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Abstract 
 
We consider the effect of measuring randomly varying hydraulic conductivity K(x) on one's 
ability to predict deterministically, without any upscaling, two-dimensional steady state flow 
subject to random sources and/or boundary conditions.  Such prediction is possible by 
means of first ensemble moments of heads and fluxes, conditioned on measured values of 
K(x); the uncertainty associated with such prediction can be quantified by means of the 
corresponding conditional second moments.  As these predictors vary generally more 
smoothly over space than their random counterparts, they are resolved on coarser grids 
without upscaling by nonlocal Galerkin finite elements.  We compare the head and flux 
predictions resulted from using two methodologies of inferring conditional ensemble 
moments of K(x) from available data.  The first approach relies on the known statistical 
distribution of K(x) to generate conditional (thus non-stationary) fields of the natural log-
hydraulic conductivity Y(x) = ln K(x) with prescribed mean and variance.  In the second 
approach, the experimental measurements of Y at selected locations are used (by means of 
kriging) to estimate Y(x) at points where it is not known, and to evaluate autocovariance of 
estimation error associated with such a prediction.  The results obtained from both 
approaches are compared with conditional Monte Carlo simulation (MCS).  Our nonlocal 
finite element solution based on the first approach is in excellent agreement with MCS.  The 
finite element solution based on the kriging estimates smoothes spatial variability of the 
unbiased head and flux predictors, and their covariances. 
 
 
1. Introduction 

 
Accurate prediction of hydraulic head, h(x), and specific discharge, q(x), in 
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geological formations is an extremely difficult task due to lack of information about 
heterogeneity and unprecise measurements.  As a consequence, porous media properties 
can be modeled as random space functions and flow and transport problems can be treated 
stochastically (Dagan and Neuman, 1997).  We consider steady state groundwater flow 
governed by 
 

0)()( =+⋅−∇ xx fq ; )(h)(K)( xxx ∇−=q ; x ∈ Ω  (1) 

 
h(x) = H(x), x ∈ ΓD; −q(x) ⋅ n(x) = Q(x), x ∈ ΓN (2) 
 
where f(x) is a randomly prescribed source term, H(x) is a randomly prescribed head on 
Dirichlet boundary ΓD, Q(x) is a randomly prescribed flux into flow domain Ω  across 
Neumann boundary ΓN, and n(x) is a unit outward normal to the boundary Γ = ΓD ∪ ΓN.  
The forcing terms f(x), H(x) and Q(x) are prescribed in a statistically independent manner at 
the same scale as q(x), K(x) and h(x).  As the hydraulic conductivity K(x) and forcing 
functions are random, (1) − (2) constitute a system of stochastic partial differential 
equations. 

In general, averaging (1) − (2) analytically requires adopting simplifying 
assumptions such as treating the natural log hydraulic conductivity Y(x) = ln K(x) to a 

statistically homogeneous Gaussian field with a small variance 2
Yσ  << 1.  Analytical 

solutions of heads and fluxes moments are usually obtained to second-order in σY in 
conjunction with the infinite domain hypothesis (e.g. Dagan and Neuman, 1997, and 
references therein).  The analytical approach can not easily accommodate the influence of 
boundaries (e.g. Tartakovsky and Neuman, 1998b) and the effect of conditioning points.  To 
overcome some of these difficulties, the numerical Monte Carlo method has been adopted to 
solve the groundwater flow (e.g. Naff et al., 1998, and references therein).  A powerful 
alternative to these approaches is the exact nonlocal formalism for the prediction of flow in 
randomly heterogeneous porous media by conditional moments, proposed by Neuman and 
coworkers (Neuman and Orr, 1993; Neuman et al., 1996; Guadagnini and Neuman, 1997, 
1998; Tartakovsky and Neuman, 1998a).  Their theoretical framework allows deriving exact 
conditional first and second moment equations, which formally include boundaries with 
random conditions, random source terms, and hydraulic conductivity conditioning points.  
Recursive closure approximations for the moment equations of flow were developed for 
steady and unsteady state flow.  They are based on an expansion in powers of σY, which 
represents the standard estimation error of (natural) log hydraulic conductivity.  For steady 
state flow, Guadagnini and Neuman (1997, 1998) developed finite elements algorithms for 
computing the first and second conditional statistical moments of h(x) and q(x) to first order 

in 2
Yσ .  They analyzed two-dimensional non-uniform flow towards a pumping well in weakly 

