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Abstract. The paper investigates model reduction techniques thaiaeon a nonlocal quasi-continuum-
like approach. These techniques reduce a large optimizatahiem to either a system of nonlinear equations
or another optimization problem that are expressed in a snmallaber of degrees of freedom. The reduction
is based on the observation that many of the components of lilgsoof the original optimization problem
are well approximated by certain interpolation operatorth wéspect to a restricted set of representative
components.

Under certain assumptions, the “optimize and interpolatd’tha “interpolate and optimize” approaches
resultin a regular nonlinear equation and an optimizatioflgm whose solutions are close to the solution of
the original problem, respectively. The validity of thesewmptions is investigated by using examples from
potential-based and electronic structure-based calonttn Materials Science models. A methodology is
presented for using quasi-continuum-like model reductiondal-space DFT computations in the absence of
periodic boundary conditions. The methodology is illugdatising a one-dimensional basic Thomas-Fermi-
Dirac case study.

1. Introduction

This work investigates the optimization problems and nm@dr equations problem
that appear in modern computational Materials Science asudtrof applying quasi-
continuum-like model reduction techniques. The origifidl;resolution problems are
optimization problems in their state variables (such astbenic positions or distribu-
tion of electron density), in which an energy is minimizedhwiespect to these variables
and, sometimes, the constraints (such as boundary camglitiototal electron density
constraints).

The quasi-continuum approach [23,17] is a model reducchriique of increas-
ing popularity in the computational materials science camity. In the nonlocal form
investigated here, the method is based on the observatiratithe solution of the
full-resolution problem many of the state variables can la#l approximated by in-
terpolation of a much smaller set of state variables caltgmtesentative variablek
Materials Science, the state variables are the positionaaéi and, sometimes, values
of the electronic density. For example, for the simulatidérthe response of a crystal
described by potentials to a nanoindenter, the full-régmiuyproblem consists of min-
imizing the total energy of the system, which is the sum ofwyeigie atomic potentials
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[12], whereas the representative variables are the positid atoms that are nodes in
a mesh whose size is at the scale of the system to be simutatethécro scale). The
local quasi-continuum method was recently extended taidelkelectronic density as
a state variable [6], and nonzero temperature [21]. In thdysbf nanoindentation of
Au, the quasi-continuum approach has resulted in a redufriion 2.5 x 10! atomic
positions ta25237 atomic positions, while achieving a reasonable accuragy [1

This work investigates the regularity of the reduced protdgenerated by a quasi-
continuum-like approach, regarded here as a reductiordlzasa fixed linear operator
(interpolation operator). We note that other analyticalits exist in the issue of regu-
larity of quasi-continuume-like approaches applied to mate science problems. Such
results include well-posedness and numerical analysisagiegcontinuum methods ap-
plied to one dimensional problems involving inter-atomé@nbard Jones potentials [16,
20], a study of cluster summation rules used in potentiattbagiasi continuum meth-
ods [5], and the interaction between continuum and atoenietidels as well as the
accuracy of the continuum limit of both potential based apphes and density func-
tional theory like approaches [4]. While our approach alsalyzes the well-posedness
problems opening by of quasi-continuum-like reductiorgpplies to both potential-
based and density-functional-theory- based approachespective of dimension and
includes the case with constraints (while at the same timgiging results that are
weaker than for the more restrictive case described above).

The paper is organized as follows. Section 2 describes thiaah framework for
both the full-resolution problem and the two reduction téghes: the “optimize and in-
terpolate” version that leads to a nonlinear equation, hadihterpolate and optimize”
version that results in an optimization problem. The asgiong needed for regularity
of the reduced problems are stated in Section 3, followed@nalysis of the two tech-
nigues. Section 4 presents two numerical experiments vseddluating the validity of
the assumptions made for the analytical analysis of thectedutechniques. The sec-
tion concludes with a description of the nonlocal quasitcmum approach extended
for density functional theory (DFT) calculations.

Notation If us,us, ..., u, are column vectorgus; us; . . . ; u,) denotes the column
vector obtain by adjoining all the vectors. The full-resmno state vector is denoted by
x = (x1;22) € R™, wherex; € R™ is the set of representative states. For a malfix
we denote by, (V) its minimum singular value and byN|| its norm. Hereatfter, if
f = f(z1,22) andT is the interpolation operator used in this work, applying thain
rule yields

df(JJl, T.rl)

g =V f(x1,Tx1) + Vi, f (21, T21) T.
T

In addition, we denote by/ (1) a matrix-valued function of several unspecified vari-
ables that satisfidsM (1)|| < 1 for any value of its variables.
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2. Formulation of the Reduced Problems

Consider the optimization problem

minﬂﬂl,mz f(‘rlﬂ 1'2)
gi(z1) =0
(O) S.t. gg(xg) =0
g3(r1,72) =

The functionsg; (1) : R™ — R, go(x2) : IR™™™ — IR andg(zy,x2) : R™ —
IR % are the constraint functions, which, together with the cioje functionf (z1, z2) :
IR™ — IR, are twice continuously differentiable.

In the original application of the quasi-continuum methad][ z; were positions
of representative atoms that were nodes of a mesh on a scale lavger than the
interatomic distance, whereas were the rest of the atomic positions. An example of
one-dimensional application of the nonlocal quasi-cantm approach is provided in
Section 4.1.

Using the notatiom\ = (\1; \2; A3), 2 = (21, 22), one can define the regularity of
the solution of the original problem in terms of the Lagramgiunction

L(z, \) = f(z1,22) + (91(21), A1) + (92(22), A2) + (g3(z1,22), A3) . (1)

Herein, the definition of regularity of the solution of theginal problem is composed
of the constraint qualification and the second-order seffictonditions from classical
nonlinear optimization theory [8, Lemma 9.2.2, Theorem&.3

Regularity Assumption: The following conditions hold at the solutign*, \*) of the
problem (O):

1. Constraint Qualification Condition (CQC): The rows of tmatricesV,.g:(z1),
Vag2(z2) andV,gs(z1, z2) are linearly independent. We denote dy the mini-
mum singular value of the Jacobian of the constraints.

2. Second-Order Sufficient Condition (SOSC): With the note¥ . g; (x1)= [V, g1 (1),
Ogy xn—mls Vzg2(22) = [0gy5xm» Vu,92(x2)], the Hessian of the Lagrangian func-
tion satisfies

0
8’ = A2TV2 L(z*, \) Az > oy || Az|]> > 0.
0

Hereafter, the CQC or SOSC will be invoked for optimizatioolgems other than (O)
with the understanding that for the respective cases theyegathe same meaning.

The key observation of the quasi-continuum approach [43s1Bat at the solution
of the problem (O) the position of the nonrepresentativereleg) of freedom can be
approximated by an interpolation operator, namely thalingerpolation operator with
nodes at the representative atoms. This observation isfaaea in the following.
Interpolation Assumption: At the optimal solution(z;, z3) of the problem (O), we
have that

xh ~ T(x7)
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whereT is a linear operator identified with its matrix forfi(z,) = Tx;.

This assumption is qualitative in nature and cannot be useaifalytical estimates,
although it describes quite well the nature of the approtimnaregime that we will
be working in. When presenting our proofs, we will mentiorsth§sumption only as a
mean to alert the reader that an approximation of the &yjpe 7«7 + o(1) is involved
with an error level to be specified in that context.

