Lecture #7

Echoes

Summary of Lecture #6

1).
We have derived the ponderomotive force, which arises from the nonlocal character of the particle motion in a finite amplitude field.

2).
We have examined so-called nonlinear Landau damping, which is the long time behavior of the damping process when a significant number of particles become trapped in the wave.

3).
We have discussed two types of solitons that can exist, arising from the KdV equation of the Zakharov equations.  Both types represent a wave which results as a nonlinear force is balanced by dispersive effects.

Overview of Lecture #7

Longitudinal beam echoes

· free-streaming model

· Vlasov formalism

· collisional effects – F-P equation

· experimental results

Bunched-beam echoes

In this lecture we turn to a novel application of (weakly) nonlinear waves that has found application in both plasmas and beams: echoes.  Although, much of the mathematical formalism evolved from plasma physics, echoes occur in many systems throughout physics, and are a classical feature of many-body systems obeying the Vlasov Equation.

When echoes were first observed in plasmas, they were taken as physical evidence of Landau damping, and a physical manifestation of the Vlasov model.  As it turns out, they do confirm the physics of Landau damping, but also can give insight into the microscopic collisional processes that affect the reversibility of the Vlasov equation.  Moreover, they are related to three-wave coupling, as viewed in the time domain.

Reference for this entire lecture:  Spentzouris thesis.

What is an echo?

Suppose in a uniform plasma or in a beam, we make a short duration perturbation.  According to Landau theory, the perturbation decays away in a characteristic time that depends on the thermal spread of the particle motion.

For definiteness, we choose an unbunched, coasting beam, and make a perturbation at harmonic m
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where 
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 is the energy deviation from the synchronous particle, and 
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 is the frequency dispersion given by
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The damping time in this case is
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Now after the initial perturbation has died away, we make a second perturbation at harmonic n, with m<n,
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Provided there is a means for mixing of these two waves, a response will occur at the sum and difference frequencies.  In particular for the difference frequency, a phase term of the form
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will appear.  It is noted that at a particular time given by
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the energy terms in the exponential cancel out.  Thus, at this one time, the effects of damping are erased, and some portion of the original disturbance can reappear.  This is the basis of an echo.

The interesting feature of such an echo is that the accumulated effect of any decorrelatoin mechanism, such as collisions, has an effect on the ability of the medium to reconstruct the original disturbance.  By measuring changes in the echo over time, it is possible to gain an extremely sensitive measure of the decorrelatoin mechanisms.

In the remainder of this lecture, we will derive the analytic formulas for echo generation and decay in both unbunched and bunched beams and use the theoretical models to compare to experimental results.  The analysis in a plasma is identical, so in this lecture we will focus only on the beam case.

We begin by considering echoes in an unbunched beam (our favorite plasma analogue) where wakefields can be considered negligible.  This has the effect of making the dielectric constant of the beam exactly equal to unity.  There are virtually no other media in Nature that have this property.

For a particle traveling around a storage ring, we have already seen that the phase evolution is given by
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where 
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 is the frequency dispersion.  We note that the beam can respond resonantly if we excite it at any one of an infinite series of harmonics of the revolution frequency, or 
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If we now make a kick in the form of a short burst of rf at a given harmonic, we can find an expression for the beam response by examining the phase variation of a single particle, then averaging over the particle distribution.

The phase evolution after one kick is given by
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where the energy gain is given by
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To find the perturbed density, we average this phase factor over the particle distribution function as
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which yields
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Using the following Bessel function identity, we can rewrite the above expression
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Then the instantaneous current after the first kick only can be written as
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which exhibits the ‘Landau damping’ time given by
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Now we make a second kick after a delay 
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 and follow the same analysis. The perturbed density is given by
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And using the Bessel function identity as before, the perturbed density can be written as
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It is noted that the response averages to zero unless the phase factor vanishes, namely when
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(reminiscent of the three-wave coupling!) And the time of the echo can be found from the condition that the second phase factor vanishes, namely when
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Thus, the instantaneous current after the second kick shows a delayed response, modulated by a form factor, which is the echo
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We note that the form of the echo in time is essentially that of the original distribution function in energy, modulated by J/.  Thus a measurement of the echo shape gives a direct measurement of the distribution function.
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This is essentially the free-streaming result where we did not have to take any collective effects into account.

Wakefields can also affect the echo shape, and that feature has not been utilized to date.  But the most important application is through the effect of collisions on the echo shape, as it leads to a sensitive diagnostic for determining collision rates experimentally.
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Echoes with Wakefields and Collisions

In this case, we cannot carry out an exact analysis, but can find an approximate form by a perturbation expansion of the Boltzmann equation.

In the longitudinal coordinates, the Boltzmann equation is given by
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where 
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, and we have spatially Fourier analyzed the Boltzmann equation.  (The reason for choosing the n-mth harmonic will become evident shortly.)

The potential charge per turn in the ring due to wakefields is written in terms of the longitudinal impedance
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We now drop the first term (drag term) on the RHS of the Boltzmann equation since this only makes a small change in the linear dispersion relation.

The second term on the RHS causes phase diffusion, which is the dominant effect of collisions on the echo dynamics.