and strongly heterogeneous hydraulic conductivity fields conditioned on measured values 
at several points.  Their results were in excellent agreement with numerical Monte Carlo 
simulations.  The authors recognized that a crucial point in assessing the applicability of 
their methodology to real world problems is the development of a reliable methodology to 
infer estimates of spatial distribution of K(x) and covariance structure of associated 
prediction error on the basis of available field data. 
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In this paper we consider two methodologies for this purpose: (a) synthetic 
generation and ensemble averaging of conditional (thus non-stationary) fields of the natural 
log-hydraulic conductivity Y(x) = ln K(x) with prescribed mean and variance; (b) kriging 
estimation of desired quantities.  We assume that K(x) has been determined (without 
measurement errors) at selected locations by standard methods, such as pumping.  We 
further assume that it is possible to infer the conditional unbiased estimates of hydraulic 
conductivities (in particular their conditional mean values, <K(x)>c), and the spatial auto-
covariance of the associated random estimation errors K’(x) = K(x) − <K(x)>c from discrete 
measurements of K(x).  We then solve the nonlocal moment equations by finite elements on 
a rectangular grid in two dimensions by means of the Finite Elements methodology 
introduced by Guadagnini and Neuman (1997, 1998) and compare results with those 
obtained by solving the original flow problem by conditional Monte Carlo simulation. 
 
 
2. Equations for Conditional Moments 
 

The optimum unbiased flux and head predictors, 〈q(x)〉c and 〈h(x)〉c, have been 
shown (Neuman and Orr, 1993; Neuman et al., 1996; Guadagnini and Neuman, 1997) to 
satisfy up to second order in σY the following boundary value problem 
 
 [ ] 0)()(h)(K )0(

G >=<+><∇⋅∇ xxx fc  x ∈ Ω  (3) 

 
 <h(0)(x)>c = <H(x)> x ∈ ΓD  (4) 
 
 KG(x) ∇<h(0)(x)>c ⋅ n(x) = <Q(x) > x ∈ ΓN (5) 
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where 〈h(i)(x)〉c is i-th order approximations of head predictors, and KG is the conditional 
geometric mean of K.  Here 
 

 ∫
Ω
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<G(0)>c is a zeroth-order Green’s function and CYc(x, y) =<Y’(x) Y’(y)>c is the conditional 
auto-covariance of Y.  The second-order flux approximation is nonlocal and non-Darcian. 

With zero-variance forcing terms, the second-order approximation of the conditional 
covariance of hydraulic head prediction, Chc(x, y) = <h’(x) h’(y)>c, satisfies (Guadagnini and 
Neuman, 1997) 
 

 [ ] 0)(h)(C)(C)(K )0()2(
hK

)2(
hG =><∇+∇⋅∇ cxccxx ,, xy xy xx  x ∈ Ω   (11) 

 
 )2(

hC c (x, y) = 0 x ∈ ΓD  (12) 

 

 [ ] 0)()(h)(C)(C)(K )0()2(
hK
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where second-order approximation of ChKc(x, y) = <h’(x) K’(y)>c, is given by 
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Second-order approximation of the conditional flux covariance tensor 

Cqc(x, y) = <q’(x) q’(y)T>c is given by 
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Equations (3) – (15) constitute a closed system of equations with statistical 

moments of Y serving as input parameters.  In what follows, we explore two alternatives to 
evaluating these moments, and their influence on the solution of (3) – (15). 
 
 
3. Computational Procedure and Examples 
 

To compute the conditional moments of Y(x) from the available data, we employ 
two methodologies.  The first methodology utilizes the prescribed ("known" a priori) 
probability density function to generate a set of conditional, and thus non-stationary, 
random fields (realizations) of Y(x) with given conditional mean <Y(x)>c and autocovariance 

