

THE NOTORIOUS LSND RESULT

Ε

TESTING LSND

- WANT SAME L/E
- DIFFERENT DETECTION METHOD
- DIFFERENT SOURCES OF SYSTEMATIC ERRORS
- TEST FOR OSCILLATIONS USING NEUTRINOS, ANTI-NEUTRINOS

MINIBOONE NEUTRINO BEAM

 MESONS DECAY INTO THE ANTI-NEUTRINO BEAM SEEN BY THE DETECTOR

$$\mathbf{K}^{-} / \pi^{-} \rightarrow \mu^{-} + \overline{\mathbf{v}}_{\mu}$$

$$\blacktriangleright \mu^{-} \rightarrow \mathbf{E}^{-} + \nu_{\mu} + \nu_{\mathbf{E}}$$

- MINIBOONE L/E = 0.5 KM / 0.8 GEV (.625)
- LSND L/E = 0.03 KM / 0.05 GEV (.6)
- ANTI-NU ANALYSIS USES 3.386E20 PROTONS ON TARGET

MINIBOONE DETECTOR

Detector

- 12.2 METER DIAMETER SPHERE
- **PURE** MINERAL OIL
- 2 REGIONS
 - INNER LIGHT-TIGHT REGION, 1280 PMTs (10% COVERAGE)
 - OPTICALLY ISOLATED OUTER VETO-REGION, 240 PMTs

EVENT SIGNATURE

CHARGED-CURRENT QUASI-ELASTIC EVENTS $V_{_E} P \rightarrow E^{\star} N$

MINIBOONE ANALYSIS

- MINIBOONE IS LOOKING FOR $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ OSCILLATIONS
- MINIBOONE IS LOOKING FOR AN EXCESS OF \overline{v}_{e} (APPEARANCE)
- MINIBOONE PERFORMING A BLIND ANALYSIS
 - Some of the info in all of the data
 - ▶ CHARGE PER PMT AS A FUNCTION OF TIME
 - ▶ All of the info in some of the data
 - ▶ ~OSCILLATION FREE SAMPLE TO BE OPEN FOR ANALYSIS
 - Low-E NC elastic events, $\overline{v_u}$ CCQE, $\overline{v_u}$ CC π^+
 - $\blacktriangleright \overline{v_e}$ candidate events locked away until the analysis 100% complete
 - Same strategy as neutrino mode

NEUTRINO MODE RESULT

- USED 2 COMPLEMENTARY ANALYSES
- RULED OUT INTERPRETATION OF LSND AS $V_{\mu} \rightarrow V_{e}$ OSCILLATIONS
 - TWO-NU OSCILLATIONS
 - ▶ STANDARD L/E DEPEND.
 - ▶ NO CP, CPT VIOLATION
- UNEXPLAINED EXCESS OF EVENTS IN LOW-ENERGY REGION
 - EXCESS INCOMPAT. WITH 2-NU LSND-STYLE OSCILLATIONS

ANTI-NEUTRINO ANALYSIS

- SIMILARITIES WITH NEUTRINO MODE
 - USING TWO COMPLEMENTARY ANALYSES
 - USING SAME ALGORITHMS
 - **SAME EVENT SELECTION CUTS**
- CHANGES MADE WRT NEUTRINO MODE
 - ADDED AN EVENT SELECTION CUT THAT REMOVES MOST OF THE DIRT (OUT OF TANK) BACKGROUND AT LOW ENERGY
 - ► ADDED K⁻ PRODUCTION SYSTEMATIC ERROR
 - New NC π^{o} measurement
 - ▶ NEW DIRT FRACTION EXTRACTED

EXPECTED BACKGROUNDS

500 MeV < RECONSTRUCTED NEUTRINO ENERGY < 1.25 GEV 3.386e20 POT

EXPECTED SENSITIVITY

EXPECTED BACKGROUND EVENTS

BACKGROUND COMPOSITION FOR TBA ANALYSIS (3.386E20 POT)

