS, SUBS1, SUBS2, FLRVAL1\$, FLRVAL2\$, EXPRANGE)

IF EXPRANGE = 1 THEN KILLEXP = 1
ELSEIF EXPRANGE $=2$ THEN RANGE1\$(I) $=\mathbf{n}$ FLOORS $=$ FLOORSS + " + + CURTOKS
ELSEIF EXPRANGE $=0$ THEN RANGE1S(I) $=$ FLRVALIS RANGE2S(I) = FLRVAL2S FLOORSS = FLOORSS + " " + CURTOKS
END IF
NEXT I

If errors have been detected, exit subroutine
IF KILLEXP $=1$ THEN EXIT SUB
If NO ERRORS HAVE BEEN FOUND, PERFORM RANGE EXPANSION(IF NECESSARY), AND INITIALIZE the flrnamess array.
PTR $=1$
FOR I = 1 TO ELEMENT
IF RANGE1S(I) $=" n$ THEN
FLRNAMESS(PTR) $=$ TOKENSS(I)
PTR = PTR + 1
ELSE
FOR $J=\operatorname{VAL}(R A N G E 1 \$(I)) T O \operatorname{VAL}(R A N G E 2 S(I))$
FLRNAMESS(PTR) $=$ STRS(J)
FLRNAMESS(PTR) $=$ LTRIMS(FLRNAMESS(PTR))
PTR $=\mathrm{PTR}+1$
NEXT J
END IF
next I

READ IN THE TYPICAL FLOOR TO FLOOR HEIGHT AND THEN THE HEIGHT EXCEPTIONS.
TOTFLRS $=$ PTR - 1
IF UNITS = 1 THEN
INPUT "Typical floor to floor height (m)"; TYPDIFsi
TYPDIF = TYPDIFsi * (1/.3048;)
ELSE
INPUT "Typical floor to floor height (ft)"; TYPDIF
TYPDIFsi = TYPDIF * .3048\#
END IF
FOR $\mathrm{K}=1$ TO TOTFLRS: HGTDIF $(\mathrm{K})=$ TYPDIF: NEXT K
FOR I = 1 TO 1000
PRINT " Height exceptions:"
IF UNITS $=1$ THEN
PRINT " Floor range, height(m) (enter END to atop)"
END IF
IF UNITS $=2$ THEN
PRINT " Floor range, height(ft) (enter END to stop)"
END IF

LINE INPUT STORES
CALL PARSE(STORES, NUMTOK\#)
CALL CHECK (NUMTOR\#, O\#, 10000\#, 1\#)
IF TOKENS $\$(1)$ * "STOP" THEN EXIT FOR
NEXT I

COMPUTE THE ELEVATIONS OF EACH FLOOR, STARTING FROM THE LOWEST ONE.
ELEVATION(1) $=0$
FOR I = 2 TO TOTFLRS + 1
ELEVATION (I) = ELEVATION(I - 1) + HGTDIF(I - 1)
NEXT I

END SUB

```
SUBROUTINEPPARSE
```



```
                    THIS SUBROUTINE IS PASSED THE STRING STORES, CHANGES ANY
    COMMAS TO BLANRS, ISOLATES ALL SUBSTRINGS SEPARATED BY BLANKS
    WITHIN THE STRING, AND COUNTS THEM. THE ARGUMENT NUMTOK# IS SET TO
        THE COUNTED NUMBER. THE PARSING METHOD DESTROYS ALL SUBSTRINGS
        WITHIN STORES EXCEPT FOR THE RIGHTMOST ONE.
```

