LaTeX Version of Equations

Eq. 1
$\omega_{\rm pump} = \omega_{\rm signal} + \omega_{\rm idler}$

Eq. 2 ${\bf k}_{\rm pump}={\bf k}_{\rm signal}+{\bf k}_{\rm idler}$

Eq. 3 \begin{eqnarray*}{\bf k}_{\rm pump} &=& n_{\rm pump}(\theta_{\rm pump}, \phi_{\rm pump}) ~ \frac{\textstyle{\omega_{\rm pump}}}{\textstyle c} ~ \hat s_{\rm pump} ~ ,\\ {\bf k}_{\rm signal} &=& n_{\rm signal}(\theta_{\rm signal}, \phi_{\rm signal}) ~ \frac{\textstyle{\omega_{\rm signal}}}{\textstyle c} ~ \hat s_{\rm signal}\\ {\bf k}_{\rm idler} &=& n_{\rm idler}(\theta_{\rm idler}, \phi_{\rm idler}) ~ \frac{\textstyle{\omega_{\rm idler}}}{\textstyle c} ~ \hat s_{\rm idler} \end{eqnarray*}

Eq. 4 $$ \hat s_{\rm pump}=\left( \begin{array}{c} \sin \theta_{\rm pump} \cos\phi_{\rm pump} \\ \sin \theta_{\rm pump} \sin\phi_{\rm pump} \\ \cos\theta_{\rm pump} \end{array} \right)_{x,y,z} ~ , $$

Eq. 5a $$ \hat s_{\rm signal}=\left( \begin{array}{c} \sin \theta_{\rm signal} \cos\phi_{\rm signal} \\ \sin \theta_{\rm signal} \sin\phi_{\rm signal} \\ \cos\theta_{\rm signal} \end{array} \right)_{x^{\prime\prime},y^{\prime\prime},z^{\prime\prime}} ~ , $$

Eq. 5b $$ \hat s_{\rm idler}=\left( \begin{array}{c} \sin \theta_{\rm idler} \cos\phi_{\rm idler} \\ \sin \theta_{\rm idler} \sin\phi_{\rm idler} \\ \cos\theta_{\rm idler} \end{array} \right)_{x^{\prime\prime},y^{\prime\prime},z^{\prime\prime}} ~ . $$

Eq. 6 $$\left( \begin{array}{c} x\\y\\z\end{array} \right) = \left( \begin{array}{ccc} \cos\theta\cos\phi & -\sin\phi & \sin\theta\cos\phi \\ \cos\theta\sin\phi & \cos\phi & \sin\theta\sin\phi \\ -\sin\theta & 0 & \cos\theta \end{array} \right) \left( \begin{array}{c} x^{\prime\prime}\\y^{\prime\prime}\\z^{\prime\prime}\end{array} \right) $$

Eq. 7 $$\left( \begin{array}{c} x^{\prime\prime}\\y^{\prime\prime}\\z^{\prime\prime}\end{array} \right) = \left( \begin{array}{ccc} \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta\\ -\sin\phi & \cos\phi & 0 \\ \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \end{array} \right) \left( \begin{array}{c} x\\y\\z\end{array} \right) ~ . $$

Eq. 8 \begin{eqnarray*} {\bf k}_{\rm pump}({\rm fast}) &=& {\bf k}_{\rm signal}({\rm slow}) + {\bf k}_{\rm idler}({\rm slow}) ~ , \qquad Type I\\ {\bf k}_{\rm pump}({\rm fast}) &=& {\bf k}_{\rm signal}({\rm fast}) + {\bf k}_{\rm idler}({\rm slow}) ~ , \qquad Type II\\ {\bf k}_{\rm pump}({\rm fast}) &=& {\bf k}_{\rm signal}({\rm slow}) + {\bf k}_{\rm idler}({\rm fast}) ~ . \end{eqnarray*}

Eq. 9 \begin{eqnarray*} {\bf k}_{\rm pump}(o) &=& {\bf k}_{\rm signal}(e) + {\bf k}_{\rm idler}(e) ~ ,\\ {\bf k}_{\rm pump}(o) &=& {\bf k}_{\rm signal}(o) + {\bf k}_{\rm idler}(e) ~ ,\\ {\bf k}_{\rm pump}(o) &=& {\bf k}_{\rm signal}(e) + {\bf k}_{\rm idler}(o) ~ . \end{eqnarray*}

Eq. 10 ${\frac{\textstyle{s_x^2}}{\textstyle{n^{-2} (\hat s) - n_x^{-2}}}} + {\frac{\textstyle{s_y^2}}{\textstyle{n^{-2} (\hat s) - n_y^{-2}}}} + {\frac{\textstyle{s_z^2}}{\textstyle{n^{-2} (\hat s) - n_z^{-2}}}} = 0 . $

