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Abstract

The susceptibility tensor of a hot, magnetized plasma is conventionally expressed in terms of
infinite sums of products of Bessel functions. For applications where the particle’s gyroradius is
larger than the wavelength, such as alpha particle dynamics interacting with lower-hybrid waves,
and the focusing of charged particle beams using a solenoidal field, the infinite sums converge slowly.
In this paper, a new derivation of the plasma susceptibility tensor is presented which exploits a
symmetry in the particle’s orbit to simplify the integration along the unperturbed trajectories. As
a consequence, the infinite sums appearing in the conventional expression are replaced by definite
double integrals over one gyroperiod, and the cyclotron resonances of all orders are captured by a
single term. Furthermore, the double integrals can be carried out and expressed in terms of Bessel
functions of complex order, in agreement with expressions deduced previously using the Newburger
sum rule. From this new formulation, it is straightforward to derive the asymptotic form of the
full hot plasma susceptibility tensor for a gyrotropic but otherwise arbitrary plasma distribution
in the large gyroradius limit. These results are of more general importance in the numerical
evaluation of the plasma susceptibility tensor. Instead of using the infinite sums occurring in the
conventional expression, it is only necessary to evaluate the Bessel functions once according to the
new expression, which has significant advantages, especially when the particle’s gyroradius is large
and the conventional infinite sums converge slowly. Depending on the size of the gyroradius, the

computational saving enabled by this representation can be several orders-of-magnitude.
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I. INTRODUCTION

The susceptibility tensor x of a hot, uniform, magnetized plasma is conventionally ex-

pressed [1] in terms of infinite sums of products of Bessel functions, i.e.,
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All symbols in Eqgs. (1) and (2) have their usual meaning as defined in [1], i.e., fo (p1,p))
is the particle distribution function with normalization 27 [*°_dpy [~ dpip.1 fo (pL,p)) = 1;
w is the (complex) oscillation frequency with Imw > 0 corresponding to temporal growth;
k = k, + ke is the wave vector of the perturbations; B = Be) is the uniform applied
magnetic field; Q = ¢B/mc is the gyrofrequency, where ¢ and m are the particle Charge and
mass, respectively, and c is the speed of light in vacuo; and w, = (47neq*/ m) , where ny
is the number density. In addition, J, (z) is the Bessel function of the first kind of order n,
and J), denotes (d/dz) J,, (2) .

The infinite sums in Eq. (1) converge with a reasonable speed for small gyroradius, i.e.,
|z| < 1. However, there are applications where the gyroradius is comparable to or larger than
the wavelength. One well-known example involves alpha particle dynamics interacting with

lower-hybrid waves [2-8]. Alpha particle dynamics plays an important role in the process



of lower-hybrid current drive [9] and heating for burning plasmas. In this application, the
gyroradius of the alpha particles is typically much larger than the wavelength of the lower-
hybrid waves. Another example can be found in the focusing of charged particle beams
by a solenoidal field in particle accelerators [10] and ion-beam-driven high energy density
physics experimental devices [11]. In these systems, the gyroradius of the charged particles is
comparable to the transverse size of the system, and larger than the wavelength of collective
excitations with transverse mode numbers larger than one. For these applications with
|z| > 1, it is not practical to use Eq. (1) to calculate the plasma susceptibility. This is
because the infinite sums in Eq. (1) converge slowly for large z, which can be easily seen

from the asymptotic form of J,(z) for large z,
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Equation (5) implies

for large z and n. Fortunately, this difficulty can be avoided by using the following surprising

new sum rule [21] for products of Bessel functions discovered by Newberger in 1982 [12]
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Every infinite sum in Eqgs. (1) and (2) can be reduced to a single term using Eq. (6) and its
variations, as indicated previously by Swanson [13].
In the standard derivation of the plasma susceptibility [1], the infinite sums in Eq. (1) are

brought into the calculation by adopting the expansion
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for the purpose of carrying out the orbit integral along the unperturbed trajectories. Ac-

cording to Stix [1], this technique was first introduced by Montgomery and Tidman [14].



However, if every infinite sum in the final expression for the susceptibility defined in Eq. (1)
can be reduced to a single term, then the expansion in Eq.(7) may not be necessary after
all, and an alternate approach may lead directly to the more compact form for the plasma
dielectric tensor. In this paper, we show that this is indeed the case. We give a new deriva-
tion and a new expression for the plasma susceptibility without using infinite sums and
Newberger’s sum rule.

This new result is fundamentally due to a symmetry in the particle’s orbit that can be
exploited to simplify the integration along the unperturbed trajectories. This simplification
replaces the necessity of using Eq. (7). The paper is organized as follows. In Sec.Il, we
describe the symmetry that simplifies the integration along unperturbed trajectories. In
Sec. ITI, the derivation of the plasma susceptibility without using infinite sums is presented.
As a simple but important application of the new result, the asymptotic form of the full hot
plasma susceptibility for large z, is calculated for the first time for non-Maxwellian particle

velocity distributions that are gyrotropic but otherwise arbitrary.