 SUB PARSE (STORES, NUMTOX事)
 FOR COL \(=1\) TO LEN(STORES)
 IF MIDS(STORES, COL, 1\()=\cdots, "\) THEN MIDS(STORES, COL, 1\()=" *\)
 NEXT COL
 STORE\$ * RTRIMS(STORE\$)
 FOR I = 1 TO 200
 STORES = LTRIMS(STORES)
 NEXTBLNR = INSTR(STORES, * *)
 IF NEXTBLNK = O THEN
 TORENS\$(I) = STORES
 EXIT FOR
 END IF
 TOKENSS (I) = MIDS(STORES, 1, REXTBLNR - 1)
 MIDS(STORES, 1, NEXTBLNK - 1) = STRINGS(100, **)
 NEXT I
 IF LEN(STORES) <> 0 THEN NUMTORF = I: ELSE NUMTOK\# = 0
 END SUB
 S UBROUTINE RANGEEXP

THIS SUBROUTINE IS PASSED A FLOOR NAME OR FLOOR RANGE. IF IT IS
PASSED A RANGE, IT CHECRS THE TWO PARTS OF THE RANGE FOR VARIOUS ERROR
SITUATIONS, ISOLATES THE FIRST AND SECOND PART OF THE RANGE, AND
FINDS THE LOCATIONS OF THE FLOOR NAMES WITHIN THE FLOOR NAME TABLE.
, EXPEXCP AN OUTPUT PARAMETER. ITS VALUE IS O IF THE FLOOR ITEM IS A VALID

- FLREXCP1\$ AN OUTPUT PARAMETER. THE VALUE OF THE FIRST ITEM IN THE RANGE, OR THE ONLY ITEM IF THERE IS NO RANGE.
- FLREXCP2 $\$$ AN OUTPUT PARAMETER. THE VALUE OF THE SECOND ITEM IN THE RANGE, OR THE ONLY ITEM IF THERE IS NO RANGE.
- FLRSTRS THE CHARACTER STRING PASSED TO THIS SUBROUTINE.
- FLRSUBl THE LOCATION OF THE FIRST FLOOR NAME WITHIN THE FLOOR NAME TABLE, OR 0 IF THE NAME IS NOT A VALID FLOOR NAME.
- FIRSUB2 THE LOCATION OF THE SECOND FLOOR NAME WITHIN THE FLOOR NAME TABLE, OR 0 IF THE NAME IS NOT A VALID FLOOR NAA届:
- CURTOKS CONTAINS THE STRING PASSED TO THE SUBROUTINE.
, RANGEMK THE LOCATION OF A DASH WITHIN THE FLOOR RANGE.
- TEMPRANGE1S STORES THE FIRST PART OF THE RANGE.
- temprange2 $\$$ Stores the second part of the range.

SUB RANGEEXP (FLRSTRS, FLRSUB1, FlRSUB2, FLREXCP1\$, FLREXCP2\$, EXPEXCP)

INITIALIZE SOME OF THE OUTPUT PARAMETERS.
EXPEXCP $=0$
FLRSUBI $=0$
FLRSUBZ $=0$

CHECK THE SUBSTRING TO SEE IF IT IS A RANGE. IF SO, TEST FOR COMMON ERROR SITUATIONS.
IF ELRNAMESS(1) <> ${ }^{n n}$ THEN PRINT ${ }^{n n}$
CURTORS = FLRSTRS
RANGEMK $=$ INSTR (CURTOKS, ${ }^{*}-{ }^{-*}$)
IF RANGEMK = O THEN
TEMPRANGE1\$ = "n
ELSEIF RANGEMK = 1 OR RANGEMK = LEN(CURTOK\$) THEN PRINT " MISPLACED DASH - NO RANGE EXPANSION PERFORMED. "; CURTOKS EXPEXCP =1
ELSEIF RANGEMK <> 0 THEN
TEMPRANGEIS = MIDS(CURTOKS, 1, RANGEMK - 1)
TEMPRANGE2\$ = MIDS(CURTOK\$, RANGEKK + 1, LEN(CURTOK\$))
FOR $J=1$ TO LEN(TEMPRANGE1S)
IF INSTR("O123456789", MIDS(TEMPRANGE1S, J, 1)) = 0 THEN PRINT " INCORRECT 1ST RANGE IN "; CURTORS; ", POS "; J EXPEXCP = 1
END IF
NEXT J
FOR J = 1 TO LEN(TEMPRANGE2\$)
IF INSTR("0123456789", MIDS(TEMPRANGE2S, J, 1)) = 0 THEN PRINT " INCORRECT 2ND RANGE IN "; CURTOKS; ", POS "; J