Introducing the Lagrange multipliers € IR, Ay € IR 92 and\; € IR %, applying
the optimality conditions to the problem (O), and using tbéation (a,b) = a”'b, one
obtains

Vo, f(27,235) + Va, (93(27, 23), A3) + Vo, (g1(27), A1) =0
v$2f($1<7£§) + vfﬂz <g3(x>1ka x;)’ )‘3> + v962 <92($§)v )‘2> =0
gi1(z7) =0 2)
g2(x3) =0
g3(zy,25) =0.

The interpolation assumption suggests two ways of creatiegluced problem. The
“optimize and interpolate” (or “optimize and reduce”) apach, in which one substi-
tuteszo = T'(x1) in the optimality conditions of (2), leads to the followingduced
system of nonlinear equations:

Vo, f(x1,Tw1) + Vg, (93(21, T21), A3) + Vi, (g1(21, T21), A1)
(RE) 91($1)
g3(x1,Txq)

0
0
0.

In the second approach, referred to as the “interpolate atichize” (or “reduce
and optimize”) approach, one substitutes= T'(x1) in the problem (O), resulting in
the following optimization problem:

ming, f(x1,Tx1)
(RO) S.t. gl(ml) =0
gg(l‘l,T$1) = 0

Clearly, (RE) does not represent the optimality conditiohdR0) because it makes
no direct reference t& ., f(z1,x2), which does appear if one writes the optimality
conditions of (RO). In the application of the quasi-continumethodology to the min-
imization of energies computed through pairwise potesititde “optimize and inter-
polate” approach corresponds to the force-based quasinoom approach [12,17],
whereas the “interpolate and optimize” approach corredptmthe energy-based quasi-
continuum approach [23,17], except for the fact that in gspective references, further
transformations are carried out to approximate the dataeoptoblems (RE) and (RO),
for reasons that will be discussed in Section 3.3.

3. Analysis of the Reduced Problems
The goal of this section is to explore under what circumstartbe reduced problems

(RE) and (RO) are regular in a neighborhood of a regular swlwf the original prob-
lem (O).
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3.1. The Optimize and Interpolate Case: the Reduced NanliBgquation

The regularity of the reduced system of nonlinear equat(&i requires two addi-
tional assumptions.

RE Constraint Form Assumption (RECF): The constraints of the problem (O) are
separable; that igz = . Likewise, the constraintg, (z2) = 0 are linear and satisfy

g1(z1) =0 = go(Tx1) = 0.

The second part of the assumption explains why it is postiltempletely remove
the constraints on the nonrepresentative variables fremetiuced problems (RE) and
(RO). Indeed, in most applications of the quasi-continuppraach, the boundary con-
ditions result in constraints that satisfy the above assiompFor example, in the Au
nanoindentation application [12], the bottom layer of asarha cubic-shaped crystal is
fixed whereas its sides move only in théirection. If representative atoms are located
at the corners of the cube and the operdtare generated from linear interpolation with
nodes at the representative atoms, then all of the constidéscribed in the preceding
sentence satisfy tHeE constraint form assumptiom practical terms, an interpolation
operator that results in good approximation propertiesoisn to satisfy the second
requirement in the assumption, since the degrees of freetatrcould help enforce
g2(z2) = 0 have disappeared in the reduced problem.

The second assumption plays a central role in proving thelaety results, and it
relates the Hessian matrix and the interpolation opefétor

H-T Assumption: The Hessian of the Lagrange function satisfies
V2 L L(@* \)T + V2 L(z*,\*) ~0

T2T2 T221

This assumption has a similar purpose as the interpolatsaraption, it serves to
alert the reader that
V2 L L(x* \)T + V2 L(z*,\*) = o(1)

T2 21

with a level of error in the approximation to be specified ie text surrounding the
place where is the approximation will be used.

The main results of our work are presented in Theorems 1 aflgk?assumptions of
the theorems include the satisfaction of one or both oftherpolation Assumption and
the H-T Assumption at sufficiently high levels of accurackieTlevel of accuracy is
characterized by the respective results and is a functie@xpfessions depending on
certain characteristic of the data of the problem. Notettimtevel of accuracy to which
Interpolation Assumption and H-T Assumption are satisfiedsacharacteristic of the
problem and not controllable by the user, and for a multessgaibblem they may be
an expression of how close such systems are to an approfthateh perhaps hard to
compute, which justifies the use of a quasi continuum-agtmoeontinuum limit.

We also define the following quantity

= sup {max{||Vi,if(a:1,x2)H,HViig(xl,xg)H}}
i=0,1,2,3, |21~} || <es, <e
3)

|m27w;
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whereg, is a fixed parameter.

Theorem 1.If the regularity assumption and RE constraint form assuomphold at
the solution(z7; x3; Aj; A5; A3), of (O), then if the interpolation assumption and H-T
assumption are satisfied with sufficiently high accuract ih

e ~ Tl < o, ||V2

T2T2

L(z*, X)T + V3 _, L(z*,X)|| < eo

roIq
whereey < m at (z1, %), then the problem (RE) has a nonsingular Jaco-
bian at(x7, AT, A\3). If, in addition, we have that

1
<
0= 291(F, T7 Ug7 UL)HQ(Fa Ta O-ga UL)

then (RE) has a unique solution in a neighborhood of the saoive fr}, A7, \5). The
size of the neighborhood is at most

1—/1=20,(I'\T,04,00)02(I,T,04,0L)€o
91(F7T70970L) .

Hered,, 6., andd, are nonnegative functions that depend only/ar?’, o4, o1. Recall
thato,, o1 are quantities introduced at the regularity assumption .

A set of lemmas will be used in proving this result. The firshiea is essential in
the study of augmented Lagrangians and is stated here (dswigs reciprocal) for
completeness.

Lemma 1. Let P and Q be symmetrie: x n matrices, and assume th@tis positive
semidefinite. Then there exists a scatauch thatP + cQ is positive definite if and
only if 27 Pz > 0 whenever # 0 andz” Qx = 0. In addition, ifo» is such that

240, 27Qx =0, = 2" Pz > op||z|]?,
then there exists a= c(||P||, [|Q|| , om(Q), o p) such thatr,,, (P + cQ) > Z2.

Proof. If 27 Pz > 0 wheneverr # 0 andz”Qx = 0, then there exists asuch that
P + ¢Q is positive definite [3, Lemma 1.25]. The reciprocal is olm&oThe second
part of the proof follows the same way (for example applyimgfirst part to the matrix
P —22]). i

2

Lemma 2. Assume that the functiong (z1) and g»(z2) are such that the following
hold.

1. The Jacobian of the functign (x4 ) is full row rank.
2. The following relationship hold¥/z:

91(1’1) =0= gg(T:Z?l) =0.
If Azy is suchthatV,, gi(x1) Azq = 0, then for all\, € R %2,
(i) Va1(g2(T'z1)) Az = Vy,92(Ta1) TAzy =0,
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(i) The following identity holds:
vwzQQ(Txl) T= S('rl)vﬂﬂlg(xl)v

whereS(z,) is the differentiable matrix

S(@1) = Vi g2(T21) T Vay g1 (1) (Vau (1) Vau (z1)7)
(i) The following identity holds:
(TAz1)" V2, (92(T21), Ao) TAzy = A2 V3, (91(21), S(21)" Aa) Ay,
where the entries o (x;) are not differentiated in the last equation.