II. SYMMETRY IN INTEGRATION ALONG UNPERTURBED TRAJECTORIES

For the linearized Vlasov-Maxwell equations in a constant magnetic field B =Be, = Be|,

the perturbed distribution function is obtained by integrating along the unperturbed orbits
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where k =kje+ky cosfle, +k, sinfe,, and Imw > 0. Without loss of generality, we choose
6 = 0. The cases for 6 # 0 can be obtained easily by a rotation [1]. When 6 = 0, the three

terms in the orbit integral in Eq. (8) can be reduced to a single term by means of the following



equations

g(p,2) = /000 exp [—izsin (¢ + Q1) + iwy ] dT (12)

1

:—/ exp [—izsin (¢ + s) +ias|ds ,
QJo

Wi o W — k‘”’U”

SEQT, CLEE—T, (13>
g—i = % /OOO exp [—izsin (¢ + s) + ias] [—iz cos (¢ + s)] ds , (14)
% = % /0 exp [—izsin (¢ + s) +das| [—isin (¢ + s)] ds . (15)

In terms of g(¢, z), the perturbed distribution function can be expressed as
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The standard approach in completing the orbit integral in Eq. (12) is to use Eq. (7) to expand
it into an infinite sum of Bessel functions, and the resulting plasma susceptibility is given
by Eq.(1). Here, we adopt a different approach by exploiting an important symmetry in
Eq. (12). The symmetry of interest is the discrete symmetry associated with the definition
of gyrophase ¢, i.e.,
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There are two advantages of Eq. (19), compared with its conventional form using the infinite
sum of Bessel functions. First of all, Eq. (19) replaces the infinite sum by a definite integral
over one gyroperiod, whose numerical calculation can be much more efficient. Secondly,
Eq. (19) explicitly displays the cyclotron resonances of all orders by the sin7a term in the

denominator of ¢y. The resonance condition is

sinwa = 0, or equivalently w — kv = nfl, (21)

where n is an integer.

III. SUSCEPTIBILITY WITHOUT INFINITE SUMS AND THE ASYMPTOTIC
FORM FOR LARGE =z

To calculate the susceptibility, we need to take the velocity moment of f; to obtain the

perturbed current in terms of the perturbed electric field. Some algebraic manipulation gives
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The susceptibility tensor x can therefore be expressed as
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The susceptibility y given by Eq. (27) is expressed in terms of double definite integrals over
one gyroperiod of the form f027T dry f027r d¢ ..., whereas the conventional result is expressed in
terms of infinite sums of products of Bessel functions. Obviously, Eq. (27) is preferable for
the purpose of numerical calculation, especially in circumstances where the infinite sums in
Eq. (1) converge slowly for large z.
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It turns out that the double integrals of the form [ dy fo% dg ... in every element of G

can be carried out using the familiar integral representation of a single Bessel function,

1

" or

2T
I () /0 daexp [—ima + iz sinal | (29)

where m is an integer, and the following less familiar but famous integral representation of



the products of Bessel functions due to Cauchy [15],
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For example, it follows that
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where a = (w — kjv)) /Q and z = kv, /Q. Detailed calculations of all the other elements of

G are given in Appendix A. The final result is
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The dependence on V' in the last column of S in Eq. (28) can be factored out to give a

compact expression for the plasma susceptibility, i.e.,
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To evaluate the plasma susceptibility according to Egs. (34) and (35), it is only necessary
to evaluate the Bessel function factors once, whereas the infinite sums of products of Bessel
functions are needed to be calculated if using the conventional expression in Eq. (1). Equa-
tions. (1) and (35) are particularly advantageous when |z| > 1 and the infinite sums converge
slowly. Depending on the value of 2z, the computational savings enabled by using this rep-
resentation can be several orders-of-magnitude.

To demonstrate a simple but important application of the result given in Eq.(34), we
calculate the asymptotic form of the plasma susceptibility for |z] — oo. It is necessary to
determine the asymptotic form of T only for large z, which can be easily calculated from
the asymptotic form of J, (z) displayed in Eq. (5). We obtain
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What is retained in Eq. (36) are the two leading orders of magnetic field effects for parti-
cles with large gyroradius. Obviously, this result is not accessible from the conventional

expression for x in Eq. (1) using infinite sums.

IV. CONCLUSIONS AND FUTURE WORK

We have shown that the susceptibility x of a hot, magnetized plasma can be derived with-
out using infinite sums of Bessel functions. The infinite sums appearing in the conventional
expression for x are replaced by definite double integrals over one gyroperiod. Further-
more, the double integrals can be carried out and expressed in terms of Bessel functions of
complex order. These results are of importance for the numerical evaluation of the plasma
susceptibility tensor. Instead of using the infinite sums over Bessel functions according to
the conventional expression in Eq. (1), it is only necessary to evaluate the Bessel functions

once according to the new result given in Eq.(34). For applications with large z, such as

10




alpha-particle dynamics interacting with low-hybrid waves, and the focusing of charged par-
ticle beams using a solenoidal magnetic field, the infinite sums in Eq. (1) converge slowly,
and the new results in Egs. (27)-(34) obviously have significant advantages. From Eq. (34),
it is straightforward to derive the asymptotic form for the plasma susceptibility for large z,
which is not accessible from the conventional representation of x in terms of infinite sums
of products of Bessel functions. Previous treatments of the large k, p asymptotic limit were
focused on electrostatic waves for thermal distributions of particles [13, 16, 17]

The basic technique developed in this paper may be applicable to other plasma physics
problems as well. In particular, we expect that calculations in gyrokinetic theory for general

plasma waves [18-20] can be significantly simplified using similar methods.
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APPENDIX A: CALCULATION OF THE G MATRIX

The double integral over fozw do fo% dry ... for every element of G can be carried out and
expressed in terms of Bessel functions. For example, G1; is given by Eq. (31). All the other

elements of G can be calculated by using similar methods. Some straightforward algebra
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gives
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To calculate Ga3, G2, G2, G33 we make use of the following simple variations of Eq. (29):
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In Egs. (A7)-(Al14) and in the subsequent analysis, the argument of Jy is 2zsin 3. For the

elements of G3, G2, Gao, and G33, we obtain
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