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1. INTRODUCTION 
 
 NOAA's National Weather Service (NWS) has 
implemented a National Digital Forecast Database 
(NDFD) that provides its customers and partners 
access to gridded forecasts of sensible weather 
elements (e.g., cloud cover, maximum tempera-
ture).  As described by Glahn and Ruth (2003), the 
NDFD contains a seamless mosaic of digital fore-
casts produced by NWS field offices working in 
collaboration with the National Centers for Envi-
ronmental Prediction (NCEP).  Table 1 lists the 
NDFD weather elements as well as their opera-
tional status at this time.  Customers and partners 
use NDFD forecasts to create a wide range of text, 
graphic, gridded, and image products of their own. 
 

Table 1:  NDFD Weather Elements 
 

 

All NDFD weather elements except PoP12 
represent single-value forecasts.  The single-
valued nature of the NDFD can be viewed as one 
of its limitations.  Toth et al. (2003) observe “that 
all environmental forecasts are associated with 
uncertainty” and note that “the amount of uncer-
tainty can be situation dependent.”  The NWS 
Strategic Plan for 2005-2010 (NWS 2005) com-
mits the agency to "including information on fore-
cast uncertainty to enhance customer decision 
processes."  Consistent with this goal, the Mete-
orological Development Laboratory (MDL) has 
been investigating techniques for assessing fore-
cast uncertainty in the NDFD and generating 
products from this information. 

Figure 1 shows the basic structure of the 
NDFD UNCertainty Assessment (NUNCA).  The 
NDFD forecast for a weather element, recent 
NDFD performance, and related guidance are all 
used to quantify expected distribution of observa-
tions for that weather element. Initial efforts have 
focused on MaxT and MinT.  This is because 
these two weather elements are accessed fre-
quently by NDFD users, and because a consider-
able amount of climatological data are available 
that describe their behavior.  MDL plans to gener-
ate guidance products that allow NWS customers 
and partners to make better use of NDFD fore-
casts. 
 
2. METHODS 
 

As with other guidance techniques, NUNCA 
will be implemented in two distinct phases, devel-
opment and implementation.   

The development process begins by amassing 
matched pairs of forecasts (denoted by f) and ob-
servations (denoted by x) to form a set of devel-
opmental data.  The developmental data provide 
input to form a model from which the joint distribu-
tion of forecasts and observations, p(f,x), is in-
ferred.  Additional diagnostic data (denoted by d) 
can be added to further refine the modeled distri-
bution. 

The implementation process uses the mod-
eled distribution, p(f,x,d), and current values of x 
and d to infer a conditional distribution of the ob-
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servations given the forecast and diagnostic data, 
p(x | f,d).   

 
a. Data sources 

 
The NDFD provides forecast values for regu-

larly-spaced points on grids with mesh lengths that 
are close to 5 km.  Efforts are underway within the 
NWS to routinely create a gridded "Analysis of 
Record" on a similar spatial scale.  The NDFD and 
the Analysis of Record are expected to be well-
matched sources of f and x.  Until the analysis por-
tion is available, however, we have been using 
point data as sources of f and x.  Observations are 
taken from hourly surface reports (generally en-
coded in METAR); forecasts are taken from the 
NDFD gridpoint nearest to the verifying surface 
observation.   

The diagnostic data that have been studied to 
date are Model Output Statistics (MOS; Glahn and 
Lowrey 1972) generated from ensemble runs of 
the Global Forecast System (GFS) at the NWS’ 
National Centers for Environmental Prediction 
(NCEP).  Erickson (1996) describes the basic 
processes that are used to apply MOS equations 
to the individual members of an ensemble run.  
While the Prototype MOS Ensemble Message 
presented in Erickson (1996) has yet to be real-
ized, archive files that contain the MaxT, MinT, 
and PoP12 forecasts generated from each en-
semble member are available.  These archive files 
include 11 separate forecasts for each ENSMOS 
weather elements.  One of the forecasts is gener-
ated by applying the MOS equations to the so-
called control (unperturbed) run of the model.  Five 
of the ENSMOS forecasts come the ensemble 
members that were perturbed in a “positive” way, 
and five of the ENSMOS forecasts come from the 
ensemble members that were perturbed in a 
“negative” way. 

 
b. Transformation to percentiles 

 
It has proved useful to transform both the 

forecasts and the observations from their native 
values to climatological percentiles.  This ad-
dresses a perennial problem in modeling p(f,x), 
i. e., the lack of cases in the developmental data 
with extreme values of f or x.  One can expect this 
problem to be exacerbated by the short length of 
the NDFD's archive of forecasts (little more than 
one year).  Another problem with modeling p(f,x) 
for the NDFD is the disparity of techniques used to 
create the NDFD grids.  Human forecasters gen-
erate the NDFD using a variety of inputs, including 
Numerical Weather Prediction models, statisti-

cally-based forecast guidance, and observations.  
This can lead to significant variations in the nature 
of p(f,x) from region to region as well as forecast 
to forecast.  By transforming f and x to percentiles, 
we hope to encourage the combining of data from 
multiple sites and multiple dates as p(f,x) is mod-
eled. 

