
Mathematical Programming manuscript No.
(will be inserted by the editor)

Mihai Anitescu1, Dan Negrut1, Peter Zapol2, and Anter El-Azab3

A Note on the Regularity of Reduced Models Obtained
by Nonlocal Quasi-continuum-like Approaches

May 3, 2007

Preprint ANL/MCS 1303–1105

Abstract. The paper investigates model reduction techniques that are based on a nonlocal quasi-continuum-
like approach. These techniques reduce a large optimizationproblem to either a system of nonlinear equations
or another optimization problem that are expressed in a smaller number of degrees of freedom. The reduction
is based on the observation that many of the components of the solution of the original optimization problem
are well approximated by certain interpolation operators with respect to a restricted set of representative
components.

Under certain assumptions, the “optimize and interpolate” and the “interpolate and optimize” approaches
result in a regular nonlinear equation and an optimization problem whose solutions are close to the solution of
the original problem, respectively. The validity of these assumptions is investigated by using examples from
potential-based and electronic structure-based calculations in Materials Science models. A methodology is
presented for using quasi-continuum-like model reduction for real-space DFT computations in the absence of
periodic boundary conditions. The methodology is illustrated using a one-dimensional basic Thomas-Fermi-
Dirac case study.

1. Introduction

This work investigates the optimization problems and nonlinear equations problem
that appear in modern computational Materials Science as a result of applying quasi-
continuum-like model reduction techniques. The original,full-resolution problems are
optimization problems in their state variables (such as theatomic positions or distribu-
tion of electron density), in which an energy is minimized with respect to these variables
and, sometimes, the constraints (such as boundary conditions or total electron density
constraints).

The quasi-continuum approach [23,17] is a model reduction technique of increas-
ing popularity in the computational materials science community. In the nonlocal form
investigated here, the method is based on the observation that at the solution of the
full-resolution problem many of the state variables can be well approximated by in-
terpolation of a much smaller set of state variables calledrepresentative variables. In
Materials Science, the state variables are the positions ofnuclei and, sometimes, values
of the electronic density. For example, for the simulation of the response of a crystal
described by potentials to a nanoindenter, the full-resolution problem consists of min-
imizing the total energy of the system, which is the sum of pairwise atomic potentials
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[12], whereas the representative variables are the positions of atoms that are nodes in
a mesh whose size is at the scale of the system to be simulated (the macro scale). The
local quasi-continuum method was recently extended to include electronic density as
a state variable [6], and nonzero temperature [21]. In the study of nanoindentation of
Au, the quasi-continuum approach has resulted in a reduction from 2.5 × 1011 atomic
positions to25237 atomic positions, while achieving a reasonable accuracy [13].

This work investigates the regularity of the reduced problems generated by a quasi-
continuum-like approach, regarded here as a reduction based on a fixed linear operator
(interpolation operator). We note that other analytical results exist in the issue of regu-
larity of quasi-continuum-like approaches applied to materials science problems. Such
results include well-posedness and numerical analysis of quasi-continuum methods ap-
plied to one dimensional problems involving inter-atomic Lennard Jones potentials [16,
20], a study of cluster summation rules used in potential based quasi continuum meth-
ods [5], and the interaction between continuum and atomistic models as well as the
accuracy of the continuum limit of both potential based approaches and density func-
tional theory like approaches [4]. While our approach also analyzes the well-posedness
problems opening by of quasi-continuum-like reduction, itapplies to both potential-
based and density-functional-theory- based approaches irrespective of dimension and
includes the case with constraints (while at the same time providing results that are
weaker than for the more restrictive case described above).

The paper is organized as follows. Section 2 describes the abstract framework for
both the full-resolution problem and the two reduction techniques: the “optimize and in-
terpolate” version that leads to a nonlinear equation, and the “interpolate and optimize”
version that results in an optimization problem. The assumptions needed for regularity
of the reduced problems are stated in Section 3, followed by an analysis of the two tech-
niques. Section 4 presents two numerical experiments used for evaluating the validity of
the assumptions made for the analytical analysis of the reduction techniques. The sec-
tion concludes with a description of the nonlocal quasi-continuum approach extended
for density functional theory (DFT) calculations.

Notation If u1, u2, . . . , uq are column vectors,(u1;u2; . . . ;uq) denotes the column
vector obtain by adjoining all the vectors. The full-resolution state vector is denoted by
x = (x1;x2) ∈ RI n, wherex1 ∈ RI m is the set of representative states. For a matrixN ,
we denote byσm(N) its minimum singular value and by||N || its norm. Hereafter, if
f = f(x1, x2) andT is the interpolation operator used in this work, applying the chain
rule yields

df(x1, Tx1)

dx1
= ∇x1

f(x1, Tx1) + ∇x2
f(x1, Tx1) T.

In addition, we denote byM(1) a matrix-valued function of several unspecified vari-
ables that satisfies||M(1)|| ≤ 1 for any value of its variables.
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2. Formulation of the Reduced Problems

Consider the optimization problem

(O)

minx1,x2
f(x1, x2)
g1(x1) = 0

s.t. g2(x2) = 0
g3(x1, x2) = 0 .

The functionsg1(x1) : RI m → RI q1 , g2(x2) : RI n−m → RI q2 andg(x1, x2) : RI n →
RI q3 are the constraint functions, which, together with the objective functionf(x1, x2) :
RI n → RI , are twice continuously differentiable.

In the original application of the quasi-continuum method [23], x1 were positions
of representative atoms that were nodes of a mesh on a scale much larger than the
interatomic distance, whereasx2 were the rest of the atomic positions. An example of
one-dimensional application of the nonlocal quasi-continuum approach is provided in
Section 4.1.

Using the notationλ = (λ1;λ2;λ3), x = (x1, x2), one can define the regularity of
the solution of the original problem in terms of the Lagrangian function

L(x, λ) = f(x1, x2) + 〈g1(x1), λ1〉 + 〈g2(x2), λ2〉 + 〈g3(x1, x2), λ3〉 . (1)

Herein, the definition of regularity of the solution of the original problem is composed
of the constraint qualification and the second-order sufficient conditions from classical
nonlinear optimization theory [8, Lemma 9.2.2, Theorem 9.3.2].

Regularity Assumption: The following conditions hold at the solution(x∗, λ∗) of the
problem (O):

1. Constraint Qualification Condition (CQC): The rows of thematrices∇xg1(x1),
∇xg2(x2) and∇xg3(x1, x2) are linearly independent. We denote byσg the mini-
mum singular value of the Jacobian of the constraints.

2. Second-Order Sufficient Condition (SOSC): With the notation∇xg1(x1)= [∇x1
g1(x1),

0q1×n−m], ∇xg2(x2) = [0q2×m, ∇x2
g2(x2)], the Hessian of the Lagrangian func-

tion satisfies

∇xg1(x
∗
1)∆x = 0,

∇xg2(x
∗
2)∆x = 0,

∇xg3(x
∗
1, x

∗
2)∆x = 0,

∆x 6= 0





⇒ ∆xT∇2
xxL(x∗, λ∗)∆x ≥ σL ||∆x||2 > 0.

Hereafter, the CQC or SOSC will be invoked for optimization problems other than (O)
with the understanding that for the respective cases they convey the same meaning.

The key observation of the quasi-continuum approach [23,12] is that at the solution
of the problem (O) the position of the nonrepresentative degrees of freedom can be
approximated by an interpolation operator, namely the linear interpolation operator with
nodes at the representative atoms. This observation is formalized in the following.
Interpolation Assumption: At the optimal solution(x∗

1, x
∗
2) of the problem (O), we

have that
x∗

2 ≈ T (x∗
1)
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whereT is a linear operator identified with its matrix formT (x1) = Tx1.
This assumption is qualitative in nature and cannot be used for analytical estimates,

although it describes quite well the nature of the approximation regime that we will
be working in. When presenting our proofs, we will mention this assumption only as a
mean to alert the reader that an approximation of the typex∗

2 = Tx∗
1 + o(1) is involved

with an error level to be specified in that context.