H. Ray . University of Florida

TRACK BASED ANALYSIS

Source	ANTIN	u Mode	NU N	NODE
E v ^{qe} range (MeV)	200-475	475-1100	200-475	475-1100
FLUX FROM π^*/μ^* decay	0.4	0.7	1.8	2.2
FLUX FROM π^{-}/μ^{-} decay	3.3	2.2	0.1	0.2
FLUX FROM K ⁺ DECAY	2.3	4.9	1.4	5.7
FLUX FROM K ⁻ DECAY	0.5	1.1	-	-
FLUX FROM K ⁰ DECAY	1.5	5.7	0.5	1.5
TARGET AND BEAM MODELS	1.9	3.0	1.3	2.5
V-CROSS SECTION	6.4	12.9	5.9	11.9
NC π^{o} yield	1.7	1.6	1.4	1.9
HADRONIC INTERACTIONS	0.5	0.6	0.8	0.3
EXTERNAL INTERACTIONS (DIRT)	2.4	1.2	0.8	0.4
OPTICAL MODEL	9.8	2.8	8.9	2.3
ELECTRONICS & DAQ MODEL	9.7	3.0	5.0	1.7
Total (unconstrained)	16.3	16.2	12.3	14.2

FROM FITS TO WORLD'S DATA (HARP, KAON PRODUCTION)

H. Rav . University of Florida

TRACK BASED ANALYSIS

Source	ΔΝΤΙΝ		NIL	MODE
E_v^{QE} RANGE (MeV)	200-475	475-110 <u>0</u>	200-475	475-1100
FLUX FROM π^*/μ^* decay	0.4	0.7	1.8	2.2
FLUX FROM π^{-}/μ^{-} decay	3.3	2.2	0.1	0.2
FLUX FROM K ⁺ DECAY	2.3	4.9	1.4	5.7
FLUX FROM K ⁻ DECAY	0.5	1.1	-	-
FLUX FROM K ⁰ DECAY	1.5	5.7	0.5	1.5
TARGET AND BEAM MODELS	1.9	3.0	1.3	2.5
V-CROSS SECTION	6.4	12.9	5.9	11.9
NC π^{o} yield	1.7	1.6	1.4	1.9
HADRONIC INTERACTIONS	0.5	0.6	0.8	0.3
EXTERNAL INTERACTIONS (DIRT)	2.4	1.2	0.8	0.4
OPTICAL MODEL	9.8	2.8	8.9	2.3
ELECTRONICS & DAQ MODEL	9.7	3.0	5.0	1.7
Total (unconstrained)	16.3	16.2	12.3	14.2

INTERNAL MB MEASUREMENTS

H. Rav . University of Florida

TRACK BASED ANALYSIS

Source	ANTIN	u Mode	NU N	NODE
E v ^{qe} range (MeV)	200-475	475-1100	200-475	475-1100
FLUX FROM π^*/μ^* decay	0.4	0.7	1.8	2.2
FLUX FROM π^2/μ^2 decay	3.3	2.2	0.1	0.2
FLUX FROM K ⁺ DECAY	2.3	4.9	1.4	5.7
FLUX FROM K ⁻ DECAY	0.5	1.1	-	-
FLUX FROM K ⁰ DECAY	1.5	5.7	0.5	1.5
TARGET AND BEAM MODELS	1.9	3.0	1.3	2.5
V-CROSS SECTION	6.4	12.9	5.9	11.9
NC π^{o} yield	1.7	1.6	1.4	1.9
HADRONIC INTERACTIONS	0.5	0.6	0.8	0.3
EXTERNAL INTERACTIONS (DIRT)	2.4	1.2	0.8	0.4
OPTICAL MODEL	9.8	2.8	8.9	2.3
ELECTRONICS & DAQ MODEL	9.7	3.0	5.0	1.7
TOTAL (UNCONSTRAINED)	16.3	16.2	12.3	14.2

DETERMINED BY SPECIAL RUNS OF THE BEAM MC. ALL BEAM UNCERTAINTIES NOT COMING FROM MESON PRODUCTION BY 8 GEV PROTONS ARE VARIED ONE AT A TIME. VARIATIONS ARE TREATED AS 10 EXCURSIONS, PROP INTO A FINAL ERROR MATRIX.

UNCERT. IN A NUMBER OF HADRONIC PROCESSES, MAINLY PHOTONUCLEAR INTERACTION FINAL STATE

UNCERTAINTIES IN LIGHT CREATION, PROPAGATION, AND DETECTION IN THE TANK. USE SET OF 130 MC "MULTISIMS" THAT HAVE BEEN RUN WHERE ALL THESE PARAMETERS ARE VARIED ACCORDING TO THEIR INPUT UNCERTAINTIES.