function CYc(x, y).  In our simulations we generated NMC = 1000 of such realizations using 
the Gaussian sequential simulator GCOSIM of Gomez Hernandez (1991).  The second 
methodology treats <Y(x)>c as a kriging estimate and computes the corresponding 
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autocovariance of estimation errors by kriging equations.  The first approach appears to be 
more theoretically sound since it relies on the well established Law of Large Numbers to 
prove the ergodicity hypothesis.  It is also a methodology most widely used in the current 
literature on stochastic analysis of groundwater flow and transport.  The second approach 
has more of a practical value, since in reality one has but a limited number of experimental 
data to work with.  The main purpose of this study is to compare both approaches with the 
aim to obtain the best prediction of the hydraulic head and flux distributions.  To meet this 
goal, we solve the moments equations (3) − (15) by Galerkin finite elements (computational 
details are described by Guadagnini and Neuman, 1997) on a rectangular grid with M = 3600 
square elements (40 rows by 90 columns) of uniform size ∆x1 = ∆x2 = 0.2, measured in 
arbitrary consistent length units.  This results in the domain length L1 = 18 and width L2 = 8. 
 Constant heads HL = 10 and HR = 0 are prescribed deterministically on the left and right 
sides of the domain (Figure 1).  No-flow boundary conditions are imposed along the lateral 
boundaries.  Locations of 16 points with the known (experimentally determined) hydraulic 
conductivity values, which are used in conditioning, are shown on Figure 1.  In our Monte 
Carlo and GCOSIM simulations, we assumed that, in the absence of conditioning, the log 
hydraulic conductivity field Y(x) is statistically homogeneous and isotropic with 

autocovariance CY(r) = 2
Yσ  e−r/λ, where r is separation distance, 2

Yσ  is the variance of Y(x) 

and λ is its autocorrelation scale.  In all examples here presented we assume 2
Yσ  = 1 and 

λ = 1. 
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Figure 1. Outline of computational grid and spatial location of Y conditioning points (*).  
 

Figure 2 shows images and longitudinal and transverse cross-sections of 
conditional mean <Y(x)>c obtained by NMC Monte Carlo realizations and by kriging.  To 
analyze flow by conditional Monte Carlo (MC) simulations, we assign to each element a 
constant Y value corresponding to the point value generated at its center by GCOSIM.  It is 
seen that values of <Y(x)>c in the left portion of the domain are generally higher when 
estimated by kriging procedure than ensemble statistics.  Values of <Y(x)>c computed at 
locations 10.9 < x1 < 14.9 are generally lower when kriging estimates rather than ensemble 
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moments are employed.  This is directly related to the spatial pattern and local values of the 
“measured” logconductivities. 
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Figure 2.  Images of conditional mean <Y(x)>c field obtained by (a)  kriging estimate of actual Y values and (b) 

NMC  = 1000 for unconditional 2
Yσ =1, λ = 1.  Sections of <Y(x)>c at (c) x2 = 4.9 and (d) x1 = 6.9. 
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Figure 3.  Images of conditional 2
Yσ (x) field obtained by (a) kriging equations and (b) NMC  = 1000 for unconditional 

2
Yσ =1, λ = 1.  Sections of 2

Yσ (x) at (c) x2 = 4.9 and (d) x1 = 6.9. 
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Figure 3 shows images and cross-sections of conditional variance of Y, 2
Yσ (x),  computed 

by the two adopted methodologies, showing a satisfactory comp arison from a qualitative 
standpoint.  Conditional variance of Y behaves more smoothly and is close to 1 in a larger 
portion of the field when computed by kriging equations. 

Figure 4 depicts mean head <h(x)>c computed by the three methodologies along a 
longitudinal section, together with <Y(x)>c as obtained by ensemble MC and kriging 
estimate of Y moments.  MC and nonlocal results obtained on the basis of ensemble Y fields 
are virtually indistinguishable.  Mean heads <h(x)>c computed on the basis of the kriged 
<Y(x)>c are larger in the left portion of the field, where gradients are flatter. 

Figure 5 shows values of longitudinal (parallel to x1) and transverse (parallel to x2) 
component of mean flux obtained by the three methods when 2

Yσ  = 1, λ = 1.  Monte Carlo 

and nonlocal mean fluxes obtained on the basis of ensemble Y fields are virtually 
indistinguishable; mean fluxes obtained by solving nonlocal equations by using kriging 
estimates of Y moments capture the general trend but are not able to reproduce the local 
asperities of the numerical MC solution. 
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Figure 4.  Conditional mean (a) head <h(x)>c and (b) <Y(x)>c for unconditional   2

Yσ  = 1, λ = 1. 
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Figure 6 depicts values of conditional head variance along the longitudinal cross-
sections at x2 = 3, which passes through nodes which share condit ioning blocks.  Even 
though our nonlocal results represent the lowest possible order of approximation of the 
second moments, these compare extremely well with the Monte Carlo results when 
compatibility between conditional moments of Y in the MC and nonlocal flow solutions is 
granted, by employing in the latter conditional moments of Y generated by GCOSIM.  In this 
example, the nonlocal solution based on kriged Y fields tends to overestimate the head 
variance especially close to the lowest <Y(x)>c values.  The same is true about the 
conditional covariance of head. 
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Figure 6. Conditional head variance obtained via MC (  NMC  = 1000 ; solid), nonlocal finite elements with ensemble 
estimate of Y moments (dashed) and nonlocal finite elements with kriging estimate of Y moments (gray).  
Longitudinal section at  x2 = 3,  unconditional   2

Yσ =1, λ = 1. 
 