Proof. Consider an are; (¢) that satisfies

diCl (t)

gl(xl(t)) = O,V t>0 andl’l(O) =T, i

= Ay, (4)
t=0

Such an arc exists from the first assumption of the hypoth&hkisn, from the second
assumption,
dga(T'x1(1))

7 =0.

t=0

Using the definition of the are, (¢) leads to
v$292(Tl‘1)TAl‘1 = O7

which proves (i).
From (i),
Vxlgl(xl)Axl =0= szg2(T3}1) TAl‘l = O,

and it follows, from Farkas’ lemma [8, Lemma 9.2.4] and theésaquent Lagrange
multiplier theory of constrained optimization applied taca row ofV,,g2(Tz1) T,
that there exists a matri%(x; ) such that

Vi, 92(Tx1) T = S(21) Ve, g1(21).

Since this displayed equation implies that the row&/qf g»(7'z1) T are orthogonal
to the kernel subspace &, g1 (1), it follows thatV ,, g»(Tx;) T coincides with its
orthogonal projection on the space orthogonal to the sammeeksubspace; that is,

Va2 (Ta1) T [y = Vi, g(0)” (Varg(a1) Varg(@)”) ™ Varglan)| = 0.

Herein, I, is the identity matrix of dimensiosn Expanding the left side of the displayed
equation leads to conclusion (ii).
Consider again the arc (4) for which

d*g1(x1(1))
dt?

2 (g2(Tx1 (1)), Az)

d
=0 and
dt?

t=0

=0.
t=0
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Expanding these second time derivatives yields; ferl, 2, ..., ¢4,
Ve, gi(21)E1(0) + Az{ V2, gi(21) Azy =0 (5)
V$2 <92(Tx1)a )‘2> Txl(o) + (TAxl)T vl‘21'2 <92(Tx1)7 )‘2> TA:Cl = 0. (6)
Based on (i), the first term in (6) can be expressed as

Vi, (92(Tw1), A2) T#1(0) = (Vi g2(T1)T, X2) #1(0) =
(S(21)Va, 91(21), A2) £1(0) = (Vo g1 (21), S(21)" A2) 1(0).

Multiplying each of the equations of (5) with the correspimigctomponent of (1) A,
and summing them, one obtains

V:vz <g2 (TlCl)a )\2> T$1(0) = <v$1gl (.7}1>7 S<x1)TA2> J,‘l(O)
= —2Aa] V2, (g1(21), S(21)" Na) Ay,

where theV ., ., operator does not act &z ). Conclusion (iii) is proved by replacing
the left term from the last displayed equation with the riggntn in (6). |

Lemma 3. Define the Lagrangian of the problem (O) that excludes thettamt g, (z2) =
01
L(z, ) = f(z1,22) + (g1(71), A1) + (g3(21,22), A3) - (7

Define the matrix

JO B vq.lgl(xi) * * *
VI193(xlvx2)+VI293(x1’x2)T ’

and assume thatzy, ¢g1(x1) = 0 = ¢2(Tz1) = 0. Then, there exists a function
0s(I,T,04,01) such that, if the regularity assumption holds, and integpioh as-
sumption is sufficiently accurate, specifically,

1
G L | R —
HxQ mlH_@g(F,T,O'g,CTL)’

then one has the following.

(i) If g is a linear function, the matrix
B =[] v2de ]
is positive definite over the set
F ={Ax|Jo Az, =0},

and satisfies
Azy € F = Az LyAxy > % || Ay
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(i) If X = (Af + S(27)TA3,0,A3), the matrix

Ly = [%]Tviwf(x*,i) [Ijr}

is positive definite over the set
F = {A$1|JOA$1 = O},
and satisfies

Azy € F = AwyLpAzy, > % || Ay |

Proof. Consider the symmetric positive semidefinite matrix

Q= 1m0 Vo, 01(e1)" Vi, 91(27) [ 0]
+ 05 ] Vau92(23)" Vay 92(25) [0 Tnm] + Vags(2*) " Vags(a®).
Since the regularity assumption holds, it follows from Leanbrwith P = V2 L(x*, \*)
that there exists a finite= c(o,, 01, T, I") > 0 such that
Le = V2, L(z" \) + ¢[1n; 0" Vo, 01(21)" Vo, 01(27) [Ln 0]
+ [0 Inom]” Viag2(23) Vo 00(23) (05 Tnn] + €V ags (%) Vags(a*)

satisfiesr,,, (L.) > %=. Itis immediate that, the matrix
LT, 11
Ler =[] L[ 7]

also satisfies,,,(L.) > %-. Considering the definition of the Lagrangiﬁrand of the
matrix L., one has that

T * * —[m T * * I’m
Lox = Ly +¢Va, 1@ Vi, 911 +¢ [ F | Vagl (0 Vagaa) [ 1] ()
TV 95(03)T Vi 2(a3)T + TV, (g(w3), X5) T

22
Define
Uzy) =TTV 4, g2(T21) 'V 0y go (T, T.

Sincegs is a linear function, and from an application of the highenehsional “mean
value theorem” [19, Prop. 3.2.3] it follows from the intelgtion assumption that the
last two terms of (8) satisfy

TV 0,92(25) Vi, g2(23)T + TTVE ., (g(5),05) T
=U(z1) + m(I\T,04,0L)M(1) [|z5 — Txil],
for some expressiom (-) > 0.
Sinceo,,(L.,r) > %=, it follows that, whenever

oL
x*—Ta:* < —_—
H 2 IH — 47]1(1171—\70_9’0_[/)
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we have that
T *\ T * I’rn r T * * I’m *
Ly + Va1 (@) Varg1 (@) + ¢ | F | Vagl (0)Vagsl@®) [ | + UG,

has a minimum eigenvalue that exceégs In turn, from Lemma 1, we obtain that the

matrix L7 +U (z}) is positive definite over the s@t. If Az; € F,thenV,, g(z})Az; =
0; and based on Lemma (2)(\xT U (z}) Az1 = 0, which completes the proof for (i),
with the choiceds(-) = 71 (+).

For part (ii), the equivalent of (8) is

~ T
Ler = Lr+ Ve, 01@)" Vargi () + ¢ [ 7] Vags(e)” Vags(a®) [ ]
+ T Vo, 02(23)" Vaog2(23) T+ TT V3,,, (92(25), A5) T
= Viie (91(@1), S(@1)TA3)

9)
where, again, the entries 6f(-) are not differentiated. Similar to the previous case,
we have that,,,(L.,r) > %-. Based on the interpolation assumption , and the higher
dimensional “mean value theorem” [19, Prop. 3.2.3], we iokitzat

TV 4,92 (25) Vi g (235)T + TTV2, . (g2(25), X5) T
- v?mm <g1(m*{), S(xT)TA§> = U(ffv )‘3) + 772(F7 T7 Og, UL)M(l) ||$§ - Txi(lj‘l_b)
for some expressiomn,(-) > 0, where
U(z1,X2) = T" Vo, go(T21) Vay g2 ()T + TTVZ . (g2(Tx1), A2) T
— V2o (g1(21), S(z1)" A2) .