H. Ray . University of Florida

TRACK BASED ANALYSIS

Source	ΔΝΤΙΝ		NIL	MODE	~ 10 ²
E v ^{qe} range (MeV)	200-475	475-1100	200-475	475-1100	• With v _µ CCQE cor
FLUX FROM π^+/μ^+ decay	0.4	0.7	1.8	2.2	THE REPORT OF A
FLUX FROM π^{-}/μ^{-} decay	3.3	2.2	0.1	0.2	Without v _p CCQE
FLUX FROM K ⁺ DECAY	2.3	4.9	1.4	5.7	10
FLUX FROM K ⁻ DECAY	0.5	1.1	-	-	
FLUX FROM K ⁰ DECAY	1.5	5.7	0.5	1.5	-
ARGET AND BEAM MODELS	1.9	3.0	1.3	2.5	1
CROSS SECTION	6.4	12.9	5.9	11.9	
IC π^{o} yield	1.7	1.6	1.4	1.9	
ADRONIC INTERACTIONS	0.5	0.6	0.8	0.3	10 ⁻¹ -
XTERNAL INTERACTIONS (DIRT)	2.4	1.2	0.8	0.4	90% CL
PTICAL MODEL	9.8	2.8	8.9	2.3	SENSITIVITY
LECTRONICS & DAQ MODEL	9.7	3.0	5.0	1.7	E _V ^{QE} > 200 MEV
OTAL (UNCONSTRAINED)	16.3	16.2	12.3	14.2	10 ⁻³ 10 ⁻² 10 ⁻¹

ANTINEUTRINO APPEARANCE SEARCH IS STATISTICS LIMITED!

H. Ray . University of Florida

OBSERVED EVENT DISTRIBUTION

EXCESS DISTRIBUTION

EVENT SUMMARY

ARXIV:0812.2243 E_{v}^{QE} range (MeV) anti-v mode v mode (3.386e20 POT) (6.486e20 POT) Data 24 232 200-300 27.2 ± 7.4 186.8 ± 26.0 $MC \pm sys + stat$ (constr.) Excess (σ) -3.2 ± 7.4 (-0.4 σ) 45.2 ± 26.0 (1.7 σ) 300-475 37 Data 312 34.3 ± 7.3 228.3 ± 24.5 $MC \pm sys + stat$ (constr.) 2.7 ± 7.3 (0.4 σ) 83.7 ± 24.5 (3.4 σ) Excess (σ) 200-475 Data 61 544 61.5 ± 11.7 415.2 ± 43.4 $MC \pm sys + stat$ (constr.) Excess (σ) $-0.5 \pm 11.7 (-0.04\sigma)$ $128.8 \pm 43.4 (3.0\sigma)$ 475-1250 61 408 Data $MC \pm sys + stat$ (constr.) 57.8 ± 10.0 385.9 ± 35.7 Excess (σ) 3.2 ± 10.0 (0.3 σ) 22.1 ± 35.7 (0.6 σ) Excess Deficit H. Rav . University of Florida

IMPLICATIONS FOR LOW-E EXCESS

MAXIMUM χ^2 probability from fits to V and V excesses in 200-475 MeV range

	Stat Only	Correlated Syst	Uncorrelated Syst
Same v, v NC	0.1%	0.1%	6.7%
NC π^0 scaled	3.6%	6.4%	21.5%
POT scaled	0.0%	0.0% ind	1.8% nds)
Bkgd scaled	2.7%	4.7% plille	19.2%
CC scaled	2.9%	5.2% c and lo	19.9%
Low-E Kaons	0.1%	$0.1\% \mu p^{e^{-2}}$	5.9%
v scaled	38.4%	51.4%	58.0%

SAME V AND ∇ NC CROSS-SECTION (HHH AXIAL ANOMALY), POT SCALED, LOW-E KAON SCALED: STRONGLY DISFAVORED AS AN EXPLANATION OF THE MINIBOONE LOW ENERGY EXCESS!

MOST PREFERRED MODEL: LOW-ENERGY EXCESS COMES FROM NEUTRINOS IN THE BEAM (NO CONTRIBUTION FROM ANTI-NEUTRINOS)

CURRENTLY IN PROCESS OF MORE CAREFUL CONSIDERATION OF <u>CORRELATION</u> OF SYSTEMATICS IN NEUTRINO AND ANTINEUTRINO MODE... RESULTS COMING SOON!