EXPEXCP =1

END IF
NEXT J
IF EXPEXCP = O AND VAL (TEMPRANGE1\$) $>=$ VAL (TEMPRANGE2\$) THEN PRINT " 1ST RANGE IS NOT LESS THAN 2ND RANGE IN "; CURTOKS EXPEXCP = 1
END IF
END IF

```
    IF ERRORS HAVE BEEN DETECTED, EXIT SUBROUTINE
IF EXPEXCP = 1 THEN EXIT SUB
```

IF THE STRING IS A SINGLE NAME, THEN SET BOTH TEMPORARY RANGES TO IT. IF TEMPRANGEIS $=\cdots$ THEN

TEMPRANGE1S = CURTOKS
TEMPRANGE2S = CURTORS
EXPEXCP = 2
END IF
PERFORM THE FOLLOWING SECTION ONLY WHEN THE FLOOR NAMES ARRAY
HAS ALREADY BEN CREATED.
IF NO ERRORS HAVE BEEN FOUND, FIND THE LOCATION OF THE FLOOR NAMES WITHIN THE FLOOR NAMES ARRAY (IF THE PASSED VALUE IS A RANGE), IF FLRNANESS(1) <> N" THEN

FOR I = 1 TO TOTFLRS
IF TEMPRANGE1S = FLRNAMESS (I) THEN FLRSUB1 = I
IF TEMPRANGE2\$ = FLRNAMES $\$(I)$ THEN FLRSUB2 = I
NEXT I
END IF

IF NO ERRORS HAVE BEEN FOUND, AND THE PASSED VALUE IS A SINGLE NAME, THEN FIND ITS LOCATION WITHIN THE FLOOR NAMES ARRAY.
IF FLRNANESS(1) <> "n THEN
FOR I = 1 TO TOT
IF TEMPRANGE1\$ = FLRNAESS (I) THEN FLRSUB1 I
NEXT I
END IF

FLREXCPIS = TEMPRANGE1S
FLREXCP2S = TEMPRNNGE2S

END SUB


```
, SUBROUTINE TRRIPTIMME
```



```
SUBROUTINE TRIPTIME COMPUTES THE TRAVEL TIME FROM THE DESIGNATED EXIT FLOOR TO EACH OF THE OTHER FLOORS IN THE BUILDING. THE COMPUTED
```

TIME IS FOR ONE WAY TRAVEL ONLY. THERE ARE THREE MAIN SITUATIONS WHICH CAN OCCUR. THESE ARE:

CASE 1 - DISTANCE TO BE TRAVELLED IS SUCH THAT LINEAR ACCELERATION IS MAINTAINED. THIS OCCURS WHEN DISTANCE IS SMALL.

CASE 2 - DISTANCE TO BE TRAVELLED IS SLIGHTLY GREATER. NON-LINEAR, OR TRANSITIONAL, ACCELERATION IS REACHED.
CASE 3 - DISTANCE IS GREAT ENOUGH THAT MAXIMUM ELEVATOR CAR VELOCITY

VARIABLES:
A ACCELERATION RATE OF ELEVATOR CAR.
LEVELTME
LEVELING TIME (a).