 
c. Diagnostic data 

 
Two statistics, derived from the ENSMOS 

MaxT guidance proved to be interesting.  The first 
statistic is the standard deviation (SD) of the 11 
MaxT forecasts contained in the ENSMOS guid-
ance.  The second interesting statistic was named 
the “ensemble deviation” (ED).  ED is computed 
by differencing each of the 10 perturbed MaxT 
forecasts with the control MaxT, and computing 
the root mean square of these differences.  One 
might argue that the 11 ensemble members 
should be treated as 11, equally-likely realizations 
taken from a single distribution, making SD the 
appropriate statistic.  However, the statistical 
techniques that yield the ENSMOS forecasts did 
not include any perturbed model runs.  Thus, the 
ENSMOS forecasts derived from the control can 
be treated as something of a standard from which 
the deviations of the perturbed members are 
measured.  

 
d. NUNCA development and implementation 

 
Figure 2 shows the NUNCA development 

process.  An archive of NDFD forecasts and their 
verifying observations are gathered and trans-
formed from their native values to percentiles.  
Related statistics from the associated ENSMOS 
forecasts are gathered as well.  Together these 
data form a joint distribution model, p(f,x,d), which 
can be used to assess the uncertainty of future 
NDFD forecasts. 

Figure 3 shows the NUNCA implementation 
process.  The current NDFD forecasts are trans-
formed from their native values to percentiles.  
These forecasts and the associated ENSMOS sta-
tistics are then used to infer the conditional distri-
bution p(x | f,d) from the joint distribution model, 
p(x,f,d). 

 
3. RESULTS 
 

A prototype of NUNCA process was studied, 
using NDFD forecasts of MaxT at various forecast 
projection times.  A set of 153 CONUS stations 
was selected that had long periods of record 
(~50 years) available in data sets provided by the 



US Historical Climatology Network (USHCN; Karl, 
et al. 1990).  Developmental data were taken from 
October 2004 to April 2005.  Efforts focused on 
developing techniques that transformed MaxT 
forecasts and observations into climatological per-
centiles, assessing the nature of the joint distribu-
tion, p(f,x,d), and evaluating SD and ED as diag-
nostic data. 

 
a. Transformation to percentiles 

 
For each station and at five-day intervals 

throughout the year, ordered observations of 
MaxT, taken from USHCN were used to compute 
frequencies for each five-day interval.  Standard 
probability distributions were then fit to the fre-
quencies for each interval and a cosine series was 
then fit to the five-day parameter values.  The fits 
for each station were subjectively assessed, and 
additional terms were added to the cosine series 
where this addition provided a better fit.  The result 
is a technique that can yield percentiles for any 
day of the year and value of MaxT as well as per-
form the inverse operation. 

Seven open-ended probability distributions 
were tested for this technique.  Table 2 provides 
the names of the distributions as well as a few 
subjective comments on their suitability.  The dis-
tribution that fit the data best was the Generalized 
Lambda Distribution (GLD; Karian and Dudewicz 
2000).  The GLD is a powerful probability distribu-
tion that can take on a variety of shapes.  This 
flexibility enables the GLD to model daily distribu-
tions of MaxT and MinT with impressive results.  
Four parameters define the GLD.  Caution must 
be used in fitting a GLD to arbitrary data sets since 
it is not well-behaved for all values of its four pa-
rameters.  Öztürk and Dale (1982) describe the 
use of GLD to model sunshine data.   

 
Table 2:  Probability distributions tested for 

modeling daily distributions of MaxT and MinT 
 
Distribution Variable Comment 
Normal MaxT Poor fit “in the tails”  
Normal ln (MaxT) Improved fit “in the 

tails” 
Logistic MaxT Better fit than either 

version of Normal 
Laplace MaxT Worst fit 
Gumbel MaxT Skewness improved fit 

for some stations. 
Gumbel -(MaxT) Skewness improved fit 

for some stations. 
Generalized  Best overall fit 

Lambda  
 

Figure 4 shows sample results for this tech-
nique.  The figure plots the five-day frequency 
data for the 5th, 50th, and 95th percentiles at station 
BLH as well as curves produced by the percentile 
transform technique.  The curves are able to cap-
ture a number of subtle features that can be seen 
in the plotted data.  This is especially evident in 
the 5th percentile curve between days 200 and 
250x. 

Figure 5 compares the fitted curves from 
three stations that are located in drastically differ-
ent climatological regimes.  For each station, nine 
curves are plotted, one each for the 10th through 
90th percentiles.  Blythe, California (BLH) is lo-
cated in California’s central valley, and is subject 
to hot summertime temperatures.  Baudette, Min-
nesota (BDE) is located in the northern plains of 
the CONUS.  Fort Lauderdale, Florida (FLL) is a 
southern, coastal station. 