Introducing the Lagrange multipliersλ1 ∈ RI q1 , λ2 ∈ RI q2 andλ3 ∈ RI q3 , applying
the optimality conditions to the problem (O), and using the notation〈a, b〉 = aT b, one
obtains

∇x1
f(x∗

1, x
∗
2) + ∇x1

〈g3(x
∗
1, x

∗
2), λ3〉 + ∇x1

〈g1(x
∗
1), λ1〉 = 0

∇x2
f(x∗

1, x
∗
2) + ∇x2

〈g3(x
∗
1, x

∗
2), λ3〉 + ∇x2

〈g2(x
∗
2), λ2〉 = 0
g1(x

∗
1) = 0

g2(x
∗
2) = 0

g3(x
∗
1, x

∗
2) = 0 .

(2)

The interpolation assumption suggests two ways of creatinga reduced problem. The
“optimize and interpolate” (or “optimize and reduce”) approach, in which one substi-
tutesx2 = T (x1) in the optimality conditions of (2), leads to the following reduced
system of nonlinear equations:

(RE)
∇x1

f(x1, Tx1) + ∇x1
〈g3(x1, Tx1), λ3〉 + ∇x1

〈g1(x1, Tx1), λ1〉 = 0
g1(x1) = 0

g3(x1, Tx1) = 0.

In the second approach, referred to as the “interpolate and optimize” (or “reduce
and optimize”) approach, one substitutesx2 = T (x1) in the problem (O), resulting in
the following optimization problem:

(RO)
minx1

f(x1, Tx1)
s.t. g1(x1) = 0

g3(x1, Tx1) = 0.

Clearly, (RE) does not represent the optimality conditionsof (RO) because it makes
no direct reference to∇x2

f(x1, x2), which does appear if one writes the optimality
conditions of (RO). In the application of the quasi-continuum methodology to the min-
imization of energies computed through pairwise potentials, the “optimize and inter-
polate” approach corresponds to the force-based quasi-continuum approach [12,17],
whereas the “interpolate and optimize” approach corresponds to the energy-based quasi-
continuum approach [23,17], except for the fact that in the respective references, further
transformations are carried out to approximate the data of the problems (RE) and (RO),
for reasons that will be discussed in Section 3.3.

3. Analysis of the Reduced Problems

The goal of this section is to explore under what circumstances the reduced problems
(RE) and (RO) are regular in a neighborhood of a regular solution of the original prob-
lem (O).
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3.1. The Optimize and Interpolate Case: the Reduced Nonlinear Equation

The regularity of the reduced system of nonlinear equations(RE) requires two addi-
tional assumptions.

RE Constraint Form Assumption (RECF): The constraints of the problem (O) are
separable; that is,g3 = ∅. Likewise, the constraintsg2(x2) = 0 are linear and satisfy

g1(x1) = 0 ⇒ g2(Tx1) = 0.

The second part of the assumption explains why it is possibleto completely remove
the constraints on the nonrepresentative variables from the reduced problems (RE) and
(RO). Indeed, in most applications of the quasi-continuum approach, the boundary con-
ditions result in constraints that satisfy the above assumption. For example, in the Au
nanoindentation application [12], the bottom layer of atoms of a cubic-shaped crystal is
fixed whereas its sides move only in thez direction. If representative atoms are located
at the corners of the cube and the operatorT are generated from linear interpolation with
nodes at the representative atoms, then all of the constraints described in the preceding
sentence satisfy theRE constraint form assumption. In practical terms, an interpolation
operator that results in good approximation properties is bound to satisfy the second
requirement in the assumption, since the degrees of freedomthat could help enforce
g2(x2) = 0 have disappeared in the reduced problem.

The second assumption plays a central role in proving the regularity results, and it
relates the Hessian matrix and the interpolation operatorT .

H-T Assumption: The Hessian of the Lagrange function satisfies

∇2
x2x2

L(x∗, λ∗)T + ∇2
x2x1

L(x∗, λ∗) ≈ 0

This assumption has a similar purpose as the interpolation assumption, it serves to
alert the reader that

∇2
x2x2

L(x∗, λ∗)T + ∇2
x2x1

L(x∗, λ∗) = o(1)

with a level of error in the approximation to be specified in the text surrounding the
place where is the approximation will be used.

The main results of our work are presented in Theorems 1 and 2.The assumptions of
the theorems include the satisfaction of one or both ofthe Interpolation Assumption and
the H-T Assumption at sufficiently high levels of accuracy. The level of accuracy is
characterized by the respective results and is a function ofexpressions depending on
certain characteristic of the data of the problem. Note thatthe level of accuracy to which
Interpolation Assumption and H-T Assumption are satisfied are a characteristic of the
problem and not controllable by the user, and for a multiscale problem they may be
an expression of how close such systems are to an appropriate(though perhaps hard to
compute, which justifies the use of a quasi continuum-approach) continuum limit.

We also define the following quantity

Γ = sup
i=0,1,2,3,||x1−x∗

1||≤ǫb,||x2−x∗
2||≤ǫb

{
max{

∣∣∣∣∇i
xif(x1, x2)

∣∣∣∣ ,
∣∣∣∣∇i

xig(x1, x2)
∣∣∣∣}

}

(3)



6 Mihai Anitescu, Dan Negrut, Peter Zapol, and Anter El-Azab

whereǫb is a fixed parameter.

Theorem 1. If the regularity assumption and RE constraint form assumption hold at
the solution(x∗

1;x
∗
2;λ

∗
1;λ

∗
2;λ

∗
3), of (O), then if the interpolation assumption and H-T

assumption are satisfied with sufficiently high accuracy, that is

||x∗
2 − Tx∗

1|| ≤ ǫ0,
∣∣∣∣∇2

x2x2
L(x∗, λ∗)T + ∇2

x2x1
L(x∗, λ∗)

∣∣∣∣ ≤ ǫ0

whereǫ0 ≤ 1
θ0(Γ,T,σg,σL) , at (x∗

1, x
∗
2), then the problem (RE) has a nonsingular Jaco-

bian at(x∗
1, λ

∗
1, λ

∗
3). If, in addition, we have that

ǫ0 ≤
1

2θ1(Γ, T, σg, σL)θ2(Γ, T, σg, σL)

then (RE) has a unique solution in a neighborhood of the same point (x∗
1, λ

∗
1, λ

∗
3). The

size of the neighborhood is at most

1 −
√

1 − 2θ1(Γ, T, σg, σL)θ2(Γ, T, σg, σL)ǫ0
θ1(Γ, T, σg, σL)

.

Hereθ0, θ1, andθ2 are nonnegative functions that depend only onΓ , T , σg, σL. Recall
thatσg, σL are quantities introduced at the regularity assumption .

A set of lemmas will be used in proving this result. The first lemma is essential in
the study of augmented Lagrangians and is stated here (as well as its reciprocal) for
completeness.

Lemma 1. Let P andQ be symmetricn × n matrices, and assume thatQ is positive
semidefinite. Then there exists a scalarc such thatP + cQ is positive definite if and
only if xT Px > 0 wheneverx 6= 0 andxT Qx = 0. In addition, ifσP is such that

x 6= 0, xT Qx = 0, ⇒ xT Px ≥ σP ||x||2 ,

then there exists ac = c(||P || , ||Q|| , σm(Q), σP ) such thatσm(P + cQ) ≥ σP

2 .

Proof. If xT Px > 0 wheneverx 6= 0 andxT Qx = 0, then there exists ac such that
P + cQ is positive definite [3, Lemma 1.25]. The reciprocal is obvious. The second
part of the proof follows the same way (for example applying the first part to the matrix
P − σP

2 I). 2

Lemma 2. Assume that the functionsg1(x1) and g2(x2) are such that the following
hold.

1. The Jacobian of the functiong1(x1) is full row rank.
2. The following relationship holds,∀x1:

g1(x1) = 0 ⇒ g2(Tx1) = 0.

If ∆x1 is such that∇x1
g1(x1) ∆x1 = 0, then for allλ2 ∈ RI q2 ,

(i) ∇x1(g2(Tx1)) ∆x1 = ∇x2
g2(Tx1) T∆x1 = 0,
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(ii) The following identity holds:

∇x2
g2(Tx1) T = S(x1)∇x1

g(x1),

whereS(x1) is the differentiable matrix

S(x1) = ∇x2
g2(Tx1) T ∇x1

g1(x1)
T

(
∇g1(x1) ∇g1(x1)

T
)−1

.

(iii) The following identity holds:

(T∆x1)
T ∇2

x2x2
〈g2(Tx1), λ2〉T∆x1 = ∆x1∇

2
x1x1

〈
g1(x1), S(x1)

T λ2

〉
∆x1,

where the entries ofS(x1) are not differentiated in the last equation.