ST ACTUAL DISTANCE BETWEEN EXIT FLOOR AND FLOOR FOR WHICH THE TRIPTIME IS BEING COMPUTED.
T1 TIME (8) FOR ELEVATOR CAR TO TRAVEL A DISTANCE OF 51.
T2 TIME (s) FOR CAR TO ATTAIN VMAX.
T2CASE2 TIME (8) FOR CAR TO ATTAIN MAXIMUM VELOCITY IN CASE 2.
T5 TIME (s) FOR ELEVATOR CAR TO TRAVEL THE DISTANCE ST, IN CASE 3, NOT INCLUDING LEVELING TIME.
TIMES(I) ONE WAY TRIP TIMES COMPUTED FOR EACH FLOOR.
TOTFLRS TOTAL NUMBER OF FLOORS.
TRANS TRANSITIONAL COEFFICIENT. VI=TRANS*VMAX.
TT ONE WAY TRIP TIME FOR THE CURRENT FLOOR.
V2 MAXIMUM VELOCITY OF ELEVATOR CAR ATTAINED IN CASE 2.
VCUBED $V * * 3$, WHERE V IS AS DEFINED ABOVE.
V1 MAXIMUM ELEVATOR CAR VELOCITY TIMES THE TRANSITIONAL COEFFICIENT.
VMAX MAXIMUM CAR VELOCITY, SPECIFIED BY THE USER.

SUB TRIPTIME

COMPUTE Y1, S1, S2, T1, T2. ONLY PERFORMED ONCE.
V1 $=$ TRANS VMAX
S1 = V1-2*/(2**A)
$S 2=(1 * /(3 * * A)) *(V M A X \wedge 3 * / V 1-V 1 * 2 *)+S 1$
$T 1=V 1 / A$
$T 2=\left(\left(\operatorname{VMAX}-2 *-V 1{ }^{*} \mathrm{~V} 1\right) /\left(2 *{ }^{*} A * V 1\right)\right)+T 1$
PRINT ""
PRINT " 2*S1= "; 2 * S1
PRINT " 2*S2= "; 2* S 2
*

* MAIN LOOP OF THIS SUBROUTINE. FOR EACH FLOOR OF THE BUILDING, THE
* DISTANCE ST IS COMPUTED. NEXT, THE LOOP DETERMINES IF CASE 1, CASE

FOR $I=1$ TO TOTFLRS

```
    ST = ABS(ELEVATION(I) - ELEVATION(EXITFLR))
- CASE 1 0 <= ST < 2*S1
    IF O!<= ST AND ST < 2 * SI THEN
        TT = 2 * SQR(ST / A) + LEVELTME
        TIMES(I) = TT
        PRINT * CASE 1 - FLOOR * *; I
    END IF
- CASE 2 2*S1 < ST < 2*S2
    IF 2 * S1 <= ST AND ST < 2 * S2 THEN
    VCUBED = V1 * 3 + (3•A * V1 * ((ST / 2*) - Sl))
    V2 = VCUBED ^ (1* / 3*)
        T2CASE2 = ((V2 •V2) - (V1 * V1)) / (2• A * V1) + T1
        TT = 2 * T2CASE2 + LEVELTME
        TIMES(I) = TT
        PRINT * CASE 2 - FLOOR ** I
        END IF
- CASE 3 2*S2 <= ST
        IF 2 - S2 <= ST THEN
        TS = 2 * T2 + (ST - 2 - S2) / VMAX
        TT = TS + LEVELTME
        TIMES (I) = TTT 3- FLOOR * "; I
    END IF
    NEXT I
    END SUB
```


Appendix B ELVAC Example of an 11 story building

The example of this appendix was developed to illustrate many of ELVAC's features. ELVAC is an interactive computer program, and Table B. 1 is a listing of all text that appears on the screen during the ELVAC run of this example. Note that in table B. 1 bold type indicates answers typed by the user of ELVAC.

The simulated building bas two basemeat levels, a ground floor, and ten floars above ground level. The typical floor to floor height is 3.7 m (approximately 12 feet). Exceptions to this are the ont basement levels and the ground floor, which are somewhat higher. Also, floors 3-5 are somewhat shorter, and it should be noted that the exceptions for these three flores are input into the program in one line.

There are typically 110 people on floor, with the exceptions being the two basement levels (with fewer), and floors G and 2-3 (with wore). The pereat of people on the floors that use elevators to evacuate is typically 85, with the exception of the two basement levels and floors 2-7, where 3 percent of the people use elevators while the rest use stairways. Note again that only one statement is used to input the percent usage exceptions for floors 2-7.