H. Rav . University of Florida

FINAL LIMITS

- No strong evidence for oscillations in anti-nu mode
 - ANALYSIS LIMITED BY STAT
- NO EVIDENCE OF EXCESS AT LOW ENERGY IN ANTI-NU MODE
 - COMBINE NU, ANTI-NU FOR LOW-E ANALYSIS
- DATA COLLECTION
 CONTINUING THROUGH
 JUNE, 09
- NUMI ANALYSIS IN 2009!

H. Rav . University of Florida

BACKUP SLIDES

THE NOTORIOUS LSND

- 800 MeV proton beam + H₂0 target, Copper beam stop
- 167 TON TANK, LIQUID
 SCINTILLATOR, 25% PMT
 COVERAGE
- $E_v = 20-52.8 \text{ MeV}$
- L =25-35 METERS

•
$$\overline{\nu}_{E} + P \rightarrow E^{+} + N$$

▶ N + P → D +
$$\gamma$$
 (2.2 MeV)

NEUTRINO EVENT COMPOSITION

H. Ray , University of Florida

FLUX PREDICTION

 MUCH LARGER WRONG SIGN COMPONENT IN ANTI-NEUTRINO ANALYSIS

SYSTEMATIC ERRORS

- USE MULTISIMS TO CALCULATE SYSTEMATIC ERRORS
- IN EACH MC EVENT VARY ALL PARAMETERS AT ONCE, ACCORDING TO A FULL COVARIANCE MATRIX
 - EX : FEYNMAN SCALING OF K⁺ VARIES 8 PARAMS SIMULTANEOUSLY
- VARY FULL SET OF PARAMETERS MANY TIMES PER EVENT
- OM = 70 MULTISIMS. ALL
 OTHER ERRORS = 1000
- Use this information to Form an error matrix

SYSTEMATIC ERRORS

ERROR	TRACK VS BOOSTING (%)	CHECKED OR CONSTRAINED BY DATA
DAQ	7.5 / 10.8	\odot
TARGET/HORN	2.8 / 1.3	\odot
π ⁺ FLUX	6.2 / 4.3	\odot
K ⁺ FLUX	3.3 / 1.0	\odot
K ^o Flux	1.5 / 0.4	\odot
DIRT	0.8 / 3.4	\odot
NC π^{o} yield	1.8 / 1.5	©
NEUTRINO Xsec	12.3 / 10.5	©
ОМ	6.1 / 10.5	\odot

Expected background events by source (Track-based analysis)

	PROCESS	EVENTS AFTER SELECTION
	BEAM UNRELATED	2
	DIRT	17
	NEUTRAL CURRENT π^0	62
	NC RADIATIVE & DECAY	20
	NC COHERENT AND RADIATIVE	<1
	ν _μ QUASIELASTIC	10
	NEUTRINO-ELECTRON ELASTIC	7
	OTHER ν_{μ}	13
	INTRINSIC Ve FROM MUONS	132
	INTRINSIC Ve FROM K ⁺	71
	INTRINSIC Ve FROM K ⁰	23
2	INTRINSIC ν_e FROM $\pi^+ \rightarrow e^+ \nu_e$	3
ŧζ	TOTAL BACKGROUND	358 ± 35(syst)
7	$0.26\% \nu_{\mu} \rightarrow \nu_{e}$	163

If LSN

corre

N _{events}	200-475 MeV	475-1250 MeV	[]
intrinsic v _e	17.74	43.23	$\overline{\mathbf{N}}$ u^{+}
from π [±] /μ [±]	8.44	17.14	\bigvee_{μ} μ
rom K [±] , K ⁰	8.20	24.88	
other v _e	1.11	1.21	$p \qquad W^+$
nis-id v _u	42.54	14.55	n
CCQE	2.86	1.24	
ΝC π ⁰	24.60	7.17	ut can
A radiative	6.58	2.02	capture on C
Dirt	4.69	1.92	
other v _µ	3.82	2.20	have too low e
Total bkgd	60.29	57.78	
LSND best fit	4.33	12.63	