Proof. Consider an arcx1(t) that satisfies

g1(x1(t)) = 0,∀ t > 0 andx1(0) = x1;
dx1(t)

dt

∣∣∣∣
t=0

= ∆x1. (4)

Such an arc exists from the first assumption of the hypothesis. Then, from the second
assumption,

dg2(Tx1(t))

dt

∣∣∣∣
t=0

= 0.

Using the definition of the arcx1(t) leads to

∇x2
g2(Tx1)T∆x1 = 0,

which proves (i).
From (i),

∇x1
g1(x1)∆x1 = 0 ⇒ ∇x2

g2(Tx1) T∆x1 = 0,

and it follows, from Farkas’ lemma [8, Lemma 9.2.4] and the subsequent Lagrange
multiplier theory of constrained optimization applied to each row of∇x2

g2(Tx1) T ,
that there exists a matrixS(x1) such that

∇x2
g2(Tx1) T = S(x1)∇x1

g1(x1).

Since this displayed equation implies that the rows of∇x2
g2(Tx1) T are orthogonal

to the kernel subspace of∇x1
g1(x1), it follows that∇x2

g2(Tx1) T coincides with its
orthogonal projection on the space orthogonal to the same kernel subspace; that is,

∇x2
g2(Tx1) T

[
Iq1

−∇x1
g(x1)

T
(
∇x1

g(x1) ∇x1
g(x1)

T
)−1

∇x1
g(x1)

]
= 0.

Herein,Is is the identity matrix of dimensions. Expanding the left side of the displayed
equation leads to conclusion (ii).

Consider again the arc (4) for which

d2g1(x1(t))

dt2

∣∣∣∣
t=0

= 0 and
d2 〈g2(Tx1(t)), λ2〉

dt2

∣∣∣∣
t=0

= 0.



8 Mihai Anitescu, Dan Negrut, Peter Zapol, and Anter El-Azab

Expanding these second time derivatives yields, fori = 1, 2, . . . , q1,

∇x1
gi
1(x1)ẍ1(0) + ∆xT

1 ∇2
x1x1

gi
1(x1) ∆x1 = 0 (5)

∇x2
〈g2(Tx1), λ2〉T ẍ1(0) + (T∆x1)

T ∇x2x2
〈g2(Tx1), λ2〉T∆x1 = 0. (6)

Based on (ii), the first term in (6) can be expressed as

∇x2
〈g2(Tx1), λ2〉T ẍ1(0) = 〈∇x2

g2(Tx1)T, λ2〉 ẍ1(0) =

〈S(x1)∇x1
g1(x1), λ2〉 ẍ1(0) =

〈
∇x1

g1(x1), S(x1)
T λ2

〉
ẍ1(0).

Multiplying each of the equations of (5) with the corresponding component ofS(x1)
T λ2

and summing them, one obtains

∇x2
〈g2(Tx1), λ2〉T ẍ1(0) =

〈
∇x1

g1(x1), S(x1)
T λ2

〉
ẍ1(0)

= −∆xT
1 ∇2

x1x1

〈
g1(x1), S(x1)

T λ2

〉
∆x1,

where the∇x1x1
operator does not act onS(x1). Conclusion (iii) is proved by replacing

the left term from the last displayed equation with the rightterm in (6). 2

Lemma 3. Define the Lagrangian of the problem (O) that excludes the constraintg2(x2) =
0,

L̂(x, λ) = f(x1, x2) + 〈g1(x1), λ1〉 + 〈g3(x1, x2), λ3〉 . (7)

Define the matrix

JO =

[
∇x1

g1(x
∗
1)

∇x1
g3(x

∗
1, x

∗
2) + ∇x2

g3(x
∗
1, x

∗
2)T

]
,

and assume that∀x1, g1(x1) = 0 ⇒ g2(Tx1) = 0. Then, there exists a function
θ3(Γ, T, σg, σL) such that, if the regularity assumption holds, and interpolation as-
sumption is sufficiently accurate, specifically,

||x∗
2 − Tx∗

1|| ≤
1

θ3(Γ, T, σg, σL)
,

then one has the following.

(i) If g2 is a linear function, the matrix

L̂T =
[
Im
T

]T

∇2
xxL̂(x∗, λ∗)

[
Im
T

]

is positive definite over the set

F = {∆x1|JO∆x1 = 0} ,

and satisfies

∆x1 ∈ F ⇒ ∆x1L̂T ∆x1 ≥
σL

4
||∆x1||

2
.
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(ii) If λ̃ =
(
λ∗

1 + S(x∗
1)

T λ∗
2, 0, λ∗

3

)
, the matrix

L̃T =
[
Im
T

]T

∇2
xxL̂(x∗, λ̃)

[
Im
T

]

is positive definite over the set

F = {∆x1|JO∆x1 = 0} ,

and satisfies

∆x1 ∈ F ⇒ ∆x1L̃T ∆x1 ≥
σL

4
||∆x1||

2
.

Proof. Consider the symmetric positive semidefinite matrix

Q = [Im; 0]
T ∇x1

g1(x
∗
1)

T∇x1
g1(x

∗
1) [Im; 0]

+ [0; In−m]
T ∇x2

g2(x
∗
2)

T∇x2
g2(x

∗
2) [0; In−m] + ∇xg3(x

∗)T∇xg3(x
∗).

Since the regularity assumption holds, it follows from Lemma 1 withP = ∇2
xxL(x∗, λ∗)

that there exists a finitec = c(σg, σL, T, Γ ) > 0 such that

Lc = ∇2
xxL(x∗, λ∗) + c [Im; 0]

T ∇x1
g1(x

∗
1)

T∇x1
g1(x

∗
1) [Im; 0]

+ c [0; In−m]
T ∇x2

g2(x
∗
2)

T∇x2
g2(x

∗
2) [0; In−m] + c∇xg3(x

∗)T∇xg3(x
∗)

satisfiesσm(Lc) ≥
σL

2 . It is immediate that, the matrix

Lc,T =
[
Im
T

]T

Lc

[
Im
T

]

also satisfiesσm(Lc) ≥
σL

2 . Considering the definition of the LagrangianL̂ and of the
matrixLc, one has that

Lc,T = L̂T + c∇x1
g1(x

∗
1)

T∇x1
g1(x

∗
1) + c

[
Im
T

]T

∇xgT
3 (x∗)∇xg3(x

∗)
[
Im
T

]

+ cTT∇x2
g2(x

∗
2)

T∇x2
g2(x

∗
2)T + TT∇2

x2x2
〈g(x∗

2), λ
∗
2〉T.

(8)

Define
U(x1) = cTT∇x2

g2(Tx1)
T∇x2

g2(Tx1)T.

Sinceg2 is a linear function, and from an application of the higher-dimensional “mean
value theorem” [19, Prop. 3.2.3] it follows from the interpolation assumption that the
last two terms of (8) satisfy

cTT∇x2
g2(x

∗
2)

T∇x2
g2(x

∗
2)T + TT∇2

x2x2
〈g(x∗

2), λ
∗
2〉T

= U(x1) + η1(Γ, T, σg, σL)M(1) ||x∗
2 − Tx∗

1|| ,

for some expressionη1(·) ≥ 0.
Sinceσm(Lc,T ) ≥ σL

2 , it follows that, whenever

||x∗
2 − Tx∗

1|| ≤
σL

4η1(Γ, T, σg, σL)
,
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we have that

L̂T + c∇x1
g1(x

∗
1)

T∇x1
g1(x

∗
1) + c

[
Im
T

]T

∇xgT
3 (x∗)∇xg3(x

∗)
[
Im
T

]
+ U(x∗

1),

has a minimum eigenvalue that exceedsσL

4 . In turn, from Lemma 1, we obtain that the

matrixL̂T +U(x∗
1) is positive definite over the setF . If ∆x1 ∈ F , then∇x1

g(x∗
1)∆x1 =

0; and based on Lemma (2)(i),∆xT
1 U(x∗

1)∆x1 = 0, which completes the proof for (i),
with the choiceθ3(·) = η1(·).