If the user wants the program will list basic concepts about the model as is doce in this example.

```
Table B.l Listing of ELVAC Analysis of 11 story building
ELVAC VERSION 1.00
WRITTEN BY DANIEL M. ALVORD AND
            JOHN H. KLOTE
CONTRIBUTION OF THE NATIONAL INSTITUTES OF STANDARDS AND
    TECHNOLOGY. (U.S.)
    NOT SUBJECT TO COPYRIGHT
FOR COMPILED VERSION ONLY - PORTIONS (C) COPYRIGHT MICROSOFT
CORPORATION, 1988. AIL RIGHTS RESERVED.
DOCUMENTATION: KLOTE,J.H., ALVORD,D.M., AND DEAL,S., ANALYSIS OF
PEOPLE MOVEMENT DURING ELEVATOR EVACUATION, NATIONAL INSTITUTE
OF STANDARDS AND TECHNOLOGY, (U.S.), NISTIR 4730, 1992.
****************************************************************
Do you want to read about the model (Y or N)? X
Where do you wish the general information to appear?
    (a filename, PRN for printer, or ENTER for output
    to the screen.)
    -Basic concepts of the model-
```


Table B1. Continued

Basic tranafer inefficiency- a factor that allow for rounding off of probable stops, door operating time, door starting and stopping time, and the unpredictability of people. A value of 0.10 is used for commonly accepted arrangenents of elevator groupr.
Discharge floor- When emerency evacuation starts, elevators will take people to dimcharge floor where pasaengera on the elevatorm will exit. This floor may lead to the outside or to an area of relative safety.
Door inefficiency- Adjusts for any herease in transfer time over that of a 1200 m (48 in) wide center oponing door.
. Pres: ENTER to continue.......
Dwell time- The minimum time an elevator car door remains open. The time uaed in this program is 4 seconds.
Groups- Elevators aze located in groups of up to eight elevators. The elevators in a group are located near each other and are controlled together to move people efficiently.
Elevator evacuation atart up time- The time from activation of the alams(tor example) to the stast of the round trips that evacuate people. If the elevators am operated automatically during evacuation, one stafts the elevator evacuation after all of the elevatorm have been moyed to the discharge floor and tho people in havo left. In the case of manual elevator operation, the time for elevators oporatorm to reach the carm must bo included.
Motion- Elevator motion rtarts with constant acceleration, tollowed by eransitional acceleration until constant velocity motion at tho normal operating volocity of the car is attained.

Press ENTER to continue....
Other transfer inefficiency- accounts for inefficiencies due to unumual elevator car sinape or bleteea physieal capability of passengers. In etslee building., a yable of 0 is used.
Round trip - a round trip stazes at the discharge floor and consists of the sequence: elevator doors elose, car ezayels to another floor, doors opon, passengers enter the car, doors close, car travel. to dimcharge floor, doors open, and passengess leave the car. Alternatively, it may be defined as two one way trips and a atanding period.

Table Bl. Contiaued

Standing time - Twice the time required to open and close the elevator doors, plus the time for people to enter the elevator, plus the time for people to leave the elevator.
Trip inefficiency- a multiplicative factor that accounts for tripe to empty tloors and for trips to pick up only a few stragglers.

```
Press ENTER to continue....
```

-------Concepts inherent to the computer program-------------
Range- A range is a set of floor names that is expanded by the program into a set of contiguous floor numbers. For example, the range $2-10$ is expanded into $2,3,4,5,6, \ldots$, 9, 10 .
Typical- Used to save effort in the input. It is best shown by example. The typical inter floor height of a building typical inter floor height of a building is the most commonly occurring height between floors (12 feet is an example). There is a typical inter floor height, a typical number of people on a floor, and a typical elevator usage percent.