N _{events}	200-475 MeV	475-1250 MeV	
intrinsic v _e	17.74	43.23	
from π [±] /μ [±]	8.44	17.14	
from K [±] , K ⁰	8.20	24.88	
other v _e	1.11	1.21	
mis-id v _u	42.54	14.55	Coherent π^0 production
CCQE	2.86	1.24	
NC π ⁰	24.60	7.17	$\overline{\mathbf{v}}_{\mu}$ $\overline{\mathbf{v}}_{\mu}$
∆ radiative	6.58	2.02	
Dirt	4.69	1.92	$\overline{7}$ -0
other v_{μ}	3.82	2.20	
Total bkgd	60.29	57.78	A
LSND best fit	t 4.33	12.63	

N _{events}	200-475 MeV	475-1250 MeV
intrinsic v _e	17.74	43.23
from π [±] /μ [±]	8.44	17.14
from K [±] , K ⁰	8.20	24.88
other v _e	1.11	1.21
mis-id v _u	42.54	14.55
CCQE	2.86	1.24
NC π ⁰	24.60	7.17
∆ radiative	6.58	2.02
Dirt	4.69	1.92
other v_{μ}	3.82	2.20
Total bkgd	60.29	57.78
LSND best fit	t 4.33	12.63

N _{events}	200-475 MeV	475-1250 MeV	
intrinsic v _e	17.74	43.23	
from π [±] /μ [±]	8.44	17.14	
from K [±] , K ⁰	8.20	24.88	
other v _e	1.11	1.21	and some times
mis-id v _u	42.54	14.55	Δ radiative decay
CCQE	2.86	1.24	-
NC π ⁰	24.60	7.17	$\overline{\mathbf{v}}_{\mu}$
Δ radiative	6.58	2.02	
Dirt	4.69	1.92	
other v _µ	3.82	2.20	
Total bkgd	60.29	57.78	p (A) p
LSND best fit	4.33	12.63	

N _{events}	200-475 MeV	475-1250 MeV
intrinsic v _e	17.74	43.23
from π [±] /μ [±]	8.44	17.14
from K [±] , K ⁰	8.20	24.88
other v _e	1.11	1.21
mis-id v _u	42.54	14.55
CCQE	2.86	1.24
NC π ⁰	24.60	7.17
∆ radiative	6.58	2.02
Dirt	4.69	1.92
other v_{μ}	3.82	2.20
Total bkgd	60.29	57.78
LSND best fi	t 4.33	12.63

200-475 MeV	Data MC ± sys+stat (constr.) Excess (σ)	$61 \qquad \checkmark \\ 61.5 \pm 11.7 \\ -0.5 \pm 11.7 \ (-0.04\sigma)$	$544 \qquad \bigvee \\ 415.2 \pm 43.4 \\ 128.8 \pm 43.4 \ (3.0\sigma)$

How consistent are excesses in neutrino and antineutrino mode under different underlying hypotheses as the source of the low energy excess in neutrino mode?

- SCALES WITH POT
- SAME NC CROSS SECTION FOR NEUTRINOS AND ANTINEUTRINOS
- SCALES AS π^{o} BACKGROUND
- **SCALES WITH NEUTRINOS (NOT ANTINEUTRINOS)**
- SCALES WITH BACKGROUND
- SCALES AS THE RATE OF CHARGED-CURRENT INTERACTIONS
- SCALES WITH KAON RATE AT LOW ENERGY

	Data	61 🗸	544 V
200-475 MeV	$MC \pm sys + stat$ (constr.)	61.5 ± 11.7	415.2 ± 43.4
	Excess (σ)	$-0.5 \pm 11.7 (-0.04\sigma)$	$128.8 \pm 43.4 \ (3.0\sigma)$

- Performed 2-bin χ^2 test for each assumption
- CALCULATED X² PROBABILITY ASSUMING 1 DOF

The underlying signal for each hypothesis was allowed to vary (thus accounting for the possibility that the observed signal in neutrino mode was a fluctuation up, and the observed signal in antineutrino mode was a fluctuation down), and an absolute χ^2 minimum was found.

- THREE EXTREME FIT SCENARIOS WERE CONSIDERED:
 - STATISTICAL-ONLY UNCERTAINTIES
 - **STATISTICAL + FULLY-CORRELATED SYSTEMATICS**
 - STATISTICAL + FULLY-UNCORRELATED SYSTEMATICS

200-475 MeV	Data MC ± sys+stat (constr.) Excess (σ)	$61 \qquad \bigtriangledown \\ 61.5 \pm 11.7 \\ -0.5 \pm 11.7 \ (-0.04\sigma)$	$544 \qquad \bigvee \\ 415.2 \pm 43.4 \\ 128.8 \pm 43.4 \ (3.0\sigma)$

EG.: SCALES WITH POT (E.G. "PARAPHOTONS",...)