For part (ii), the equivalent of (8) is

Lc,T = L̃T + c ∇x1
g1(x

∗
1)

T ∇x1
g1(x

∗
1) + c

[
Im
T

]T

∇xg3(x
∗)T ∇xg3(x

∗)
[
Im
T

]

+ c TT ∇x2
g2(x

∗
2)

T ∇x2
g2(x

∗
2) T + TT ∇2

x2x2
〈g2(x

∗
2), λ

∗
2〉T

− ∇2
x1x1

〈
g1(x

∗
1), S(x∗

1)
T λ∗

2

〉
,

(9)
where, again, the entries ofS(·) are not differentiated. Similar to the previous case,
we have thatσm(Lc,T ) ≥ σL

2 . Based on the interpolation assumption , and the higher
dimensional “mean value theorem” [19, Prop. 3.2.3], we obtain that

cTT∇x2
g2(x

∗
2)

T∇x2
g2(x

∗
2)T + TT∇2

x2x2
〈g2(x

∗
2), λ

∗
2〉T

− ∇2
x1x1

〈
g1(x

∗
1), S(x∗

1)
T λ∗

2

〉
= U(x∗

1, λ
∗
2) + η2(Γ, T, σg, σL)M(1) ||x∗

2 − Tx∗
1|| ,
(10)

for some expressionη2(·) ≥ 0, where

U(x1, λ2) = cTT∇x2
g2(Tx1)

T∇x2
g2(x1)T + TT∇2

x2x2
〈g2(Tx1), λ2〉T

− ∇2
x1x1

〈
g1(x1), S(x1)

T λ2

〉
.

From equations (10) and (9) it follows that, for

||x∗
2 − Tx∗

1|| ≤
σL

4η2(Γ, T, σg, σL)
,

the matrix

L̃c
T = L̃T +c∇x1

g1(x
∗
1)

T∇x1
g1(x

∗
1)+c

[
I
T

]T

∇xgT
3 (x∗)∇xg3(x

∗)
[

I
T

]
+U(x∗

1, λ
∗
2)

satisfiesσm(L̃c
T ) ≥ σL

4 . From Lemma 1, with the matrixQ given by

Q = ∇x1
g1(x

∗
1)

T∇x1
g1(x

∗
1) +

[
I
T

]T

∇xgT
3 (x∗)∇xg3(x

∗)
[

I
T

]

it follows that the matrixL̃T + U(x∗
1, λ

∗
2) is positive definite over the setF and its

associated quadratic form is bounded below byσL

4 over the same set. But for any∆x1 ∈
F , ∇x1

g(x1)∆x1 = 0 and, based on Lemma 2 (i) and (iii),∆xT
1 U(x∗

1, λ
∗
2)∆x1 = 0,

which in turn implies that̃LT is positive definite over the setF . The conclusion follows
after takingθ3(·) = η2(·). 2

All the intermediary results needed to prove the main theorem are now available.
Proof of Theorem 1
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The Jacobian of (RE) at(x∗
1, Tx∗

1, λ
∗) is

JRE =

[
∇2

x1x1
L̂(x∗

1, Tx∗
1, λ

∗) + ∇2
x1x2

L̂(x∗
1, Tx∗

1, λ
∗)T ∇x1

g1(x
∗
1)

T

∇x1
g1(x

∗
1) 0

]
.

For the upper left corner of the Jacobian, by virtue of the interpolation assumption
and using the higher dimensional “mean value theorem” [19, Prop. 3.2.3], we obtain
that

JRE
11 = ∇2

x1x1
L̂(x∗

1, Tx∗
1, λ

∗) + ∇2
x1x2

L̂(x∗
1, Tx∗

1, λ
∗)T

= ∇2
x1x1

L̂(x∗
1, x

∗
2, λ

∗) + ∇2
x1x2

L̂(x∗
1, x

∗
2, λ

∗)T + η1(Γ, T, σg, σL) ||x∗
2 − Tx∗

1||M(1)

Using the definition of̂L , invoking the H-T assumption and using the higher dimen-
sional “mean value theorem” [19, Prop. 3.2.3], we obtain that

∣∣∣∣∇2
x2x2

L(x∗, λ∗)T + ∇2
x2x1

L(x∗, λ∗)
∣∣∣∣ ||T ||M(1)

= TT ∇2
x2x2

L(x∗, λ∗) T + TT ∇2
x2x1

L(x∗, λ∗)

= TT ∇2
x2x2

L̂(x∗, λ∗) T + TT ∇2
x2x1

L̂(x∗, λ∗) + TT ∇2
x2x2

〈g2(x
∗
2), λ

∗
2〉 T

= TT∇2
x2x2

L̂(x∗, λ∗) T + TT ∇2
x2x1

L̂(x∗, λ∗),

for some expressionη1(·) ≥ 0, where the last step follows from the assumption that
g(x2) is linear. Combining the last two displayed equations,

JRE
11 =

[
I
T

]T
[
∇2

x1x1
L̂(x∗, λ∗) ∇2

x1x2
L̂(x∗, λ∗)

∇2
x2x1

L̂(x∗, λ∗) ∇2
x2x2

L̂(x∗, λ∗)

] [
I
T

]

+ M(1)η2(Γ, T, σg, σL)max{||x∗
2 − Tx∗

1|| ,
∣∣∣∣∇2

x2x2
L(x∗, λ∗)T + ∇2

x2x1
L(x∗, λ∗)

∣∣∣∣}
=

[
I
T

]T

∇2
xxL̂(x∗, λ∗)

[
I
T

]

+ M(1)η2(Γ, T, σg, σL)max{||x∗
2 − Tx∗

1|| ,
∣∣∣∣∇2

x2x2
L(x∗, λ∗)T + ∇2

x2x1
L(x∗, λ∗)

∣∣∣∣},
(11)

where
η2(Γ, T, σg, σL) = η1(Γ, T, σg, σL) + ||T ||

From Lemma 3(i), it follows that, as soon as

||x∗
2 − Tx∗

1|| ≤
1

θ3(Γ, T, σg, σL)
,

the matrix

L̂MT

[
I
T

]T

∇2
xxL̂(x∗, λ∗)

[
I
T

]

is positive definite over the set

F1 = {∆x1|∇x1
g1(x

∗
1)∆x1 = 0}

and that it satisfies

∆x1 ∈ F1 ⇒ ∆xT
1 L̂MT ∆x1 ≥

σL

4
||∆x1||

2
.
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From equation (11) it then follows that, provided that

max
{
||x∗

2 − Tx∗
1|| ,

∣∣∣∣∇2
x2x2

L(x∗, λ∗)T + ∇2
x2x1

L(x∗, λ∗)
∣∣∣∣} ≤

σL

8η2(Γ, T, σg, σL)
,

the matrixJ11
RE is positive definite (though not necessarily symmetric) over the set

F1 with a reduced minimum singular value no less thanσL

8 . In turn, from the full rank
property of∇xg1(x

∗
1) implied by RE constraint form assumption , this implies thatthe

matrix [
J11

RE ∇x1
g1(x

∗
1)

T

∇x1
g1(x

∗
1) 0

]

is not singular atx∗
1 and has a minimum singular value bounded bellow by some positive

η3(Γ, T, σg, σL), which concludes the first part of the proof, after taking

θ0(Γ, T, σg, σL) = max

{
8η2(Γ, T, σg, σL)

σL
, θ3(Γ, T, σg, σL)

}

For the second part of the proof, the focus shifts to the residual of the nonlinear
equation (RE) at(x∗

1, λ
∗
1), for g3 = ∅. Based on the interpolation assumption and (2),

∇x1
f(x∗

1, Tx∗
1) + ∇x1

〈g1(x
∗
1)λ

∗
1〉 = ∇x1

f(x∗
1, x

∗
2) + ∇x1

〈g1(x
∗
1)λ

∗
1〉 =

η4(Γ, T, σg, σL) ||x∗
2 − Tx∗

1||M(1),
g(x∗

1) = 0,

for some expressionη4(·) ≥ 0. The conclusion of the second part of the proof follows
from the fact that the Jacobian is not singular and from applying Kantorovich’s theorem
[19, Theorem 12.6.1] (RE). with the following identification (referring to the notations
in that reference)γ = Γ , β = η4(Γ, T, σg, σL), η = ǫ0η4(Γ, T, σg, σL), and choosing
θ1 = βγ, andθ2 = βγη4(Γ, T, σg, σL). 2

Theorem 1 therefore proves that the reduced nonlinear equation (RE) produced by
the local quasi-continuum approach is regular, at least in the neighborhood of the solu-
tion of the original problem. As a result, local convergenceof a Newton-type method to
the solution of (RE) is guaranteed under the conditions of Theorem 1.