Enter the title of this run.
11 STORY RXNMPLE BUILDING.
Enter 1 for $S I$ units or 2 for English units: 1
Enter floors that the elevators serve (for example- B G $1-\delta$) 82 B1 G 2-11

Typical floor to floor height (m)? 3.7
Height exceptions:
Floor range, height(m) (enter END to stop)
B2 4.5
Height exceptions:
Floor range, height(m) (enter END to stop)
B1 4.5
Height exceptions:
Floor range, height(m) (enter END to stop)
G 5.7
Height exceptions:
Floor range, height (m) (enter END to stop)

Table B1. Continued

3-5 3.5

Height exceptions:
Floor range, height(m) (enter END to stop)
END
Discharge floor? G
Time to outside after leaving elevator (s)? 30
Trip inefficiency factor (for example.1)? .1
Number of elevator cars in the group? 4
Normal operating velocity of car (m/s)? 3
Car acceleration (m/g**2)? 1.2
Elevator Full Load (people)? 16

MENU OF DOOR TYPES ------			
Door type	Door width	Time to Open and Close, a	Door Transfer Inefficiency
A Single-Slide	900 mm (36in)	6.6	0.10
B Two-Speed	900mm (36in)	5.9	0.10
C Center-Opening	900mm (36in)	4.1	0.08
D Single-Slide	1100mm (42in)	7.0	0.07
E Two-Speed	1100 mm (42in)	6.6	0.07
F Center-opening	1100mm (42in)	4.6	0.05
G Two-Speed	1200mm (48in)	7.7	0.02
H Center \longrightarrow ning	1200\%m (48in)	5.3	0
I Two-speed	1400mm (54in)	8.8	0.02
J Center-Opening	1400m (54in)	6.0	0
K Two-Speed	1600mm (60in)	9.9	0.02
t Center-opening	1600 mm (60in)	6.5	0
M Two-Speed, Center ning	1600mm (60in)	6.0	0
N OTHER ***Pick one If you	door choices A specify anothe	$-M .$ typo, enter	F
Other transfer inefficiency? 0.0			
The startup time for automatically operated elevators is 32.68 sec Do you want to enter another value (Y or N)?			

Table Bl. Continued

```
Typical Number of People per Floor? 110
    People per floor exception:
        Floor Range, people (enter END to stop)
B2 40
    People per floor exception:
        Floor Range, people (enter END to stop)
B1 60
    People per floor exception:
    Floor Range, people (enter END to stop)
2-4 150
    People per floor exception:
        Floor Range, people (enter END to stop)
BND
Percent of people on typical floor using elevator? 85
    Percent usage exceptions:
        Floor Range, Percent (enter END to stop)
B1 3
    Percent usage exceptions:
        Floor Range, Percent (enter END to stop)
B2 }
    Percent usage exceptions:
        Floor Range, Percent (enter END to stop)
2-7 3
    Percent usage exceptions:
        Floor Range, Percent (enter END to stop)
END
11 STORY EXAMPLE BUIIDING.
People per floor is 110.
```



```
Normal car velocity is \(\quad 3.00 \mathrm{~m} / \mathrm{s}\) or 590.55 fpm.
Car acceleration issmpoople. }1.20\textrm{m}/\textrm{s}2\mathrm{ or 3.94 ft/s2.
Full load standing time is 40.48 s.
Other transfer inefficiency is 0.0000
Trip inefficiency is 0.100
Door type: F Center-Opening 1100mm (42in) wide
    Doortime s 4.600 Door inefficiency 0.050
```

Table B1. Coatiautd

Do you want to save the output (Yorn)? I
Rerun program with new wsage pesceneages (Y or N)? \quad (
Do you wiah to rerun ehe entize $\operatorname{program}(\mathrm{Y}$ or N$) ? \mathbf{I}$

Appendix C ELVAC Example of a 21 story building

This appendix presents the ELVAC analysis of the 21 story example in the paper. ELVAC is an interactive computer program and Table C. 1 is a listing of the computer screen during this ELVAC run. Note that in table B. 1 bold type indicates answers typed by the user of ELVAC.