ANTINEUTRINO POT: 3.386e20 NEUTRINO POT: 6.486e20 ANTINEUTRINO POT = 0.52

ONE WOULD EXPECT A V EXCESS OF ~(128.8 EVENTS)*0.52 = ~67 EVENTS

Obviously this should be highly disfavored by the data, but one could imagine a scenario where the neutrino mode observed excess is a fluctuation up from true underlying signal and the antineutrino mode excess is a fluctuation down, yielding a lower χ^2 ...

200-475 MeV	Data MC ± sys+stat (constr.) Excess (σ)	$61 \qquad \bigtriangledown \\ 61.5 \pm 11.7 \\ -0.5 \pm 11.7 \ (-0.04\sigma)$	$544 \qquad \bigvee \\ 415.2 \pm 43.4 \\ 128.8 \pm 43.4 \ (3.0\sigma)$
	LACESS (0)	$-0.5 \pm 11.7 (-0.040)$	$120.0 \pm 43.4 (3.00)$

EG.: SAME NC CROSS SECTION FOR NEUTRINOS AND ANTINEUTRINOS (E.G., HHH AXIAL ANOMALY)

EXPECTED RATES OBTAINED BY INTEGRATING FLUX ACROSS ALL ENERGIES FOR NEUTRINO MODE, AND ANTINEUTRINO MODE

[Harvey, Hill, and Hill, hep-ph0708.1281]

 ν_{μ}

H. Ray . University of Florida

200-475 MeV	Data MC ± sys+stat (constr.) Excess (σ)	$61 \qquad \bigtriangledown \\ 61.5 \pm 11.7 \\ -0.5 \pm 11.7 \ (-0.04\sigma)$	$544 \qquad \bigvee \\ 415.2 \pm 43.4 \\ 128.8 \pm 43.4 \ (3.0\sigma)$

EG.: SCALES AS π^{0} BACKGROUND (SAME NC V AND V CROSS-SECTION RATIO)

EXPECTED RATES OBTAINED BY INTEGRATING FLUX ACROSS ALL ENERGIES FOR NEUTRINO MODE, AND ANTINEUTRINO MODE

MIS-ESTIMATION OF π^{o} **BACKGROUND?**

OR OTHER NEUTRAL-CURRENT PROCESS?

For π^{o} background to fully account for MB V mode excess, it would have to be mis-estimated by a factor of two...

... BUT WE HAVE MEASURED MB π^{o} event rate to a few percent!

[Phys. Lett. B664, 41 (2008)]

H. Ray . University of Florida

200 475 Mal	Data	61 V	544 V
200-475 MeV	MC ± sys+stat (constr.)	61.5 ± 11.7	415.2 ± 43.4
	Excess (σ)	-0.5 ± 11.7 (-0.04 σ)	128.8 ± 43.4 (3.0 σ)

EG.: SCALES WITH NEUTRINOS (IN BOTH RUNNING MODES)

- IN NEUTRINO MODE, 94% OF FLUX CONSISTS OF NEUTRINOS
- IN ANTINEUTRINO MODE, 82% OF FLUX CONSISTS OF ANTINEUTRINOS, 18% OF FLUX CONSISTS OF NEUTRINOS

PREDICTIONS ARE ALLOWED TO SCALE ACCORDING TO NEUTRINO CONTENT OF THE BEAM

E _v QE fit	χ ² _{null} (dof) ¹	χ² _{best-fit} (dof) ¹	$\chi^2_{\text{LSND best-fit}}(\text{dof})$
	χ ² -prob	χ²-prob	χ^2 -prob
> 200 MeV	20.18(19)	18.18(17)	20.14(19)
	38.4%	37.8%	38.6%
> 475 MeV	17.88(16)	15.91(14)	17.63(16)
	33.1%	31.9%	34.6%

(¹Covariance matrix approximated to be the same everywhere by its value at best fit point)

 $E_v^{QE} > 200 \text{ MeV}$ and $E_v^{QE} > 475 \text{ MeV}$ fits are consistent with each other. No strong evidence for oscillations in antineutrino mode. (3.386e20 POT)