The H-T assumption assumption seems quite restrictive. Nonetheless, we present in
Section 4.1 an example that satisfies it.

3.2. The Interpolate and Optimize Case: the Reduced Optimization Problem

Although (RO) and (RE) share a number of characteristics, (RE) does not represent the
optimality conditions of (RO). The (RO) problem can be shownto be well posed under
less restrictive assumptions.

RO Constraint Form Assumption: The constraints of the problem (O) are such that
(i) the matrix

JRO =

[
∇x1

g1(x
∗
1)

d
dx1

g3(x
∗
1, Tx∗

1)

]
=

[
∇x1

g1(x
∗
1)

∇x1
g3(x

∗
1, Tx∗

1) + ∇x2
g3(x

∗
1, Tx∗

1)T

]
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has full row rank and(ii) the following condition holds:

g1(x1) = 0 ⇒ g2(Tx1) = 0,∀x1

.

Note that in the form of the matrixJRO an assumption was made that bothg1 6= ∅ and
g3 6= ∅. If this is not the case, the constraints that are missing in the formulation are
removed from the expression ofJRO.

Theorem 2. If the regularity assumption and RE constraint form assumption hold at
the solution(x∗

1;x
∗
2;λ

∗
1;λ

∗
2;λ

∗
3), of (O), then if the interpolation assumption and H-T

assumption are satisfied with sufficiently high accuracy, that is

||x∗
2 − Tx∗

1|| ≤ ǫ0,

whereǫ0 ≤ 1
θ0(Γ,T,σg,σL) , at (x∗

1, x
∗
2), then the problem (RO) satisfies both the SOSC

and the CQC atx∗
1 with multiplier

(
λ∗

1 + S(x∗
1)

T λ∗
2, λ

∗
3

)
. If, in addition, we have that

ǫ0 ≤
1

2θ1(Γ, T, σg, σL)θ2(Γ, T, σg, σL)

then (RO) has a unique solution in a neighborhood ofx∗
1.

The size of the neighborhood is at most

1 −
√

1 − 2θ1(Γ, T, σg, σL)θ2(Γ, T, σg, σL)ǫ0
θ1(Γ, T, σg, σL)

.

Hereθ0, θ1, andθ2 are nonnegative functions that depend only onΓ , T , σg, σL. Recall
thatσg, σL are quantities introduced at the regularity assumption .

NoteThe part involving the computation of the quantities neededfor computing the size
of the neighborhood with Kantorovich’s Theorem is very similar to the one in the proof
of Theorem 1. For brevity and clarity, we use estimates of thetypeO(ǫ0) at certain parts
of the proof, and we mean quantities that are bounded above byη1(Γ, T, σg, σL)ǫ0,
instead of going into the details on how expressions likeη1(·) may actually be formed.

Proof
Consider the Lagrangian of problem (O) defined in (1). The fact that the constraint
qualification holds is satisfied as an immediate conclusion to the RO constraint form
assumption, sinceJRO is the Jacobian of problem (RO). The Lagrangian of problem
(RO) is

LRO(x1, λ) = f(x1, Tx1) + 〈g1(x1), λ1〉 + 〈g3(x1, Tx1), λ3〉 .

At the solution of (O), using the interpolation assumption and the chain rule leads to

d2

dx2
1

LRO(x∗
1, λ

∗
1+S(x∗

1)
T λ∗

2, λ
∗
3) =

[
Im
T

]T

∇2
xxL̂(x∗, λ∗

1+S(x∗
1)

T λ∗
2, λ

∗
3)

[
Im
T

]
+O(ǫ0).
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Therefore, from Lemma 3(ii), forǫ0 sufficiently small, the matrix

∇2
x1x1

LRO(x∗
1, λ

∗
1 + S(x∗

1)
T λ∗

2, λ
∗
3) is p.d. over {∆x1|JO∆x1 = 0} . (12)

Given the fact thatJRO has full row rank and that||JRO − JO|| = O(ǫ0), it follows
from the interpolation assumption and from (12) that forǫ0 sufficiently smallJO also
has full row rank and that

∇2
x1x1

LRO(x∗
1, λ

∗
1 + S(x∗

1)
T λ∗

2, λ
∗
3) is p.d. over {∆x1|JRO∆x1 = 0} . (13)

SinceJRO is assumed to have full row rank, it follows from (12) that forǫ0 sufficiently
small the (RO) problem satisfies the SOSC and the CQC.

For the second part of the proof the focus shifts to the residual in the first-order
conditions of (RO). From Lemma 2 and theInterpolation Assumption,

∇x1
LRO(x∗

1, λ
∗
1 + S(x∗

1)
T λ∗

2, λ
∗
3)

= ∇x1
f(x∗

1, Tx∗
1) + ∇x2

f(x∗
1, Tx∗

1)T + ∇x1
〈g1(x

∗
1), λ

∗
1〉

+ ∇x2
〈g2(Tx∗

1), λ
∗
2〉T + ∇x1

〈g3(x
∗
1, Tx∗

1), λ
∗
3〉 + ∇x2

〈g3(x
∗
1, Tx∗

1), λ
∗
3〉T

= O(ǫ0) + (∇x1
f(x∗

1, x
∗
2) + ∇x1

〈g1(x
∗
1), λ

∗
1〉 + ∇x1

〈g3(x
∗
1, x

∗
2), λ

∗
3〉)

+ (∇x2
f(x∗

1, x
∗
2) + ∇x2

〈g2(Tx∗
1), λ

∗
2〉 + ∇x2

〈g3(x
∗
1, x

∗
2), λ

∗
3〉) T

= O(ǫ0)

where the result of Lemma 2(i)
〈
∇x1

g1(x
∗
1), S(x∗)T λ∗

2

〉
= 〈∇x2

g2(Tx∗
1), λ

∗
2〉T,

was taken into account. In addition, it is immediate that∇λ1
LRO(x∗

1, λ
∗
1+S(x∗

1)
T λ∗

2, λ
∗
3) =

g1(x
∗
1) = 0 and

∇λ3
LRO(x∗

1, λ
∗
1 + S(x∗

1)
T λ∗

2, λ
∗
3) = g3(x

∗
1, Tx∗

1) = g3(x
∗
1, x

∗
2) + O(ǫ0) = O(ǫ0).

Therefore,
∇(x1,λ1,λ3)L

RO
(
x∗

1, λ
∗
1 + S(x∗

1)
T λ∗

2, λ
∗
3

)
= O(ǫ0).

Since the problem (RO) satisfies the QCQ and SOSC, it follows from the theory of
constrained optimization that forǫ0 sufficiently small, the Jacobian of the nonlinear
equation

∇(x1,λ1,λ3)L
RO (x1, λ1, λ3) = 0

is nonsingular at
(
x∗

1, λ
∗
1 + S(x∗

1)
T λ∗

2, λ
∗
3

)
. From Kantorovich’s theorem [19, Theorem

12.6.1] it follows that this nonlinear equation has a solution in the neighborhood of(
x∗

1, λ
∗
1 + S(x∗

1)
T λ∗

2, λ
∗
3

)
that, because of the positive definiteness of∇2

x1x1
LRO on

the null space of the constraints, is a local solution of (RO). 2

Note that the Lagrange multiplier of the constraintg1(x1) = 0 is sharply different
in the solutions of the problems (O) and (RE), and that of the problem (RO), although
the representative variablesx∗

1 are withinO(ǫ0). In the (RO) problem the respective
constraints also carry the weight of theg2(x2) = 0 of (O), which does not occur in the
(RE) problem.
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Clearly, the conditions that render the (RO) problem well posed are less restrictive
than the corresponding ones for the reduced problem (RE). Inparticular, it is unfortu-
nate that a regularity result for the nonlinear equation (RE) for the case whereg3 6= ∅
could not be provided. With the notation of the proof of Theorem 1, the difficulty orig-
inates in the fact that in this case the Jacobian of (RE) approaches

[
J11

RE ∇x1
g1(x

∗
1)

T ∇x1
g3(x

∗
1, x

∗
2)

T

∇x1
g1(x

∗
1) 0 0

∇x1
g3(x

∗
1, x

∗
2) + ∇x2

g3(x
∗
1, x

∗
2)T 0 0

]
,

which is not a symmetric matrix. Therefore, one can no longerapply the proof tech-
nique, which relied on the fact that the positive definiteness of the upper left corner of
the matrix with respect to the null space of the other rows of the matrix implies the
nonsingularity of the corresponding symmetric indefinite matrix.