Table C.I Listing of ELVAC Analysis of 21 Story Building

```
*****************************************************************
ELVAC VERSION 1.00
WRITTEN BY DANIEL M. ALVORD AND
            JOHN H. KLOTE
CONTRIBUTION OF THE NATIONAL INSTITUTES OF STANDARDS AND
    TECHNOLOGY. (U.S.)
    NOT SUBJECT TO COPYRIGHT
FOR COMPILED VERSION ONLY - PORTIONS (C) COPYRIGHT MICROSOFT
CORPORATION, 1988. ALL RIGHTS RESERVED.
DOCUMENTATION: KLOTE,J.H., ALVORD,D.M., AND DEAL,S., ANALYSIS OF
PEOPLE MOVEMENT DURING ELEVATOR EVACUATION, NATIONAL INSTITUTE
OF STANDARDS AND TECHNOLOGY, (U.S.).I. NISTIR 4730, 1992:
Do you want to read about the model (Y or N)? N
Enter the title of this run.
Example 21 Story Building
Enter 1 for SI units or 2 for English units: 1
Enter floors that the elevators serve (for example- B G 1-6)
1-21
```

```
Typical floor to floor height (m)? 3.2
    Height exceptions:
        Floor range, height(m) (enter END to stop)
```

ExD
Discharge floor? 1 *
The to outside after leaving elevator (s)? $\mathbf{3 0}$
Trip inefficiency factor (for example .1)? .1
Number of elevator cars in the group? 1
Normal operating velocity of car (m/s)? 3
Car acceleration ($m / 3 * * 2$)? 1.2

Table C.1 Continued

Tabla C. 1 Continued

Floor	$\underset{\mathrm{m}}{\mathrm{E}} \mathrm{Cl} \mathrm{evation}_{\mathrm{f}}^{\mathrm{f}}$		$\begin{gathered} \text { Way } \\ \text { Time } \end{gathered}$	Trip Time	Flon or	Percent Usage	Round Trinc	per
Name								
21	64.0	210.0	24.4	89.1	100	100.0	7	603.9
20	60.8	199.5	23.4	87.0	100	100.0	7	S89.0
18	54:4	178.5	22:3	824.9	188	188:8	7	579:1
17	51.2	168.0	20.2	80.6	100	100.0	7	544.2
16'	48.0	157.5	19.1	78.4	100	100.0	7	529.3
15	4418	137:5	19:8	76.3	188	188:8	7	514.34
13	38.4	126.0	15.9	72.0	100	100.0	7	484.5
12	32:\%	115.5	14.8 13.8	69.9 67.8	100	100.0	7	469.5
10	28.8	94.5	12.7	65.6	100	100.0	7	439.7
9	25.6	84.0	11.6	63.5	100	100.0	7	424.7
9	22.4	73.5	10.6	61.4	100	100.0	7	409.8
	12:\%	63.0	9.5	59.2	100	100.0	7	394.9
6	16.0	52.5	8.4	57.1	100	100.0	7	379.9
4	129:8	42.0 31.5	7.4 6.3	$\begin{aligned} & 55.0 \\ & 52.8 \end{aligned}$	100	$\begin{aligned} & 100.0 \\ & 100.0 \end{aligned}$	7	$\begin{aligned} & 365.0 \\ & 350.1 \end{aligned}$
3	6.4	21.0	5.2	50.6	100	100.0	7	334.2
1	3:8	18:8	3.8	47.8	100	100.0	7	314.7
	Total round trip time= Start up time=							$\begin{array}{r} 9234.9 \\ 41.3 \end{array}$
Time to get to the outside after leaving the elevator= 30.0								
	Evacuation time using					$\begin{aligned} & \text { (oevevators }= \\ & 170.5 \end{aligned}$		$\begin{aligned} & 10229.7 \\ & \text { nutes) } \end{aligned}$

Do you want to save the output (Yor N)? N
Rerun program with new usage percentages (Yor N)? N
Do you wish to rerun the entire program (Yor N)? N

Appendix D ELVAC Example of a building with multiple rises

This building has 38 doors and three rises of elevators: low rise, mid rise, and high rise. Each rise consists of a group of 6 elevators, but it is considered that only 5 of them are being used for evacuation, and one is out of service. The elevator cars in the low rise group travel at $3.10 \mathrm{~m} / \mathrm{s}(610 \mathrm{fpm})$, and the cars in the mid and high rise groups travel at $5.00 \mathrm{~m} / \mathrm{s}(984 \mathrm{fpm})$.

