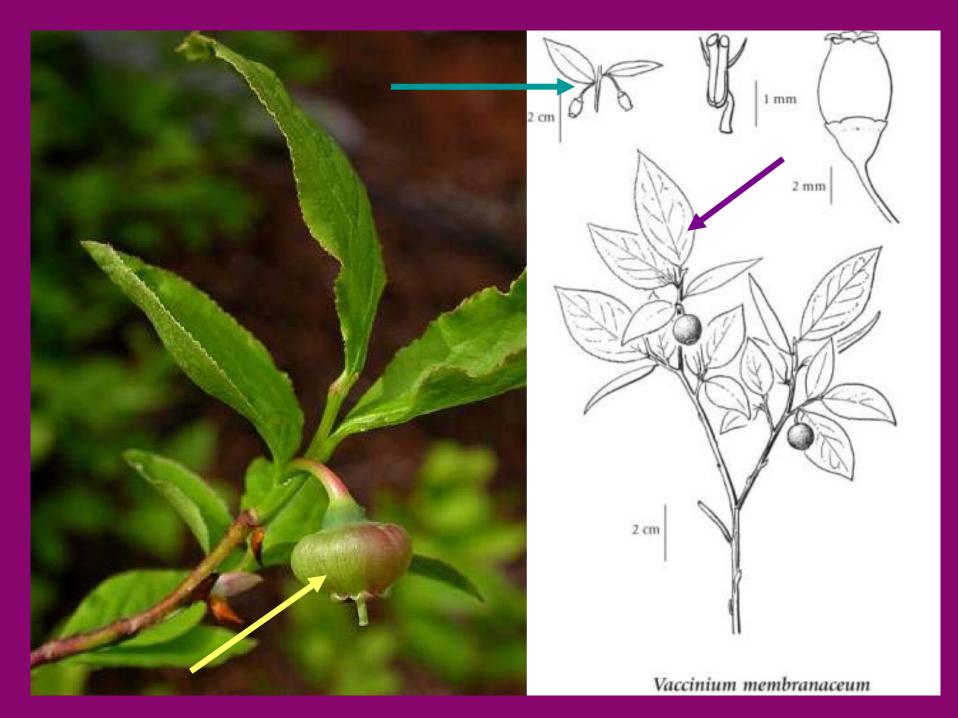


Outline

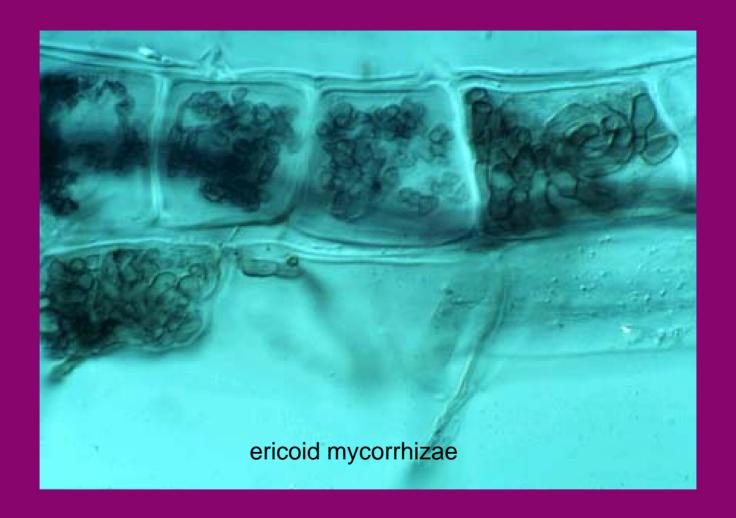

- Review basic biology and ecology of Vaccinium
- Known effects of harvesting and forest management
- Future research directions

Genus Vaccinium

- Family Ericaceae (Heath)
- Includes 35 genera (Arbutus, Arctostaphylos, Cassiope, Rhododendron)
- Vaccinium includes 43 species

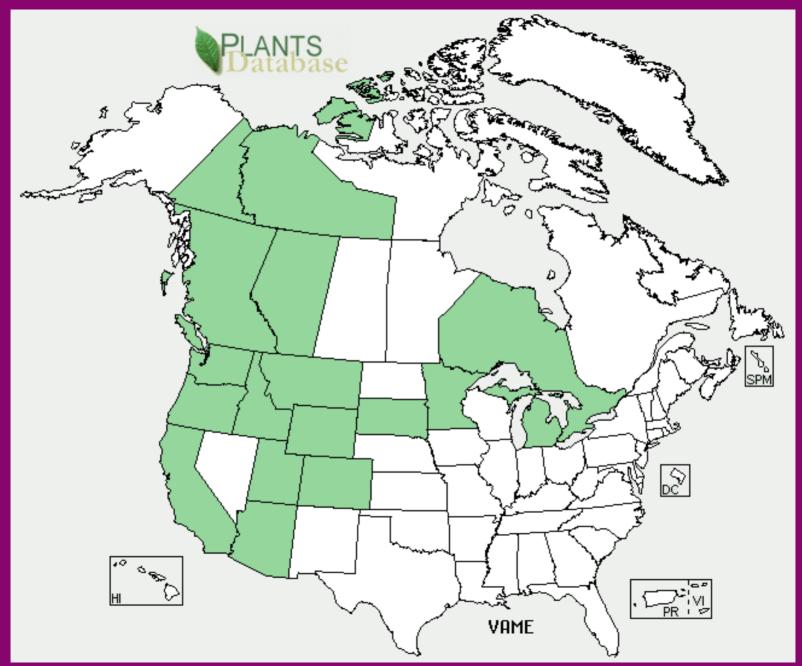
Vaccinium in the PNW

- V. parvifolium red
- V. ovatum evergreen
- V. deliciosum Cascade bilberry
- V. scoparium grouse whortleberry
- V. ovalifolium/alaskaense oval-leaf blueberry
- V. membranaceum big, black, blue, thinleaved, mountain