Lastly we use a Laplace transform on the Boltzmann equation as
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We arrive at the following transformed equation
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We can solve this by a perturbation approach.  First ignore the nonlinear (last) term in the above equation, and solve for 
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The first-order part of 
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 satisfies the following equation 
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To solve this, we use a second Laplace transform (in energy) for the form
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The transformed equation becomes


[image: image46.wmf](

)

[

]

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

ò

¥

-

-

-

-

-

-

þ

ý

ü

î

í

ì

-

-

-

+

-

+

×

¶

¶

=

Á

Þ

¶

¶

=

¶

Á

¶

-

+

Á

-

+

+

Á

0

0

3

2

0

0

0

0

0

0

0

0

0

0

0

2

2

0

3

exp

~

2

ˆ

2

ˆ

ˆ

ˆ

0

0

k

m

n

i

k

m

n

i

k

m

n

i

s

d

imk

U

f

e

U

f

e

k

m

n

i

m

n

i

s

m

n

m

n

m

n

m

n

m

n

m

n

t

e

u

t

e

w

t

e

p

w

e

e

p

w

t

t

t

w

t

t

ue

e

e



 SHAPE  \* MERGEFORMAT 
And 
[image: image47.wmf]m

n

U

-

~

 is found from



[image: image48.wmf](

)

(

)

ext

m

n

m

n

m

n

m

n

V

d

s

e

Z

s

U

-

¥

¥

-

-

-

-

+

Á

=

ò

e

e

p

w

,

~

2

~

0


We now substitute these first-order expressions for 
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 into the Boltzmann equation, keeping only second-order terms, and integrating again to find the second-order current according to
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The result is
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Dn-m(s) is the dispersion relation for longitudinal mode n-m given by
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As the factors Dk (s,ś) occur in the denominator, they represent the dielectric response of the beam at each of the three frequencies involved in producing the second-order current.  This is exactly the form of the response we found associated with parametric coupling (for good reason).

This is a general, but complicated, expression that nonetheless has been shown to produce an echo response (in plasmas).  A major simplification can be made in cases where wakefields can be considered negligible, as then 
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In this limit, the integrations can be explicitly carried out, yielding
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where we have assumed
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We note that the integral vanishes except where the exponential phase factor vanishes, namely where
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The echo occurs at 
[image: image59.wmf]echo

t

 and has a profile in time proportional to the energy derivative of the distribution.

The echo amplitude decays with a time constant proportional to 
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 and hence a measurement of the echo decay can provide a direct measurement of the collision frequency, 
[image: image61.wmf]u

.

We note that in this free-streaming limit (no wakefield), we did not need to use the perturbation expansion approach.  We may include the effect of collisions directly in the previous free-streaming echo model, resulting in the same echo form multiplied by the decay term just derived.

The echo amplitude goes as
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[image: image63.wmf]u


is found by a fit to this standard form.

Bunched-Beam Echoes

We may carry out the same type of analysis in a bunched beam, and we will sketch that analysis here.  We will ignore wakefields, but include collisional effects.  There is much work yet to be done here.

We restrict ourselves to longitudinal motion only and adopt the action-angle coordinate system
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The motion of the particles in the rf well, at least near the bottom of the well, is periodic, with the action being a conserved quantity.  Thus the Vlasov equation can be written as
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where
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We now transform to the rotating frame
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Combining and dropping primes, gives
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We consider only times long with respect to a Landau damping time



[image: image70.wmf]2

2

2

1

u

DJ

t

J

t

J

J

t

s

s

¶

¶

ú

û

ù

ê

ë

é

¶

¶

@

¶

¶

Þ

>>

¶

¶

y

w

y

w


Assume we make a dipole kick in energy, and expand the perturbed distribution frequency in terms of the unperturbed state
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The distribution function just after the energy kick is given by
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And the solution of the above approximate equation for is
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This exhibits a Landau damping (phase mixing) time of
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Now apply a quadrupolar kick at 
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Keeping only the dominant terms after damping of this kick has occurred, we find for the distribution after the second kick
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As before, we make a change of variable
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And again assume the second kick has Landau damped
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Finally, we arrive at the solution for 
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We find an echo will occur as a dipole oscillation (note that the three-wave resonance conditions must be met among the interacting waves).  We can find the dipolar response by constructing
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Carrying out the ( integration, we find
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Now let
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This finally gives
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The echo envelope follows the following form
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Since we have
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We can finally arrive at the following relationship with measured parameters of the echo envelope.
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We note that transverse echoes have also been predicted (but never observed), as well as a unique echo crossing transition, which is not possible in any other medium.  Echoes have proven to be a very useful means of measuring weak diffusion processes in a beam.
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Ref:  Assadi et. Al.

Summary of Lecture #7

1.) We have derived analytical formulas for one-dimensional longitudinal echoes in both bunched and unbunched beams.

2.) Echoes are seen to be related to Landau damping, as well as the three-wave interaction among various longitudinal modes of a beam.

3.) Due to weak diffusion processes, the information contained in the echo is dissipated slowly, permitting the collision rate to be directly measured from the echo decay rate. There is the possibility that higher-order correlations may be observed experimentally, owing to the extreme sensitivity of this technique.

4.) There are many unexplored applications of echoes in high-energy beams, including transverse echoes and transition echoes.
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