The ELVAC program was used to analyze each of the rises individually, and the computer output is listed in tables $\mathbf{D} 1$, D2, and D3. In the case of the law rise elevators, all floors serviced by the elevators are shown. For both the mid and high rise elevators, only the doors involved in the evacuation were included in the ELVAC analyses (see tables D2 and D3). The evacuation times are 14.4 .22 .5 , asd 25.0 minutes respectively for the low, mid, and high rise elevators. Since these evacuations are concurreat, the building evacuation time is 25 minutes.

Table Dl 38 Story Building: Low Rise Elevators

People per floor is 110.
Distance between floors is 3.70 m or 12.14 ft .
Elevator usage percent is 85.000%
Normal car velocity is $\quad 3.10 \mathrm{~m} / \mathrm{s}$ or 610.24 fpm .
Car acceleration is $\quad 1.20 \mathrm{~m} / \mathrm{s} 2$ or $3.94 \mathrm{ft} / \mathrm{s} 2$,
Car full load is 16 people.
Full load standing time is 40.48 s.
Other transfer inefficiency is 0.0000
Trip inefficiency is 0.100
Door type: F Center-Opening 1100 mm (42 in) wide
Doortime s 4.600 Door inefficiency 0.050

Time to get to the outside after leaving the elevator= 30.0 Evacuation time using 5 elevators= 864.1 (or $\quad 14.4$ minutes)

Table D2 38 Story Building: Mid Rise Elevators

```
People per floor is 110.
Distance between floor. io 3.70 m or 12.14 ft.
Elevator usage percent io 85.000:
Normal car velocity is }5.00\textrm{m}/\textrm{r}\mathrm{ or }984.25 fpm
Car acceleration is 1.90 m/s2 or 6.23 ft/s2.
Car full load is }16\mathrm{ people.
Full load standing time is 40.48 %.
Other transfer inefficiency is 0.0000
Trip inefficiency is 0.100
Door type: F Center-opening 1100mm (42in) wide
    Doortime a 4.600 Door inefficiency 0.050
```

Floor Name	Elev m	fion	One Way Tine	Round Trip Time	```People on Floor```	Percent Urage	Round Trip8	Time per Floor 8
26	92.5	303.5	21.7	83.9	110	85.0	6	501.7
25	88.8	291.3	21.0	82.5	110	85.0	6	492.9
24	85.1	279.2	20.2	81.0	110	85.0	6	404.0
23	81.4	267.1	19.5	79.5	110	85.0	6	475.1
22	77.7	254.9	18.8	78.0	110	85.0	6	466.2
21	74.0	242.8	18.0	76.5	110	85.0	6	457.3
20	70.3	230.6	17.3	75.1	110	85.0	6	440.5
19	66.6	218.5	16.5	73.6	110	85.0	6	439.6
18	62.9	206.4	15.8	72.1	110	85.0	6	430.7
17	59.2	194.2	15.1	70.6	110	85.0	6	421.8
16	55.5	182.1	14.3	69.1	110	85.0	6	412.9
15	51.8	169.9	13.6	67.7	110	85.0	6	404.1
14	48.1	157.8	12.8	66.2	110	85.0	6	395.2
1	0.0	0.0						

Table D3 38 Story Building: High Rise Elevators

Start up time $=\quad 47.4$
Time to get to the outside after leaving the elevator= 30.0 Evacuation time using 5 elevators 1501.7
(or 25.0 minutes)

[^2].

[^0]: *For a discussion of times for people movement during emergency evacuation on stairs, readers are referred to Nelson and MacLennan (1988)and Pauls (1988) .

[^1]: **The poundal is the unit of force in the pound mass-poundal system of units, and one poundal equals 0.0311 pounds force.

[^2]: ELECTRONICFORM