From equations (10) and (9) it follows that, for

oL
2y =Tl < ———————,
H 2 1” —_ 4772(]‘!77170_9,0_[/)

the matrix
Te _ T PAVA * I T T * * I * *
L7 = Lr+cVag1(27)" Vi, g1(27) +c {T} Vg3 (27)Vags(z®) [T} +U(27,A3)

satisfiess,, (LS.) > 2L, From Lemma 1, with the matrig given by

Q= Ve (@) Vo (o) + [1] Va0 Vags(e") [£]

it follows that the matrixL; + U(z7,\5) is positive definite over the sef and its
associated quadratic form is bounded below’pyover the same set. But for anyzr; €
F, Ve g(z1)Az; = 0 and, based on Lemma 2 (i) and (iij\z? U (2}, \3) Az = 0,
which in turn implies thal 1 is positive definite over the sgt. The conclusion follows
after takingfs (-) = na(-). O

All the intermediary results needed to prove the main thaaee now available.
Proof of Theorem 1
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The Jacobian of (RE) dt:, Tz3, \*) is

JRE _ | V3 Lz, Tat, \*) + V2

Z1T1 T1T2

(thxl’ )‘*)T vlqgl(xl)
vrlgl(ml) 0

For the upper left corner of the Jacobian, by virtue of theripblation assumption
and using the higher dimensional “mean value theorem” [18pP3.2.3], we obtain
that

V2

11

_v2 ($1,$2,)\*)+V2

Z1T1 T1T2

(xl,Txl,)\*) + V2

IlI

(ml,Txl,)\*)
L(xy, 25, N)T +m (I, T, 04,01) ||25 — Tay|| M(1)

Using the definition ofL , invoking the H-T assumption and using the higher dimen-
sional “mean value theorem” [19, Prop. 3.2.3], we obtair tha

||V e L@ )T + V2, L™ A || [|T]] M (1)

=TT V2 Lz X)T+T" vim (z*,\¥)

=T"V2 L@ X\)T+T" V2, L(", \)+T" V2, (g92(23),A3) T
= TTV2 L \) T +TT V2, L(z*\"),

for some expression, (-) > 0, where the last step follows from the assumption that

g(z2) is linear. Combining the last two displayed equations,

JRE _ H VimA(:c N VR, Lt N [I}
T] |v2 Lz, \) V2 _ L )| LT

T2T1 T2T2

+ ML T oy, o) max{z} — Ta]] |92, L, AT + V2, L, %)}
nr "
= [7] vaie . [;
+ M)na(I T, 0g,01) max{||z} — Tail], || V3,,, L(=*, AT + VE,, L*, X[},
(11)

where
(I Ty04,0) =m(I,T,04,00r) + [|T]|

From Lemma 3(i), it follows that, as soon as

1
T - -
HxZ le — 9 (FT O—g,O—L)

the matrix
Barr 4] V2,50 [£]
is positive definite over the set
Fi1 = {Ax1|V,, g1(x]) Az = 0}
and that it satisfies

Az, € Fi = A171TEMTA$1 > % |\A$1H2~
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From equation (11) it then follows that, provided that

oL
< - Tz
’} - 8?72(F,T,UQ,O'L),

V2 o, L™ N)T + V2, L(z*,\)

max{HxE—Tx’{HJ Tox1

the matrix.J;; is positive definite (though not necessarily symmetric)rakie set
JF1 with a reduced minimum singular value no less than In turn, from the full rank
property ofV,.¢1 (z7) implied by RE constraint form assumption , this implies tifmet

matrix
{ THe vxlgmx’f)ﬂ
vIlgl (.TT) 0

is not singular a7 and has a minimum singular value bounded bellow by someiyp®sit
ns(I, T, 04,01), which concludes the first part of the proof, after taking

8772(F, T, Ug7UL)

(I T,04,01) = Inax{
oL

) 93(F3 Ta Og,s JL)}
For the second part of the proof, the focus shifts to the uadidf the nonlinear
equation (RE) atx?, \}), for g3 = (). Based on the interpolation assumption and (2),

Vo, f(21,T2]) + Va, (91(21)A]) = Ve, f(21,25) + Ve, (91(2])A]) =

774(Fa Ta O'g,O'L) ng - Tmﬂ‘ M(l*)a
g(z7) =0,

for some expression,(-) > 0. The conclusion of the second part of the proof follows
from the fact that the Jacobian is not singular and from dpglitantorovich’s theorem
[19, Theorem 12.6.1] (RE). with the following identificatig¢referring to the notations
in that referencey = I', 8 = (I, T, 04,01), n = eona(L, T, 04,01), and choosing
01 = By, andby = Bynu (I, T, 04,01). m]

Theorem 1 therefore proves that the reduced nonlinear ieqQu&E) produced by
the local quasi-continuum approach is regular, at leagtemeighborhood of the solu-
tion of the original problem. As a result, local convergenta Newton-type method to
the solution of (RE) is guaranteed under the conditions @&orém 1.

The H-T assumption assumption seems quite restrictiveetthetess, we present in
Section 4.1 an example that satisfies it.

3.2. The Interpolate and Optimize Case: the Reduced OptiioizProblem

Although (RO) and (RE) share a number of characteristicg) (®es not represent the
optimality conditions of (RO). The (RO) problem can be shawbe well posed under
less restrictive assumptions.

RO Constraint Form Assumption: The constraints of the problem (O) are such that
(i) the matrix

Ve, g1(27) ] _ {legl(l”f)

J - * * * * * *
RO [dil%(xl’ Txy) Vi, g3(xf, Tay) + Vi, g3(xt, Tei)T
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has full row rank andii) the following condition holds:

gl(ﬂjl) =0 = gg(Tﬂ?l) :O,VI’l

Note that in the form of the matriXro an assumption was made that bgth# () and
g3 # 0. If this is not the case, the constraints that are missingpénformulation are
removed from the expression gk .

Theorem 2.1f the regularity assumption and RE constraint form assuomphold at
the solution(z7; x3; Aj; A5; A3), of (O), then if the interpolation assumption and H-T
assumption are satisfied with sufficiently high accuracyt ih

|25 — Til| < €0,

whereey < m at (=3, z%), then the problem (RO) satisfies both the SOSC
and the CQC at:; with multiplier (A} + S(x7)7 A3, A3). If, in addition, we have that

1
<
0= 291(F7 T7 Og, O-L)GQ(Fa Ta Og,s UL)

then (RO) has a unique solution in a neighborhood pf
The size of the neighborhood is at most

1—/1=201(I\T,04,00)02(I,T,04,0L)€o
91(F7 T7 Ug,O'L)

Hered,, 6., andd, are nonnegative functions that depend only/arY’, o4, o1,. Recall
thato,, o1, are quantities introduced at the regularity assumption .

Note The part involving the computation of the quantities neddedomputing the size
of the neighborhood with Kantorovich’s Theorem is very $amio the one in the proof
of Theorem 1. For brevity and clarity, we use estimates ofytheO(¢() at certain parts
of the proof, and we mean quantities that are bounded abovg (#} T, o4, o1 )eo,

instead of going into the details on how expressionsiike) may actually be formed.