On the other hand, with techniques from the proofs of Theorems 1 and 2, it is
immediate that if (RE) has a nonsingular Jacobian at(x∗

1, λ
∗
1, λ

∗
3), then (RO) is also

regular atx∗
1 and both have primal solutions within O(ǫ0) of x∗

1.
Note that our analysis refers to the regularity of local minima of the original op-

timization problem. Indeed, the regularity assumption that we make at the solution of
the full optimization problem (O) are sufficient conditionsfor the existence of a local
minimizer, and our theoretical results merely state that under appropriate conditions
the reduced problems have a local solution in the neighborhood of that minimizer. In
the case of the global minimum, it is immediate that the reduced optimization problem
(RO) cannot introduce a spurious global minimum, since it isa minimization over a
strictly smaller set (the one constrained by the interpolation relationship) and its min-
imum value must be larger. In addition, Theorem 2 can be used to state that (RO) has
a local minimum in the neighborhood of the global minimum of the full optimization
problem (O). At this time we cannot make similar statements about the reduced equa-
tion approach (RE).

Note also that in this work, much as in the references [4,16,5,12,13,17,23] we
treat only ”static” problems. An important line of researchnot discussed here is the one
of the reduction of time-dependent problems, though some ofthe ideas seem readily
extensible (if one considers for example implicit time stepping schemes to approximate
time-dependent problems).

3.3. Further Computational Improvements

Problems (RO) and (RE) have a dimension of the variables space that is equal to the
dimension of the variablex1. Therefore any Newton-type methods applied to the re-
duced problems will work in a much smaller space than the onesapplied to the original
problem (O). This has two computational benefits.

– This makes available a larger variety of tools that perhaps do not scale to the size of
the original problem. It is conceivable that even direct methods would be applicable
in some configurations.
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– Moreover, the condition number of the reduced approach may be much smaller and
even matrix free iterative method may need less iterations to converge. While this
is a difficult statement to prove rigorously for the general case we point to several
pieces of evidence that indicate that this may be a wide occurrence.
– The numerical results for the three dimensional density functional theory appli-

cation that is presented in Subsection 4.3. In that section we use a matrix free
method for solving the reduced optimization problem

– The analysis of quasi-continuum approaches applied to material science prob-
lems with Lennard Jones potentials. The analysis indicatesthat the original
optimization problem has a condition number that behaves like order 1

q1+q2

,
whereas quasi-continuum approaches produce problems thatapproach the solu-
tion of continuum models [15], which means that one expects that their condi-
tion number is tied to the size off the macro scale mesh,O( 1

q1

), and not the size
of the interatomic distance.

Nonetheless, if an iterative method is used to solve the reduced problems one may
need to explore at every iteration the entire(x1, x2) space, in order to compute the data
of the reduced problems. We illustrate the situation with the following example. We
represent the components of the vectorsx1andx2 by

x1 = (x11, x12, . . . , x1q1
) , x2 = (x21, x22, . . . , x2q2

) .

Assume that the objective function has the following expression

f (x1, x2) = f1 (x1, x2) + f2 (x1, x2)

and that its first component can be written as

f1 (x1, x2) =

q1∑

i=1

f0 (x1i) +

q2∑

i=1

f0 (x2i).

Here,f0 (·) is a smooth function. Then, the substitutionx2 = Tx1 prompted by the
interpolation assumption results inx2i = Tix1, i = 1, 2, . . . , q2 and

f1 (x1, Tx1) =

q1∑

i=1

f0 (x1i) +

q2∑

i=1

f0 (Tix2i). (14)

Here,Ti, i = 1, 2, . . . , q2 areq1 dimensional vectors.
Then, evaluation off1 (x1, Tx1) and∇x1

f1 (x1, Tx1) needs to explore all theq1+
q2 elements of the above sum (1.1), even if the result is a function of onlyq1 independent
variables, andq1 ≪ q2.

There exist exceptions to this situation. For example, in the (RE) approach for poten-
tial based configurations with cutoff, only a small number ofatoms in the neighborhood
of the positions of the representative atoms need to be explored in order to compute the
vector function and its Jacobian. Therefore the number of operations needed by a matrix
free approach at each iteration is proportional to the number of representatives degrees
of freedom, that is, the dimension of the vectorx1. Nonetheless, such fortunate outcome
cannot be expected in general as proven by the example above (14).
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To avoid the use ofq1 + q2 operations at every step of an iterative method, the
function f1 (x1, Tx1) is further approximated in some quasi-continuum approaches
[23]. For example, iff0 (·) is smooth, we can use the approximation

f0 (x2i) ≈ T̂i




f0 (x11)
f0 (x12)
...
f0 (x1q1

)


 =

q1∑

j=1

t̂ijf
0 (x1j)

Here

T̂ =




T̂1

T̂2
...
T̂q2


 =




t̂11 t̂12 t̂1q1

t̂21 t̂22 t̂2q1

t̂q21 t̂q2
t̂q2q1




is an interpolation operator ( perhaps even the interpolation operatorT ).
In that case

f1 (x1, Tx1) ≈ f1T̂ (x1) =

q1∑

i=1

wif
0 (x1i),

where the weightswj are defined aswj = 1+
q2∑

i=1

tij j = 1, 2, . . . q1. These weights are

computed by exploring only once the degrees of freedom corresponding to the vector
x2, and then the functionf1T̂ (x1) is used as a surrogate for the objective function of
the reduced problem, and needs onlyO (q1) operations to compute.

We note that if surrogate functions are used, the conclusions presented in Subsec-
tions 3.1 and 3.2 could still be reached provided that we can enforce the quality of the
surrogate, such as

sup‖x1−x∗
1‖≤δ0

∣∣∣f1T̂ (x1) − f1 (x1, Tx1)
∣∣∣ ≤ δ

sup‖x1−x∗
1‖≤δ0

∣∣∣∇x1
f1T̂ (x1) −

d
dx1

f1 (x1, Tx1)
∣∣∣ ≤ δ

sup‖x1−x∗
1‖≤δ0

∣∣∣∇2
x1x1

f1T̂ (x1) −
d2

dx2

1

f1 (x1, Tx1)
∣∣∣ ≤ δ

,

where the parameterδ0 is fixed, provided that the parameterδ is sufficiently small with
a size to be determined in the analysis. Such results would follow from the fact that the
reduced problem is well-posed and stability results of nonlinear equations and nonlinear
optimization problems [7]. Nonetheless, this would tremendously complicate the anal-
ysis. In addition, the variety of such surrogates is significant [23,5] which makes their
unified investigation non-trivial. We leave the development of an appropriate analysis
framework to future research.

4. Numerical Experiments

All physical units used in this section are omitted and physical quantities involved are
considered dimensionless.
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4.1. Numerical Justification of the Assumptions: A Potential-based Calculation.

In this subsection the validity of the assumptions made in the previous sections is scru-
tinized. Particular attention is paid to the H-T assumptionbecause in the context of the
(RE) approach, it is the more unusual and restrictive of the assumptions made. The vehi-
cle for this investigation will be a test case in which the objective functionf(x1, x2) in
(O) is the total energy of a set of atoms represented in a one-dimensional setup, whose
pairwise interaction is governed by the Lennard-Jones potential (see, for instance, [1]).
The test is similar in spirit to, but simpler in complexity than, the more general three-
dimensional ones presented in [12]. For this problem,x = (r1, . . . , rA)T , whereri is
the coordinate of atomi. The energy is defined in terms of a pairwise potentialV (·).

The total energy isE(x) =
A∑
i

A∑
j>i

V (ri − rj). The stable configuration of the atoms is

obtained when the energy is minimized, which in turn impliesthat

0 = F (x) = ∇E(x).