 
Figure 7 shows how this function varies along the central longitudinal section 

when the reference point is at the center of the domain (y1 = 9, y2 = 4). 
Figure 8 shows how the components of the flux covariance tensor vary with 

longitudinal separation distance r1 from the reference point (y1 = 8.9, y2 = 3.9). 
Figure 9 shows how the conditional variance (covariance at zero lag) of 

longitudinal and transverse flux, Cqc11(0) and Cqc22(0), and the cross-covariance 
Cqc12(0) ≡ Cqc21(0) between longitudinal and transverse fluxes, vary along a section, which 
passes through Y-conditioned blocks.  Agreement between the first two solutions is 
excellent; the nonlocal finite element solution obtained by using kriged estimate of statistics 
of Y(x) varies more smoothly over space but captures the general spatial trend of the 
different quantities.  The variance of longitudinal flux component is generally larger than 
that of the transverse flux component.  The proximity of boundaries causes the variance of 
transverse flux component to decrease toward zero.  Proximity to conditioning points causes 
the longitudinal variance to dip sharply without necessarily vanishing.  Whereas the 
transverse variance also tends to diminish (albeit slightly and not consistently) at 
conditioning points, the latter has much lesser impact on the off-diagonal term.  The off-
diagonal term oscillates uniformly about or near zero in the domain. 
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Figure 7. Conditional head covariance Chc(x ;  y1 = 9, y2 = 4)  obtained via MC ( NMC  = 1000 ; solid), nonlocal finite 
elements with ensemble estimate of Y moments (dashed) and nonlocal finite elements with kriging estimate of 
Y moments (gray).  Longitudinal section at x2 = 4.0;  unconditional   2

Yσ =1, λ = 1. 
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Figure 8. Flux covariance  with reference to  y1 = 8.9, y2 = 3.9 as obtained via MC ( NMC  = 1000 ; solid), nonlocal 

finite elements with ensemble estimate of Y moments (dashed) and nonlocal finite elements with kriging 
estimate of Y moments (gray) along a longitudinal section at  x2 = 3.9 (unconditional   2

Yσ =1, λ = 1). 
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Figure 9. (a) Longitudinal C qc11(0), (b) tranverse Cqc22(0) flux variance, and (c) cross-covariance C qc12(0) ≡ Cqc21(0) 

between longitudinal and transverse obtained via MC ( NMC  = 1000 ; solid), nonlocal finite elements with 
ensemble estimate of Y moments (dashed) and nonlocal finite elements with kriging estimate of Y moments 
(gray).  Longitudinal sections at x2 = 4.9 ;  unconditional   2

Yσ =1, λ = 1. 
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4. Conclusions 
 
Our work leads to the following major conclusions: 
1. It is possible to render optimum unbiased predictions (and associated prediction 

errors) of steady state groundwater flow in randomly heterogeneous media under 
the action of uncertain boundary and source terms deterministically by means of a 
nonlocal finite element method.  The latter is based on a closure approximation of 
otherwise exact conditional first and second moment equations of flow, and is 
nominally restricted to mildly heterogeneous media with σY << 1. 

2. Our theory assumes that we have at our disposal an unbiased estimate of the 
hydraulic conductivity K(x), together with the second conditional moment of 
associated estimation errors.  When we compare our nonlocal finite element 
solution for two dimensional steady state flows with conditional Monte Carlo finite 
element simulations, we find that the former is highly accurate for σY = 1, when 
compatibility between conditional moments of Y in the MC and nonlocal flow 
solutions is observed.  Nonlocal finite element solution obtained by using kriging 
estimates of moments Y(x) varies more smoothly over space but captures the 
general spatial trend of estimated heads and fluxes as well as their spatial 
covariance structure.  Since conditional mean quantities are smooth relative to 
their random counterparts our method allows, in principle, resolving them on 
relatively coarse grids without upscaling.  This feature has not yet been explored. 
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