Proof

Consider the Lagrangian of problem (O) defined in (1). The faat the constraint
qualification holds is satisfied as an immediate conclusiotihé RO constraint form
assumption, sincdro is the Jacobian of problem (RO). The Lagrangian of problem
(RO) is

LR(x1,A) = fa1,Tx1) + (91(21), M) + (gs(w1, Tz1), Ag) -
At the solution of (O), using the interpolation assumptiod ¢he chain rule leads to

d2 * o\ * * PN Im T T/ % % * * O\ % Im
a2 LR (a}, \j+S(27)T A5, A3) = [ T ] Vi L(@*, A\ +S(x7)" A5, A5) [ T ]+O(€0)~
1
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Therefore, from Lemma 3(ii), fory sufficiently small, the matrix

V2 LRz ANr 4 S(x3)T A5, A;) is p.d. over {Ax|JoAx; =0}.  (12)

121

Given the fact that/ro has full row rank and thal Jro — Jo|| = O(e), it follows
from the interpolation assumption and from (12) thatdgsufficiently small.Jo also
has full row rank and that

V2 L LEO(ai N4 S(x)T A5, \;) is p.d. over {Azy|JroAx; =0}.  (13)

121

SinceJgo is assumed to have full row rank, it follows from (12) that égrsufficiently
small the (RO) problem satisfies the SOSC and the CQC.

For the second part of the proof the focus shifts to the resiguthe first-order
conditions of (RO). From Lemma 2 and theerpolation Assumptign

Voo LR (1, X + S(21)7A5,05)

= Vo, f(21,T%]) + Vo, f (21, T21)T + Vg, (g1(27), AT)

Va, (92(T27), A3) T + Va, (93(21, T27), A3) + Va, (93(27, Tz7), A3) T
O(e0) + (Vo f(21,23) + Va, (91(21), AT) + Vo, (g3(21,23), A3))
(Vo f(21,25) + Vi, (92(T27),A3) + Ve, (g3(21,23), A3)) T
O(eo)

_%

4_

where the result of Lemma 2(i)
(Varg1(27), S(@)TA3) = (Vo g2(T27), A5) T,

was taken into account. In addition, itis immediate ®at L€ (25, \i+S(z1)TA5, \5) =
g1(z7) =0and

VAo LFO (a1, AT + S(21)T A5, A3) = g3(a1, Ta}) = gs (a7, 23) + O(en) = Oleo).

Therefore,
v(wl)\l,)\s)LRO (QST, T + S('TT)T)‘; >‘§) = 0(60)'

Since the problem (RO) satisfies the QCQ and SOSC, it folloa fthe theory of
constrained optimization that fef sufficiently small, the Jacobian of the nonlinear
equation

v(w1,>\1,>\3)LRO ($1, A1, /\3) =0

is nonsingular afzi, A; + S(z})7 A3, A3). From Kantorovich's theorem [19, Theorem
12.6.1] it follows that this nonlinear equation has a solutin the neighborhood of
(z3, A7 + S(x7)" A3, A5) that, because of the positive definitenessvgf . L#© on
the null space of the constraints, is a local solution of (RO) a

Note that the Lagrange multiplier of the constrajntz,) = 0 is sharply different
in the solutions of the problems (O) and (RE), and that of tleblem (RO), although
the representative variableg are withinO(¢g). In the (RO) problem the respective
constraints also carry the weight of thgx2) = 0 of (O), which does not occur in the
(RE) problem.
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Clearly, the conditions that render the (RO) problem wefiggbare less restrictive
than the corresponding ones for the reduced problem (REafticular, it is unfortu-
nate that a regularity result for the nonlinear equation)(REthe case wheregs # ()
could not be provided. With the notation of the proof of Thearl, the difficulty orig-
inates in the fact that in this case the Jacobian of (RE) @mes

J1121 vz1gl(x>{)T V$1g3(l"{’x§)T
legl lT) 0 0 5
Vi, 93(21,25) + Vi, 9321, 23)T 0 0

which is not a symmetric matrix. Therefore, one can no loraggly the proof tech-
nique, which relied on the fact that the positive definitesnaisthe upper left corner of
the matrix with respect to the null space of the other rowshef matrix implies the
nonsingularity of the corresponding symmetric indefinitatmix.

On the other hand, with techniques from the proofs of Thesrénand 2, it is
immediate that if (RE) has a nonsingular Jacobiaifzdt A7, \5), then (RO) is also
regular atz} and both have primal solutions within &f of 7.

Note that our analysis refers to the regularity of local miaiof the original op-
timization problem. Indeed, the regularity assumptiort tha make at the solution of
the full optimization problem (O) are sufficient conditiofzs the existence of a local
minimizer, and our theoretical results merely state thateurappropriate conditions
the reduced problems have a local solution in the neighlwattod that minimizer. In
the case of the global minimum, it is immediate that the redugptimization problem
(RO) cannot introduce a spurious global minimum, since d iminimization over a
strictly smaller set (the one constrained by the interpafatelationship) and its min-
imum value must be larger. In addition, Theorem 2 can be ussthte that (RO) has
a local minimum in the neighborhood of the global minimumtaé full optimization
problem (O). At this time we cannot make similar statemebtsuathe reduced equa-
tion approach (RE).

Note also that in this work, much as in the references [4,1233,17,23] we
treat only "static” problems. An important line of researdit discussed here is the one
of the reduction of time-dependent problems, though sontbefdeas seem readily
extensible (if one considers for example implicit time i@y schemes to approximate
time-dependent problems).

3.3. Further Computational Improvements

Problems (RO) and (RE) have a dimension of the variablesesieat is equal to the
dimension of the variable;. Therefore any Newton-type methods applied to the re-
duced problems will work in a much smaller space than the appbed to the original
problem (O). This has two computational benefits.

— This makes available a larger variety of tools that perhapsad scale to the size of
the original problem. It is conceivable that even directimes would be applicable
in some configurations.
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— Moreover, the condition number of the reduced approach reaylch smaller and
even matrix free iterative method may need less iteratioredhverge. While this
is a difficult statement to prove rigorously for the gene@de we point to several
pieces of evidence that indicate that this may be a wide oecoe.

— The numerical results for the three dimensional densitgtional theory appli-
cation that is presented in Subsection 4.3. In that sect®nse a matrix free
method for solving the reduced optimization problem

— The analysis of quasi-continuum approaches applied torrabseience prob-
lems with Lennard Jones potentials. The analysis indictitas the original
optimization problem has a condition number that beha\!esd'rderql}rqz,
whereas quasi-continuum approaches produce problemagpaiach the solu-
tion of continuum models [15], which means that one expéwstheir condi-
tion number is tied to the size off the macro scale méﬁ(l%), and not the size
of the interatomic distance.

Nonetheless, if an iterative method is used to solve theceiproblems one may
need to explore at every iteration the enfite, x2) space, in order to compute the data
of the reduced problems. We illustrate the situation with fibllowing example. We
represent the components of the vectorandxzs by

Ty = ($11,$127~~~>$1q1)7 T = ($21,$227-~~7$2q2)~

Assume that the objective function has the following exgi@s

f(x1,22) = 1 (21, 22) + f* (21, 22)

and that its first component can be written as
q1 q2
Fr ) =Y O () + D> 0 (wa).
=1 =1

Here, f (-) is a smooth function. Then, the substitution = 7'z, prompted by the
interpolation assumption resultsin; = T;z1, i1 = 1,2,...,¢2 and

q1 q2
fHanTae) =Y fO (wn) + D f0 (Tiwa). (14)
i=1 =1

Here,T;, i = 1,2, ..., ¢ areq; dimensional vectors.