V. membranaceum – Biology

- Flowers are bee-pollinated
- Seeds (~ 47 / berry) animal dispersed
- Seed germination is extremely sensitive to drought
- Reproduction by seed rare in nature
- Reproduces mainly from rhizomes
- Fruit production moderately drought tolerant, frost intolerant


V. membranaceum - Belowground

- Unique to the Ericaceae are ericoid mycorrhizae
- Mycorrhizae = symbiosis between a fungus and plant root
- Ericoid mycorrhizae consist of thin root hairs and a specific type of fungs
- Aid in nutrient uptake

V. membranaceum – Ecology

- High fire tolerance (rhizomes!)
- Intermediate in shade-tolerance
- Medium to coarse textured soils (pH 5.5)
- Low nutrient requirements
- Found from dry to moist coniferous forests and openings, usually above 3,000'
- Widely distributed in montane, subalpine, and boreal zones

http://plants.usda.gov/index.html

Use and Management

- Historically fires kept huckleberry fields open and productive
- With fire management (i.e., control), huckleberries were out-competed
- Motivated research on how to maintain huckleberries

Kerns et al. 2004

- Compared huckleberry abundance among thinned (10-25 yr), un-thinned (same age), and old growth stands in Oregon.
- V. parvifolium abundance was greatest in previously thinned stands (n > 10)
- *V. membranaceum* abundance was greatest in old-growth and not found in previously thinned areas (n = 1).

Minore et al. (1979, 1984)

- Summarized results from experiments near Mt. Hood and Mt. Adams
- Sheep grazing, cut and burn, burn, and borax (Adams)
- Cut and burn, burn, herbicide (2-4D frill), and Phellinus (Hood)
- Controlled burning was difficult at high elevation

Adams

- Fire killed shoots, but stimulated sprouting
- Burning treatments significantly reduced berry production, even after 7 years
- Other treatments did little to reduce competing species

Hood

- Sprouting after fire was rapid
- With burning treatments, berry production initially dropped then recovered to control levels
- Competing trees were not killed with Phellinus
- 2,4 D (frill) doubled berry production minimal damage to *Vaccinium*

Rocky Mountain Research*

- Low to moderate severity fire: Big huckleberry showed good vegetative response in lightly burned areas of western larch/Douglas-fir forests in western Montana
- Spring burns: resulted in greater increase in sprouts than fall burns
- Slow to recover from high severity wildfires

Synthesis so far

- Controlling competing vegetation can be challenging
- Response to fire depends on severity of burn
- Management effects likely site or region specific

Plant association database

Scientific Name	Spp	Plant assn	Ave cover	plots	Total plots
Vaccinium membranaceum	VAME	TSME/VAME-SOSI2	24.8	17	17
Vaccinium membranaceum	VAME	TSME/VAME/CLUN2- NWO	20.3	20	20
Vaccinium membranaceum	VAME	TSME/RHMA3-NWO	4.0	21	29
Vaccinium membranaceum	VAME	ABGR/CHUM	1.4	9	11
Vaccinium membranaceum	VAME	ABGR/TRLA2	1.0	5	5

Potential Project: Mapping potential areas for huckleberry production

- Groups of plant associations have been mapped for forests covered by NW Forest Plan
- Mapping complete or on-going for additional Forest lands
- Current conditions (i.e., stand age) and other information (fire history, etc.) also exist for many areas

Potential Project: Mapping potential areas for huckleberry production

- Would overlay current conditions onto PAGs in a GIS and develop a predictive model (based on associations and landuse) for huckleberries abundance
- Product Map showing likelihood (probabilities) of huckleberry production
- Field check
- Refine model as necessary

Potential Project: Mapping potential areas for huckleberry production

- Benefit Landscape-scale analysis of potential for sustainable huckleberry production
- Limitation Fruiting is weather dependent, difficult to model

Future research

- Field experiments!
- Comparing realistic management options that minimize physical damage to huckleberries
- Do huckleberries need fire?
- How do fire and other management practices effect ericoid mycorrhizae?

Role of charcoal?

Key References

- Kerns, B.K., S. J. Alexander and J.D. Bailey. 2004. Huckleberry abundance, stand conditions, and use in western Oregon: evaluating the role of forest management. Economic Botany 58:668-678
- Minore, D., A.W. Smart, and M.E. Dubrasich. 1979. Huckleberry ecology and management research in the Pacific Northwest. Gen. Tech. Rep. PNW-93. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station. 50 p.
- Minore, Don. 1984. Vaccinium membranaceum berry production seven years after treatment to reduce overstory tree canopies. Northwest Science. 58: 208-212.
- Simonin, K. A. 2000. Vaccinium membranaceum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis
- USDA Plants Database. http://plants.usda.gov/index.html
- Yang, S., J.G. Bishop and M.S. Webster. 2008. Colonization genetics of an animal-dispersed plant (*Vaccinium membranaceum*) at Mount St. Helens, Washington. Molecular Ecology 17:731-740.