The percentile curves in Figure 5 clearly 
model a number of important characteristics of the 
climatology of MaxT at each station.  KBLH is hot; 
the 90th percentile for MaxT approaches 120 °F 
during the summer.  During the winter and spring, 
MaxT shows increased variability.  This variability 
can be seen in the increased spread in the per-
centile curves during those seasons.  By contrast, 
KFLL shows very little seasonal variation.  During 
July, the spread between the 10th and 90th per-
centiles is remarkably small.  KBDE is, by far, the 
coldest station of the three.  The 10th percentile 
for MaxT drops to minus 10 °F during January.  
Note the large annual variation and the increased 
spread between the 10th and 90th percentile lines 
during January. 

 
b. Modeling the joint distribution p(f,x,d) 

 
Computationally modeling the joint distribu-

tion p(f,x,d) can be done in very straightforward 
ways since the NUNCA prototype is implemented 
for a small number of stations.  Each MaxT fore-
cast, its verifying observation, and associated 
ENSMOS metric is preserved within the applica-
tion.  Other techniques that are less memory-
intensive will likely be needed before NUNCA can 
be implemented for gridded NDFD forecasts. 

Scatter diagrams provide one tool for qualita-
tively assessing the nature of p(f,x,d).  Figure 6 
compares scatter diagrams for NDFD MaxT fore-
casts for the Day1 (24h) and Day7 (168h) time 
projections.  The scatter diagrams certainly show 
a difference in the characteristics of NDFD fore-



casts for these two time projections.  In each dia-
gram, the diagonal line that runs from the lower 
left to the upper right represents a perfect forecast.  
Data points that are coincident with or near that 
line verify best.  Visual inspection quickly suggests 
that Day1 forecasts verify better than Day7 fore-
casts as one might expect.  The points on the 
Day7 scatter diagram cluster around the 0.50 
forecast value more than the points on the Day1 
diagram.  This behavior coincides well with the 
tendency of human forecasters and objective fore-
casting techniques to use climatology more for 
later time projections.  The Day7 diagram also 
shows fewer extreme forecasts than the Day1 dia-
gram. 

Figure 7 uses scatter diagrams to show the ef-
fects of stratifying Day1 NDFD forecasts by the 
ED.   

Figure 8 compares the SD and ED of 
ENSMOS guidance as tools for understanding the 
performance of NDFD forecasts.  The graph on 
the left plots the SD of the NDFD forecast error 
against various values of the SD of the ENSMOS.  
The ENSMOS SD values are binned into intervals 
that are 0.1 degree F wide.  The graph on the right 
substitutes the ED of ENSMOS for the SD.  In 
both graphs, the data cluster tightly for lower val-
ues of ENSMOS SD/ED, and become less clus-
tered as SD/ED increase.  This is expected since 
there are fewer cases in the developmental data 
with small or large values.  The clustering persists 
in the ED graph for higher values than it does in 
the SD graph, suggesting that ED will be more 
useful in explaining the variance in NDFD fore-
casts.  We cannot explain the apparent negative 
slope to the data in the right graph. 

A few efforts have been made to prototype 
products that take advantage of the conditional 
distribution p(x | f,d).  These have mostly taken the 
form of generating a 50% confidence interval 
around the NDFD MaxT forecast.  Other products 
have been considered, including a probability den-
sity function, likely expressed as the boundary 
values for 10-percentile intervals and the probabil-
ity the variable will fall above or below certain key 
values (32 degrees Fahrenheit, 100 degrees, etc.). 

 
12. Conclusion 

 
 The NDFD is a resource of tremendous 
value.  One possible use of these data is to com-
pute uncertainty information that can augment the 
worth of the single-valued forecasts.  The NUNCA 
technique provides a number of tools that can de-
rive additional value from the NDFD. 
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 Figure 1:  Overview of NUNCA process 

Figure 2:  NUNCA development process 
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Figure 3:  NUNCA implementation process 



Figure 4:  Fitting five-day MaxT percentile data to a Generalized Lambda Distribution (GLD) 



Figure 5:  Comparison of MaxT percentiles for Baudette, Minnesota (KBDE); Fort Lauderdale, 
Florida (KFLL); and Blythe, California (KBLH) 



Figure 6:  Comparison of scatter diagrams of NDFD forecasts/verifying observations for 
Day1 and Day7 

Figure 7:  Comparison of scatter diagrams of NDFD forecasts/verifying observations for 
Day1, stratified by the ensemble deviation (defined in text) value computed from ENSMOS 
guidance 



Figure 8:  Graph of SD of the NDFD forecast error against various values of the SD of the 
ENSMOS (left) and ED of the ENSMOS (right) 



 