For a string ofA = 101 atoms, the original problem (UO) (from unconstrained op-
timization), is solved using the (RE) approach. The representative atoms are the atoms
1, 2, 3, 4, 23, 42, 61, 80, 99, 100, 101. The atoms 4 through 99 are called “inner” atoms.
In spite of being representative, the atoms 1, 2, 3, and 100, 101 are not used in the
interpolation to prevent the boundary effects from crossing into the reconstruction pro-
cess associated with the inner nonrepresentative atoms. The position of the 61st atom
is fixed because the energy functional is translation invariant and it would thus have
unbounded level sets, possibly compromising the global convergence properties of the
algorithms. In the framework of problem (O),x1 = (r1; r2; r3; r4; r23; r42; r61; r80;
r99; r100; r101) andx2 = T x1. In addition,f(x1, x2) = E(x), g1(x1) = r61 − 61,
g2(x2) = ∅, g3(x1, x2) = ∅. Both the RE constraint form assumption and RO constraint
form assumption hold for this test, as well as the CQC part of the regularity assumption.

The solution is found with the package SNOPT [10] through theAMPL interface
[9]; the solution was found in about 10 iterations. The expression of the Lennard-Jones
potential considered was

V (r) =
(σ

r

)12

−
(σ

r

)6

, σ = 1.122.

The problem was initialized withri = i, i = 1, 2, . . . , 101. At the solution of (UO), the
columns of

LR = −
[
∇2

x2x2
L(x∗, λ∗)

]−1
∇2

x2x1
L(x∗, λ∗)

that correspond to the atoms 4, 23, 42, 61, 80, 99 were calculated and displayed in Fig-
ure 1 (as a function of the index in thex2 vector). The columns ofLR that correspond
to the atoms 1,2,3, 100, 101 are negligible, in the sense thattheir norm is more than
100,000 times smaller than the one corresponding to the other columns. These results
almost perfectly justify the H-T assumption, in that the columns ofLR are essentially
identical to the ones of the linear interpolation operator with nodes at the inner repre-
sentative atoms. Perhaps less surprisingly, the positionsof the atoms themselves at the
solution point also satisfy the same linear interpolation pattern and therefore justify the
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Fig. 1.Columns ofLR.

interpolation assumption. In addition, verifying the eigenvalues of the Hessian of the
Lagrangian indicates that the SOSC part of the regularity assumption was satisfied.

For comparison, the same columns ofLR are evaluated away from the equilibrium
(the configuration was first perturbed slightly as shown in Figure 3), and the results
are displayed in Figure 2. The variation between two consecutive interatomic distances
with respect to the original problem was no larger than 1.6%,and the end points were
identical. Nevertheless, that pattern of the columns is nowfar away from the one cor-
responding to the interpolation operatorT , which leads to the conclusion that the H-T
assumption can be expected to be valid only near the solutionof the original problem
(O). The assumption is expected to be more accurate as the system size approaches the
continuum limit.

In summary, the regularity assumption, interpolation assumption, H-T assumption,
RE constraint form assumption, and RO constraint form assumption do apply, and there-
fore according to Theorems 1 and 2 the reduced problems (RE) and (RO) have a solution
in the neighborhood of the solution of problem (UO).

4.2. Example Application of (RE) and (RO) to Density Functional Theory
Computations

The model reduction techniques (RE) and (RO) are applied to solving an electronic
structure computation problem. The purpose is to compute the electron density (which
is a scalar function of the spatial variables) for a given position of the atoms and a
given total number of electrons. A form of the local quasi-continuum method has been
developed for electronic structure computation [6]. In that work, the local nature of
the method required elements much larger than a crystal celland the use of periodic
boundary conditions. The approach proposed in this paper isnot restricted by the use
of periodic boundary conditions.
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As a mathematical model, the problem is an optimization problem whose objec-
tive function is the total energy functionalE [ρ, {RA}], whereρ = ρ(r) is the variable
electronic density function that is subject to the constraint that the total electronic den-
sity (

∫
ρ(r)dr) should add up to a prescribed number of electrons, and{RA} are the

parameter atomic positions according to the Born-Oppenheimer assumption (see, for
instance, [22]).

The example is built around the Thomas-Fermi-Dirac form of the energy functional
(see, for instance, [14]):

E [ρ, {RA}] = Ene [ρ, {RA}] + J [ρ] + K [ρ] + T [ρ] , (15)

where
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Ene [ρ, {RA}] = −
M∑

A=1

∫
ZA ρ(r)

‖RA − r‖
dr (16a)

J [ρ] =
1

2

∫ ∫
ρ(r) ρ(r′)

‖r − r′‖
dr dr′ (16b)

T [ρ] = CF

∫
ρ

5

3 (r) dr (16c)

K [ρ] = −Cx

∫
ρ

4

3 (r) dr. (16d)

Here CF = 3
10 (3π2)2/3, andCx = 3

4

(
3
π

)1/3
; Ene is the energy corresponding to

nucleus-electron interaction;J is the Coulomb energy;K represents the exchange en-
ergy;T is the kinetic energy;ZA is the atomic number associated with nucleus A;ri is
the global position of electroni; RA is the global position of nucleus of atomA; and∫

(·) without integration limits is an integral over the entire domain.
It is well accepted that both for quantum chemistry and solid-state physics the

Thomas-Fermi-Dirac functional is an inaccurate DF representation. This is less rele-
vant in this context because the interest lies in evaluatingthe benefit of using a model
reduction approach, rather than assessing the accuracy of the underlying DFT model.
The purpose of the numerical experiment is to compare the solution of the full model
with a prediction computed with the reduced model.

A detailed description of the reduction approach for an arbitrary domain and an
arbitrary number of representative subdomains can be foundin [18], and it is only
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briefly discussed here. The computational domain is dividedin subdomainsDi, i =
1, 2, . . . , u, out of whichp of them are chosen to be representative, and denoted by
Yα, α ∈ {1, . . . , p}; the remainingu − p subdomains, are called passive (the white
subdomains in Figure 6). A choice of seven representative subdomains is presented in
Figure 6. The densityρi on subdomainDi is expressed by interpolation in terms of
reference densitiesρα ∈ Yα, α ∈ {1, . . . , 7}. A set of weightsϑ determined based on
the type of interpolation considered (linear, quadratic, etc.) is used to this end:

ρi(Φ(r0′, t)) =

p∑

α=1

ϑα(i)ρα(Φ(r0′ + Tiα, t)) (17)

where the vectorTiα is the translation vector that takes the pointr
0′ in subdomainDi

to its image in the subdomainYα. The deformation mappingΦ(·) is defined with re-
spect to a “macroscale” mesh that contains many nuclei per element, much like in the
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quasi-continuum method for potentials [23]. It describes the deformation of the subdo-
main (the relative displacement of the nuclei) with respectto a reference configuration.
To simplify the definition of the translations, the nonrepresentative subdomains are as-
sumed to correspond to a periodic reference configuration. In that case, in the reference
configurations the subdomainsDi may be thought to be of identical shape, in which
case, the interpolation approach is reminiscent of the gaptooth method [11] where the
representative subdomains are the “teeth”. In this work, however, the reconstruction by
interpolation of the density is also carried out in the gaps,and not only at the boundary
of the teeth due to the long-range electrostatic interactions.

For the interpolation ansatz to be reasonably accurate, regions that have disloca-
tions, impurity atoms, or other irregularities must belongto representative subdomains.
Therefore only some of the representative subdomains are used in the process of com-
puting the value of the electron density in the passive subdomains, and these subdo-
mains are called reconstruction subdomains. Among the representative subdomains, a
non-zero value of the reconstruction weight in (17) is the defining attribute of a recon-
struction subdomain.

For the test case considered, a one-dimensional subdomain contains 11 clamped
nuclei with distance of0.1 between consecutive nuclei and with unit chargeZA = 1;
the total number of electrons isN = 11. The atoms are at their reference positions
and we haveΦ(r) = r. The location of the atoms is indicated by the small black
circles in Figure 6. There are 11 subdomainsD2, D3, . . ., D12 of length0.1 centered
at the atomic positions, each with 50 nodes, of which 30 are equally spaced on an
interval centered at the position of the atom and whose length is 1/5 of the distance
between two atoms. In the 11 subdomains, the mesh is invariant by a translation of
length0.1. The trapezoidal rule was used for discretization of the integral operators
(see, for instance, [2]). In order to allow the solution to relax near the boundary, two
more boundary domainsD1 andD13, of identical size and meshing but without any
atoms, were added toD2 andD12, respectively. Restriction of electron density to a
one-dimensional function has no physical meaning, but serves as illustration of the
applicability of our interpolate-and-optimize approach.