Then, evaluation of * (z1, Tw1) andV,, f! (x1, Tz1) needs to explore all thg +
g2 elements of the above sum (1.1), even if the result is a fanat onlyq, independent
variables, and; < ¢s.

There exist exceptions to this situation. For example,é(RE) approach for poten-
tial based configurations with cutoff, only a small numbeatims in the neighborhood
of the positions of the representative atoms need to be eglo order to compute the
vector function and its Jacobian. Therefore the number efatpns needed by a matrix
free approach at each iteration is proportional to the nurabeepresentatives degrees
of freedom, that is, the dimension of the vecter Nonetheless, such fortunate outcome
cannot be expected in general as proven by the example absye (
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To avoid the use ofy; + ¢ operations at every step of an iterative method, the
function f! (1, Tx;) is further approximated in some quasi-continuum approache
[23]. For example, iff° (-) is smooth, we can use the approximation

fg E»’Ull% .
| ST (2 L.
J7(@2:) = T3 | = 1i;f° (1)
» =
f (‘Tl!h)
Here .
o fin fi fig,
7= 20 | tar taa tag
’quQ EQQl 7ng 7§qzth
is an interpolation operator ( perhaps even the interpolaiperatofl’).
In that case

(@ Tay) = f17 () = > wif® (1),
i=1

where the weights); are defined ag; = 1+ f: tij j =1,2,...¢q1. These weights are
computed by exploring only once the deglretl-:‘s of freedom sporading to the vector
x4, and then the functiorf'” () is used as a surrogate for the objective function of
the reduced problem, and needs o@lyq, ) operations to compute.

We note that if surrogate functions are used, the conclegioesented in Subsec-
tions 3.1 and 3.2 could still be reached provided that we cdoree the quality of the
surrogate, such as

<& flT (Tl) - fl (ml,Txl)’ <6

oo [V T (@) = G (01, Tan)| <6

7 2
<ty Vi 1T (@0) = 5 1 @0, Tan)| <6

Sup”zlfz’f

Sup”il*If

Sup”xlfa:f

where the parametéy is fixed, provided that the parameteis sufficiently small with

a size to be determined in the analysis. Such results wollhvférom the fact that the
reduced problem is well-posed and stability results of im@alr equations and nonlinear
optimization problems [7]. Nonetheless, this would trenmsly complicate the anal-
ysis. In addition, the variety of such surrogates is sigaiftd23, 5] which makes their
unified investigation non-trivial. We leave the developinehan appropriate analysis
framework to future research.

4. Numerical Experiments

All physical units used in this section are omitted and ptgisjjuantities involved are
considered dimensionless.
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4.1. Numerical Justification of the Assumptions: A Potéttgsed Calculation.

In this subsection the validity of the assumptions madeérpttevious sections is scru-
tinized. Particular attention is paid to the H-T assumphenause in the context of the
(RE) approach, itis the more unusual and restrictive of #septions made. The vehi-
cle for this investigation will be a test case in which theemive functionf(x1, 2) in
(O) is the total energy of a set of atoms represented in a onersional setup, whose
pairwise interaction is governed by the Lennard-Jonesnpialgsee, for instance, [1]).
The test is similar in spirit to, but simpler in complexityath, the more general three-
dimensional ones presented in [12]. For this problemss (ry,...,74)", wherer; is
the coordinate of atom The energy is defined in terms of a pairwise poteritidl).

A A

The total energy i€ (x) = > > V(r; — r;). The stable configuration of the atoms is
i j>i

obtained when the energy is minimized, which in turn impthest

0= F(x)=VE(x).

For a string ofA = 101 atoms, the original problem (UO) (from unconstrained op-
timization), is solved using the (RE) approach. The reprigdive atoms are the atoms
1,2,3,4,23,42,61, 80,99, 100, 101. The atoms 4 throughé8adled “inner” atoms.

In spite of being representative, the atoms 1, 2, 3, and 100,ate not used in the
interpolation to prevent the boundary effects from cragéiro the reconstruction pro-
cess associated with the inner nonrepresentative atonespdsition of the 61st atom

is fixed because the energy functional is translation iaverrand it would thus have
unbounded level sets, possibly compromising the globaleence properties of the
algorithms. In the framework of problem (Q); = (r1; r2; 7'3;74; T23; T42; 615 780;
7“99;7“100;7“101) andmg =T xi.In addition,f(a:l,mg) = E(l‘), 91(551) = rg1 — 61,
g2(z2) = 0, g3(x1, x2) = (0. Both the RE constraint form assumption and RO constraint
form assumption hold for this test, as well as the CQC pati@fégularity assumption.

The solution is found with the package SNOPT [10] throughAMPL interface
[9]; the solution was found in about 10 iterations. The espi@n of the Lennard-Jones
potential considered was

V(r) = (5>12 - (5)6, o =1.122.
r r
The problem was initialized with; = 4,7 = 1,2, ...,101. At the solution of (UO), the
columns of
Lp=—[V2, L \")] " V2, L(z*,\*)

that correspond to the atoms 4, 23, 42, 61, 80, 99 were cédclidand displayed in Fig-
ure 1 (as a function of the index in thg vector). The columns of  that correspond
to the atoms 1,2,3, 100, 101 are negligible, in the sensetlatnorm is more than
100,000 times smaller than the one corresponding to the othemns. These results
almost perfectly justify the H-T assumption, in that theuwrohs of Ly are essentially
identical to the ones of the linear interpolation operatdhwodes at the inner repre-
sentative atoms. Perhaps less surprisingly, the positibtiee atoms themselves at the
solution point also satisfy the same linear interpolatiatigrn and therefore justify the
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Columns of the reduced Hessian matrix, at optimality
T T T T T T T

12

Column 1
—#— Column 2
—&— Column 3
7 | —*— Column 4
—=4— Column 5
Column 6

Value of Column Entry

~02 I I I I I I . . .
0 10 20 30 40 50 60 70 80 920 100
index of inner atoms

Fig. 1. Columns ofL .

interpolation assumption. In addition, verifying the eigalues of the Hessian of the
Lagrangian indicates that the SOSC part of the regulargymption was satisfied.

For comparison, the same columnsigf are evaluated away from the equilibrium
(the configuration was first perturbed slightly as shown iguré 3), and the results
are displayed in Figure 2. The variation between two corsacinteratomic distances
with respect to the original problem was no larger than 1.804, the end points were
identical. Nevertheless, that pattern of the columns is fasvaway from the one cor-
responding to the interpolation operafoywhich leads to the conclusion that the H-T
assumption can be expected to be valid only near the solafitime original problem
(O). The assumption is expected to be more accurate as ttemsgze approaches the
continuum limit.

In summary, the regularity assumption, interpolation agsion, H-T assumption,
RE constraint form assumption, and RO constraint form aptiomdo apply, and there-
fore according to Theorems 1 and 2 the reduced problems (RERD) have a solution
in the neighborhood of the solution of problem (UO).