Eq. 11 \begin{eqnarray*} x^2 &-& \left[ s_x^2 \left(\frac{\textstyle 1}{\textstyle n_y^2} + \frac{\textstyle 1}{\textstyle n_z^2} \right) + s_y^2 \left(\frac{\textstyle 1}{\textstyle n_x^2} + \frac{\textstyle 1}{\textstyle n_z^2} \right) + s_z^2 \left(\frac{\textstyle 1}{\textstyle n_x^2} + \frac{\textstyle 1}{\textstyle n_y^2} \right) \right]~x \\ &~& + \left( \frac{\textstyle s_x^2}{\textstyle n_y^2 n_z^2} + \frac{\textstyle s_y^2}{\textstyle n_x^2 n_z^2} + \frac{\textstyle s_z^2}{\textstyle n_x^2 n_y^2} \right) = 0 \end{eqnarray*}

Eq. 12 \begin{eqnarray*} n_{\rm fast} &=& \left[ \frac{\textstyle 2}{B + (\textstyle B^2 - 4C)^{1/2}} \right]^{1/2} ~ ,\\ n_{\rm slow} &=& \left[ \frac{\textstyle 2}{B - (\textstyle B^2 - 4C)^{1/2}} \right]^{1/2} ~ , \end{eqnarray*}

Eq. 12a \begin{eqnarray*} B &=& \left[ s_x^2 \left(\frac{\textstyle 1}{\textstyle n_y^2} + \frac{\textstyle 1}{\textstyle n_z^2} \right) + s_y^2 \left(\frac{\textstyle 1}{\textstyle n_x^2} + \frac{\textstyle 1}{\textstyle n_z^2} \right) + s_z^2 \left(\frac{\textstyle 1}{\textstyle n_x^2} + \frac{\textstyle 1}{\textstyle n_y^2} \right) \right]~, \\ C &=& \left[ \frac{\textstyle s_x^2}{\textstyle n_y^2 \cdot n_z^2} + \frac{\textstyle s_y^2}{\textstyle n_x^2 \cdot n_z^2} + \frac{\textstyle s_z^2}{\textstyle n_x^2 \cdot n_y^2} \right] ~ . \end{eqnarray*}

Eq. 13 $\phi_{\rm idler} = \phi_{\rm signal} + \pi ~ .$

Eq. 14 $|\Delta {\bf k} = 0 ,$

Eq. 15 $\Delta {\bf k} = {\bf k}_{\rm pump} - {\bf k}_{\rm signal} - {\bf k}_{\rm idler} ,$

Eq. 16 $\Delta k_x = 0 ,$

Eq. 17 $\Delta k_y = 0 ,$

Eq. 18 $\Delta k_z = 0 .$

Eq. 19 $$\int \int_V \int ~ \exp(i \cdot \Delta{\bf k} \cdot {\bf r}) {\rm d}^3 r \propto \delta(\Delta{\bf k}) ~ .$$

Eq. 20 $\Phi = \exp \left( - \frac{1}{2}~ W^2 (\Delta k_x^2 + \Delta k_y^2 ) \right) \cdot \left( \frac{\textstyle \sin \left( \frac{1}{2}~ L\Delta k_z \right)} {\textstyle \frac{1}{2}~ L\Delta k_z}\right)^2 ~ . $

Eq. 21 $$n_{\rm idler} ~ \frac{\textstyle \omega_{\rm idler}}{\textstyle \omega_{\rm signal}}~ \sin(\theta_{\rm idler}) = n_{\rm signal} \sin(\theta_{\rm signal}) ~ ,$

Eq. 22 $n_{\rm idler} ~ \frac{\textstyle \omega_{\rm idler}}{\textstyle \omega_{\rm signal}}~ \cos(\theta_{\rm idler}) = n_{\rm pump} \frac{\textstyle \omega_{\rm pump}}{\textstyle \omega_{\rm signal}}~ - n_{\rm signal} \cos(\theta_{\rm signal}) ~ .$

Eq. 23 $$n_{\rm idler} ~ \frac{\textstyle \omega_{\rm idler}}{\textstyle \omega_{\rm signal}} = \left[ n_{\rm signal}^2 + n_{\rm pump}^2 ~ \frac{\textstyle \omega_{\rm pump}^2}{\textstyle \omega_{\rm signal}^2}~ - 2n_{\rm pump} n_{\rm signal} ~ \frac{\textstyle \omega_{\rm pump}}{\textstyle \omega_{\rm signal}} ~ \cos(\theta_{\rm signal}) \right]^{1/2} ~ .$$

Eq. 24 $\theta_{\rm idler} = \arcsin \left( \frac{\textstyle n_{\rm signal} \sin(\theta_{\rm signal})} {\textstyle \sqrt {\textstyle n_{\rm signal}^2 + n_{\rm pump}^2 ~ \frac{\textstyle \omega_{\rm pump}^2}{\textstyle \omega_{\rm signal}^2} - 2n_{\rm signal} n_{\rm pump} ~ \frac{\textstyle \omega_{\rm pump}}{\textstyle \omega_{\rm signal}} ~ \cos(\theta_{\rm signal})}} \right) $