In the framework of (O), (RE), and (RO), the representative variablesx1 are the
electronic density values from subdomainsYα, α = 1, . . . , 7. The valuesx2 repre-
sent the electron density at nodes of the mesh from the rest ofthe subdomains. With
the nodes of the mesh denoted byzk, k = 1, 2, . . . , 650, the interpolation operator is
defined as follows:

(Tρ)(zk) =
4 − i

4
ρ

(
zk −

i

10

)
+

i

4
ρ

(
zk +

4 − i

10

)
, zk ∈ D3+i∪D7+i, i = 1, 2, 3.

(18)
The reconstruction subdomains areY3, Y4, andY5; the other subdomainsYα are repre-
sentative subdomains , but not reconstruction subdomains,in order to prevent boundary
effects from crossing into the reconstruction. In order to avoid the singularity brought
about by the1

r terms, a smoothing parameterδ = 10−4 was considered; terms like
1/|| · || were replaced with1/|| ·+δ|| (in two- and three-dimensional applications these
singularities are integrable and can be treated by special approaches; this “smoothing”
is actually not required).
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The problem was modeled in the AMPL environment [9]; the resulting (O), (RE),
and (RO) problems were solved with SNOPT (where the second was represented only
as a nonlinear equation) [10]. All three formulations were successfully solved in a small
number of major iterations (no more than 10). Note that the ROconstraint form assump-
tion holds because (a) the discretization of the constraint(

∫
ρ(r)dr = N ) results in one

linear constraint with positive coefficients and (b)T , seen as a matrix, has nonnegative
entries. Then,∇x1

g3(x
∗
1, x

∗
2) + ∇x2

g3(x
∗
1, x

∗
2)T is a row vector with positive entries,

which has rank one when seen as a matrix. Therefore, because the second-order suffi-
cient condition of the regularity assumption has also been validated, the conclusions of
Theorem 2 should hold. The assumptions of Theorem 1 could notbe verified; nonethe-
less, the reduced nonlinear equation (RE) does give resultsof the same quality as (RO).

The solution of (O) and (RO) are provided in Figure 4, whereasthe point-to-point

solution error(
||ρRE(zk)−ρO(zk)||

||ρO(zk)||
, at all grid pointszk, k = 1, . . . , 650) between prob-

lems (O) and (RE) are displayed in Figure 5. The density plotsof (O) and (RO) are
essentially identical at visual accuracy, and the interpolation approach is successful in
reconstructing the solution in the “gap” domains. Note, however, that the point-to-point
solution error of (RO) is of the same order to the one of (RE) presented in Figure 5,
that is, a maximum value of around 1% (though its uniformity is exceptional and is re-
sponsible for the remarkable apparent accuracy in Figure 4). The number of degrees of
freedom of problems (RE) and (RO) is smaller by a factor of7/13. For larger, three di-
mensional configurations, the approach is expected to create an accurate reduced prob-
lem with an even smaller ratio of number of representative versus total number of de-
grees of freedom (a third power appears from the third-dimensional aspect alone, which
is mitigated by the effect of the boundaries). The proposed approach does not have to
apply only to a domain with a surface or a boundary. Indeed, one could treat much of
the bulk with periodic boundary conditions and use the reconstruction technique only
around defects.

This work does not address the energy minimization for both electronic density and
atomic positions, which is the case in [6]. On the other hand,the method can be readily
adapted to that case by using an interpolation based on a macroscale deformation of the
crystal. Details are presented in [18].

4.3. Three Dimensional String of Atoms Example

Our example is a three-dimensional variation of the one dimensional case analyzed in
the previous section. The size of each of the 3D subdomains surrounding a hydrogen
atom is3 × 3 × 3 (all units henceforth are atomic units). A full simulation with no
reconstruction is provided as the reference solution.

In this case, the modeling technique described in Subsection 3.3 was used for the
kinetic termT [ρ] and exchange energy termK[ρ] in (16), whereas the Coulomb term
J [ρ] and the nuclei-electron termEne are computed by exploring the nonrepresentative
degrees of freedom (coresponding to the entries ofx2) only once. For the latter case,
appropriate kernel matrices of dimensionsq1 × q1 are computed and used for each
function and derivative evaluation of the problem (RO).
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(a) Relative error for 13/7 (245)

(b) Relative error for 13/5 (221)

Fig. 7. Relative error surface for the 13-subdomain scenarios using(a) 7 and (b) 5 active subdomains. In
parentheses we show the number of optimization iterations. The number of active subdomains considered
in the algorithm reflects in the quality of the numerical solution: more active subdomains result in a larger
number of degrees of freedom, which positively impacts abilityto relax to lower energy levels and reduces
boundary artifacts.

Two scenarios with seven and five active subdomains were subsequently considered
for reduction to the problem; all meshes in this numerical experiment are uniform. In
the first scenario, the subdomainsD1,D2,D3,D7,D11,D12, andD13 were active; onlyD3,
D7, andD11 were used for reconstruction. In the second scenario, the subdomainsD1,
D2, D7, D12, andD13 were active; onlyD2, D7, andD12 were used for reconstruction. For
this test, the number of nodes/cells in the active subdomains is as follows: 28561/22464
for the nonreconstruction case (13/13), 15379/12096 for the 7/13, and 10985/8640 for
the 5/13 case. We have used an interpolation operator definedby (17), similar to to (18),
modified for the three-dimensional case. Specifically, the rule is

(Tρ)(z) = l−i
l ρ (z − (3i, 0, 0)) + i

l ρ (z − (3(l − i), 0, 0)) ,
z ∈ Djα+i ∪ Djα+i+l, i = 1, 2, . . . , l − 1.

In the case of 7 reconstruction domains, we have thatjα is one of 3 and 7 and
l = 4, whereas in the case of 5 reconstruction domains,jα is one of2 and7 andl = 5.
Therefore the casel = 5 uses less domains where the electronic density is represented
and more domains where is reconstructed and is thus expectedto have larger error.

We have used a hexahedral (cubic) mesh. Figure 7 displays therelative errors;
shown are only the regions where the relative error is largerthan 5%. The results show
a slight improvement in the seven-subdomain case; as the number of active subdomains
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Active Subdomains 13 7 5
Number of Iterations 605 245 221

Total Energy -14.257 -14.256 -14.256

Table 1. Summary of the results. TAO-BLMVM stoping criteria are are10
−6 absolute and10−5 relative

gradient error.

increases, the quality of the results improve. Because of the dimension reduction, the
size of the optimization problem decreases, thereby leading to a reduction in the number
of iterations. Moreover, each iteration is computationally less expensive. The large rela-
tive errors are explained by the small values assumed by the electron density away from
the nuclei where in practice it is expected to be zero. This and the boundary artifacts
explain the accumulation of the 5% relative error isosurfaces far away from the nuclei
and close to the boundary of the solution domain. While an exact quantitative char-
acterization of the boundary artifacts remains to be produced, they are traced back to
at least two sources. First, the small pockets of nonzero electron density are explained
by a slow convergence rate of the optimization algorithm that currently does not use
Hessian information and stops before clearing these pockets in remote corners of the
nanostructure. Second, and more important, the assumptionof underlying approximate
periodicity of the solution when used in conjunction with a small number of reconstruc-
tion subdomains (few degrees of freedom) limits the capacity of the electron density to
relax due to these periodicity constraints that must be numerically satisfied. As expected
and illustrated in the results corresponding to the 5 activesubdomains case, the situa-
tion is exacerbated as fewer degrees of freedom are available in the energy minimization
step of the method. In spite of these boundary artifacts, it should be noted that the dif-
ferences in total energy are small for both the 7 and 5 active subdomain cases (about
0.007%; see Table 1). The results reported were obtained by running in parallel with 13
processes on a Linux cluster.

5. Conclusion and Future Work

Model reduction (or reconstruction) techniques in computational materials science based
on nonlocal quasi-continuum-like approach produce reduced optimization or nonlinear
equations problems with a substantially smaller number of degrees of freedom. We
show that, under certain assumptions, the reduced problem is well posed. Several po-
tential and density-functional examples validate our findings.

A three-dimensional parallel computational environment that supports the (RO) ap-
proach is currently developed in a fashion that includes both explicit DFT approaches
(such as the OFDFT [24]) and more elaborate Kohn-Sham approaches in which the
kinetic energy functional and its derivatives are not explicitly available.
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