4.2. Example Application of (RE) and (RO) to Density Funw@idrheory
Computations

The model reduction techniques (RE) and (RO) are appliedldng an electronic

structure computation problem. The purpose is to competelictron density (which
is a scalar function of the spatial variables) for a givenitpms of the atoms and a
given total number of electrons. A form of the local quasitiauum method has been
developed for electronic structure computation [6]. Intthark, the local nature of

the method required elements much larger than a crystahodlithe use of periodic
boundary conditions. The approach proposed in this papestisestricted by the use
of periodic boundary conditions.
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Columns of the reduced Hessian for a perturbed solution
T T T T T T T

Column 1
—#— Column 2
—=&— Column 3
—#— Column 4
7 | —&— Column5
Column 6

Value of Column Entry

. . . . .
0 10 20 30 40 50 60 70 80 90 100
Index of inner nodes

-1 L L L L

Fig. 2. Columns ofL i, perturbed configuration.

Atomic Positions

o 20 40 60
Index of Atom

Fig. 3. Positions of original and perturbed solutions.

As a mathematical model, the problem is an optimization lgrabwhose objec-
tive function is the total energy functional [p, { R4 }], wherep = p(r) is the variable
electronic density function that is subject to the conatrdiat the total electronic den-
sity (f p(r)dr) should add up to a prescribed number of electrons,{@dg} are the
parameter atomic positions according to the Born-Oppaméeassumption (see, for
instance, [22]).

The example is built around the Thomas-Fermi-Dirac formhefénergy functional
(see, for instance, [14]):

Ep,{Ra}] = Enc [p,{Ra} + J[p] + K [p] + T [p], (15)

where
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Comparison of two Thomas Fermi implementations
40 T T T T T

35

30

25

20

151~

—#— Direct Simulation
> Interpolation reconstruction

I I
0.2 0.4 0.6 0.8 1 12 14

-0.2
location
Fig. 4. Solution to (O) and (RO) problems.
Zap(r)

ne 5 R 16a
1 / / w dr dr’ (16b)

2 [[r =
Tl =Cr [ o) o (160)
ol =—C. [ o) o (16d)

HereCr = %(372)%/3, andC, = 3 (%)1/3; E,. is the energy corresponding to
nucleus-electron interactiod; is the Coulomb energyi represents the exchange en-
ergy; T is the kinetic energyZ 4 is the atomic number associated with nucleus-As
the global position of electrof] R4 is the global position of nucleus of atoAy and

J (-) without integration limits is an integral over the entirenuin.

It is well accepted that both for quantum chemistry and sstade physics the
Thomas-Fermi-Dirac functional is an inaccurate DF repreg@n. This is less rele-
vant in this context because the interest lies in evaludtiegbenefit of using a model
reduction approach, rather than assessing the accurabg ainderlying DFT model.
The purpose of the numerical experiment is to compare théisolof the full model
with a prediction computed with the reduced model.

A detailed description of the reduction approach for anteaby domain and an
arbitrary number of representative subdomains can be faurdl8], and it is only
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Relative Error between the direct and interpolation reconstruction method
15 T T T T T T

05 T
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=)
T
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X

Fig. 5. Point-to-point relative error between (O) and (RE).
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Quadrature Point

Fig. 6. Separation of the computational domain in representativgpassive subdomains.

briefly discussed here. The computational domain is divideslibdomainsD;, i =
1,2,...,u, out of whichp of them are chosen to be representative, and denoted by
Y,,a € {1,...,p}; the remainingu — p subdomains, are called passive (the white
subdomains in Figure 6). A choice of seven representatisgd@uains is presented in
Figure 6. The density, on subdomainD; is expressed by interpolation in terms of
reference densities, € Y,,a € {1,...,7}. A set of weights} determined based on
the type of interpolation considered (linear, quadratic,)és used to this end:

(@) =D a(i)pa (@ + Tia, 1)) (17)

where the vectoll';,, is the translation vector that takes the pai?l'tin subdomainD;
to its image in the subdomairi,. The deformation mapping(-) is defined with re-
spect to a “macroscale” mesh that contains many nuclei penaxit, much like in the
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guasi-continuum method for potentials [23]. It describesdeformation of the subdo-
main (the relative displacement of the nuclei) with respect reference configuration.
To simplify the definition of the translations, the nonregaetative subdomains are as-
sumed to correspond to a periodic reference configuratiotat case, in the reference
configurations the subdomair3; may be thought to be of identical shape, in which
case, the interpolation approach is reminiscent of theagdiptmethod [11] where the
representative subdomains are the “teeth”. In this worlydwer, the reconstruction by
interpolation of the density is also carried out in the gaps| not only at the boundary
of the teeth due to the long-range electrostatic interastio

For the interpolation ansatz to be reasonably accurat@neghat have disloca-
tions, impurity atoms, or other irregularities must beldogepresentative subdomains.
Therefore only some of the representative subdomains akinghe process of com-
puting the value of the electron density in the passive soiailes, and these subdo-
mains are called reconstruction subdomains. Among theseptative subdomains, a
non-zero value of the reconstruction weight in (17) is thénileg attribute of a recon-
struction subdomain.

For the test case considered, a one-dimensional subdormafairns 11 clamped
nuclei with distance 0f.1 between consecutive nuclei and with unit chathe = 1;
the total number of electrons ¥ = 11. The atoms are at their reference positions
and we haveb(r) = r. The location of the atoms is indicated by the small black
circles in Figure 6. There are 11 subdomains Ds, ..., D12 of length0.1 centered
at the atomic positions, each with 50 nodes, of which 30 atalggspaced on an
interval centered at the position of the atom and whose leiggl/5 of the distance
between two atoms. In the 11 subdomains, the mesh is intdriaa translation of
length0.1. The trapezoidal rule was used for discretization of thegral operators
(see, for instance, [2]). In order to allow the solution ttarenear the boundary, two
more boundary domain®; and D3, of identical size and meshing but without any
atoms, were added tD, and D, respectively. Restriction of electron density to a
one-dimensional function has no physical meaning, buteseas illustration of the
applicability of our interpolate-and-optimize approach.

In the framework of (O), (RE), and (RO), the representati@dablesz, are the
electronic density values from subdomaliris, « = 1,...,7. The valuesrs repre-
sent the electron density at nodes of the mesh from the rebecubdomains. With
the nodes of the mesh denotedhy k£ = 1,2,...,650, the interpolation operator is
defined as follows:

(Tp)(zx) = 1 1 ! p (Zk - 170>+Z1 p (Zk + 4107) . 2k € D3y ;UDqyy, 1 =1,2,3.

(18)
The reconstruction subdomains afg Y,, andYs; the other subdomains, are repre-
sentative subdomains , but not reconstruction subdomiaiosger to prevent boundary
effects from crossing into the reconstruction. In ordervoi@ the singularity brought
about by the% terms, a smoothing parametér= 10~* was considered; terms like
1/]]- || were replaced withi /|| - +4]|| (in two- and three-dimensional applications these
singularities are integrable and can be treated by spemmbaches; this “smoothing”
is actually not required).
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The problem was modeled in the AMPL environment [9]; the &gy (O), (RE),
and (RO) problems were solved with SNOPT (where the secosdemesented only
as a nonlinear equation) [10]. All three formulations warecessfully solved in a small
number of major iterations (no more than 10). Note that theeB®traint form assump-
tion holds because (a) the discretization of the const(dipt{r)dr = N) results in one
linear constraint with positive coefficients and {)seen as a matrix, has nonnegative
entries. ThenV,, gs(«7,23) + Va,g3(x7, 23)T is a row vector with positive entries,
which has rank one when seen as a matrix. Therefore, bedaeise¢ond-order suffi-
cient condition of the regularity assumption has also bedidated, the conclusions of
Theorem 2 should hold. The assumptions of Theorem 1 couldeneeérified; nonethe-
less, the reduced nonlinear equation (RE) does give rafilte same quality as (RO).

The solution of (O) and (RO) are provided in Figure 4, wheitbaspoint-to-point

: [0 (z1)—p (21)|] : : _
solution erro(W, at all grid pointszg,, k= 1,...,650) between prob-

lems (O) and (RE) are displayed in Figure 5. The density mbtg) and (RO) are
essentially identical at visual accuracy, and the intexfjah approach is successful in
reconstructing the solution in the “gap” domains. Note, beer, that the point-to-point
solution error of (RO) is of the same order to the one of (REspnted in Figure 5,
that is, a maximum value of around 1% (though its uniformstgxceptional and is re-
sponsible for the remarkable apparent accuracy in Figurd ) number of degrees of
freedom of problems (RE) and (RO) is smaller by a factor/af3. For larger, three di-
mensional configurations, the approach is expected toecegaaccurate reduced prob-
lem with an even smaller ratio of number of representativeugtotal number of de-
grees of freedom (a third power appears from the third-dsioeral aspect alone, which
is mitigated by the effect of the boundaries). The propoggaach does not have to
apply only to a domain with a surface or a boundary. Indeed,amuld treat much of
the bulk with periodic boundary conditions and use the retostion technique only
around defects.

This work does not address the energy minimization for btatteonic density and
atomic positions, which is the case in [6]. On the other htfimelmethod can be readily
adapted to that case by using an interpolation based on @stabe deformation of the
crystal. Details are presented in [18].

4.3. Three Dimensional String of Atoms Example

Our example is a three-dimensional variation of the one dsimmal case analyzed in
the previous section. The size of each of the 3D subdomaimswswing a hydrogen
atom is3 x 3 x 3 (all units henceforth are atomic units). A full simulatiorittvno
reconstruction is provided as the reference solution.

In this case, the modeling technique described in Subse8t® was used for the
kinetic termT[p] and exchange energy terR[p] in (16), whereas the Coulomb term
J[p] and the nuclei-electron teri, . are computed by exploring the nonrepresentative
degrees of freedom (coresponding to the entrieg,dfonly once. For the latter case,
appropriate kernel matrices of dimensiapnsx ¢; are computed and used for each
function and derivative evaluation of the problem (RO).



Regularity of quasi-continuum model-reduced problems 25

RelativeError

0.000270

RelativeError

m

13.5

4.48

.0.000870

(b) Relative error for 13/5 (221)

Fig. 7. Relative error surface for the 13-subdomain scenarios ysing and (b) 5 active subdomains. In
parentheses we show the number of optimization iterations.ntimber of active subdomains considered
in the algorithm reflects in the quality of the numerical sioint more active subdomains result in a larger
number of degrees of freedom, which positively impacts abitityelax to lower energy levels and reduces
boundary artifacts.

Two scenarios with seven and five active subdomains wereequistly considered
for reduction to the problem; all meshes in this numericgeziment are uniform. In
the first scenario, the subdomag D», D3, D;, Dy, Dy2, andD; 3 were active; onhybs,
D;, andD;; were used for reconstruction. In the second scenario, théosnainsD ,
D,, D;, Dy2, andD, 3 were active; onhyD,, D7, andD, > were used for reconstruction. For
this test, the number of nodes/cells in the active subdosnaias follows: 28561/22464
for the nonreconstruction case (13/13), 15379/12096 ff7th3, and 10985/8640 for
the 5/13 case. We have used an interpolation operator ddfin@d), similar to to (18),
modified for the three-dimensional case. Specifically, the is

(Tp)(z) = 52 p(z— (30,0,0) + ¢ p(z — (3(1 —1),0,0)),
VAS Dja-‘riUDja-H-‘rla 1=1,2,...,1—1.

In the case of 7 reconstruction domains, we have jhas one of 3 and 7 and
I = 4, whereas in the case of 5 reconstruction domainss one of2 and7 and! = 5.
Therefore the caske= 5 uses less domains where the electronic density is repeabsent
and more domains where is reconstructed and is thus expedede larger error.

We have used a hexahedral (cubic) mesh. Figure 7 displaysetatve errors;
shown are only the regions where the relative error is lattggan 5%. The results show
a slight improvement in the seven-subdomain case; as theenwhactive subdomains



26 Mihai Anitescu, Dan Negrut, Peter Zapol, and Anter El-Azab

Active Subdomains 13 7 5
Number of lterations 605 245 221
Total Energy -14.257 -14.256 -14.256

Table 1. Summary of the results. TAO-BLMVM stoping criteria are @ ¢ absolute and0~° relative
gradient error.

increases, the quality of the results improve. Becauseeftlitmension reduction, the
size of the optimization problem decreases, thereby lgadia reduction in the number
of iterations. Moreover, each iteration is computationkdks expensive. The large rela-
tive errors are explained by the small values assumed bylebg@n density away from
the nuclei where in practice it is expected to be zero. Thasthe boundary artifacts
explain the accumulation of the 5% relative error isoswe$afar away from the nuclei
and close to the boundary of the solution domain. While antegaantitative char-
acterization of the boundary artifacts remains to be preduthey are traced back to
at least two sources. First, the small pockets of nonzewrele density are explained
by a slow convergence rate of the optimization algorithnt tharently does not use
Hessian information and stops before clearing these psdkaemote corners of the
nanostructure. Second, and more important, the assunydtiomderlying approximate
periodicity of the solution when used in conjunction withnaadl number of reconstruc-
tion subdomains (few degrees of freedom) limits the capadithe electron density to
relax due to these periodicity constraints that must be miziadly satisfied. As expected
and illustrated in the results corresponding to the 5 adtiveomains case, the situa-
tion is exacerbated as fewer degrees of freedom are awitathle energy minimization
step of the method. In spite of these boundary artifactdiatikl be noted that the dif-
ferences in total energy are small for both the 7 and 5 actibelemain cases (about
0.007%,; see Table 1). The results reported were obtainedrmyirg in parallel with 13
processes on a Linux cluster.

5. Conclusion and Future Work

Model reduction (or reconstruction) techniques in comipoital materials science based
on nonlocal quasi-continuum-like approach produce redlaggimization or nonlinear
equations problems with a substantially smaller numberegfrees of freedom. We
show that, under certain assumptions, the reduced prolslemell posed. Several po-
tential and density-functional examples validate our figdi

A three-dimensional parallel computational environméat supports the (RO) ap-
proach is currently developed in a fashion that includes leaplicit DFT approaches
(such as the OFDFT [24]) and more elaborate Kohn-Sham agipesain which the
kinetic energy functional and its derivatives are not evifiji available.
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