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Abstract

The susceptibility tensor of a hot, magnetized plasma is conventionally expressed in terms of

infinite sums of products of Bessel functions. For applications where the particle’s gyroradius is

larger than the wavelength, such as alpha particle dynamics interacting with lower-hybrid waves,

and the focusing of charged particle beams using a solenoidal field, the infinite sums converge slowly.

In this paper, a new derivation of the plasma susceptibility tensor is presented which exploits a

symmetry in the particle’s orbit to simplify the integration along the unperturbed trajectories. As

a consequence, the infinite sums appearing in the conventional expression are replaced by definite

double integrals over one gyroperiod, and the cyclotron resonances of all orders are captured by a

single term. Furthermore, the double integrals can be carried out and expressed in terms of Bessel

functions of complex order, in agreement with expressions deduced previously using the Newburger

sum rule. From this new formulation, it is straightforward to derive the asymptotic form of the

full hot plasma susceptibility tensor for a gyrotropic but otherwise arbitrary plasma distribution

in the large gyroradius limit. These results are of more general importance in the numerical

evaluation of the plasma susceptibility tensor. Instead of using the infinite sums occurring in the

conventional expression, it is only necessary to evaluate the Bessel functions once according to the

new expression, which has significant advantages, especially when the particle’s gyroradius is large

and the conventional infinite sums converge slowly. Depending on the size of the gyroradius, the

computational saving enabled by this representation can be several orders-of-magnitude.

PACS numbers: 52.25.Dg,52.35.Hr,52.50.Sw
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I. INTRODUCTION

The susceptibility tensor χ of a hot, uniform, magnetized plasma is conventionally ex-

pressed [1] in terms of infinite sums of products of Bessel functions, i .e.,

χ =
2πω2

p

ωΩ

∫ ∞

0

p⊥dp⊥

∫ ∞

−∞

dp‖

[

e‖e‖
Ω

ω

(

1

p‖

∂f0

∂p‖
−

1

p⊥

∂f0

∂p⊥

)

p2
‖ +

∞
∑

n=−∞

Ωp⊥U

ω − k‖v‖ − nΩ
Tn

]

,

(1)

where

Tn ≡

























n2J2
n

z2

inJnJ
′
n

z

nJ2
np‖

zp⊥

−
inJnJ

′
n

z
(J ′

n)2 −
iJnJ

′
np‖

p⊥

nJ2
np‖

zp⊥

iJnJ
′
np‖

p⊥

J2
np

2
‖

p2
⊥

























, (2)

and

z ≡
k⊥v⊥

Ω
, (3)

U ≡
∂f0

∂p⊥
+
k‖
ω

(

v⊥
∂f0

∂p‖
− v‖

∂f0

∂p⊥

)

. (4)

All symbols in Eqs. (1) and (2) have their usual meaning as defined in [1], i.e., f0

(

p⊥, p‖
)

is the particle distribution function with normalization 2π
∫ ∞

−∞
dp‖

∫ ∞

0
dp⊥p⊥f0

(

p⊥, p‖
)

= 1;

ω is the (complex) oscillation frequency with Imω > 0 corresponding to temporal growth;

k = k⊥ + k‖e‖ is the wave vector of the perturbations; B = Be‖ is the uniform applied

magnetic field; Ω = qB/mc is the gyrofrequency, where q and m are the particle charge and

mass, respectively, and c is the speed of light in vacuo; and ωp = (4πn0q
2/m)

1/2
, where n0

is the number density. In addition, Jn (z) is the Bessel function of the first kind of order n,

and J ′
n denotes (d/dz)Jn (z) .

The infinite sums in Eq. (1) converge with a reasonable speed for small gyroradius, i.e.,

|z| � 1. However, there are applications where the gyroradius is comparable to or larger than

the wavelength. One well-known example involves alpha particle dynamics interacting with

lower-hybrid waves [2–8]. Alpha particle dynamics plays an important role in the process
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of lower-hybrid current drive [9] and heating for burning plasmas. In this application, the

gyroradius of the alpha particles is typically much larger than the wavelength of the lower-

hybrid waves. Another example can be found in the focusing of charged particle beams

by a solenoidal field in particle accelerators [10] and ion-beam-driven high energy density

physics experimental devices [11]. In these systems, the gyroradius of the charged particles is

comparable to the transverse size of the system, and larger than the wavelength of collective

excitations with transverse mode numbers larger than one. For these applications with

|z| � 1, it is not practical to use Eq. (1) to calculate the plasma susceptibility. This is

because the infinite sums in Eq. (1) converge slowly for large z, which can be easily seen

from the asymptotic form of Jn(z) for large z,

Jν(z) ∼

(

2

πz

)1/2 [

cos
(

z −
ν

2
π −

π

4

)

−
4ν2 − 1

8z
sin

(

z −
ν

2
π −

π

4

)

]

+ ... . (5)

Equation (5) implies

Jn+1

Jn

∼
(n+ 1)2

n2
∼ 1 ,

Tn+1

Tn
∼ 1 ,

for large z and n. Fortunately, this difficulty can be avoided by using the following surprising

new sum rule [21] for products of Bessel functions discovered by Newberger in 1982 [12]

∞
∑

n=−∞

J2
n(z)

a− n
=

π

sin πa
J−a (z) Ja (z) . (6)

Every infinite sum in Eqs. (1) and (2) can be reduced to a single term using Eq. (6) and its

variations, as indicated previously by Swanson [13].

In the standard derivation of the plasma susceptibility [1], the infinite sums in Eq. (1) are

brought into the calculation by adopting the expansion

exp [iz sinφ] =

∞
∑

n=−∞

exp [inφ] Jn (z) (7)

for the purpose of carrying out the orbit integral along the unperturbed trajectories. Ac-

cording to Stix [1], this technique was first introduced by Montgomery and Tidman [14].
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However, if every infinite sum in the final expression for the susceptibility defined in Eq. (1)

can be reduced to a single term, then the expansion in Eq. (7) may not be necessary after

all, and an alternate approach may lead directly to the more compact form for the plasma

dielectric tensor. In this paper, we show that this is indeed the case. We give a new deriva-

tion and a new expression for the plasma susceptibility without using infinite sums and

Newberger’s sum rule.

This new result is fundamentally due to a symmetry in the particle’s orbit that can be

exploited to simplify the integration along the unperturbed trajectories. This simplification

replaces the necessity of using Eq. (7). The paper is organized as follows. In Sec. II, we

describe the symmetry that simplifies the integration along unperturbed trajectories. In

Sec. III, the derivation of the plasma susceptibility without using infinite sums is presented.

As a simple but important application of the new result, the asymptotic form of the full hot

plasma susceptibility for large z, is calculated for the first time for non-Maxwellian particle

velocity distributions that are gyrotropic but otherwise arbitrary.

II. SYMMETRY IN INTEGRATION ALONG UNPERTURBED TRAJECTORIES

For the linearized Vlasov-Maxwell equations in a constant magnetic field B =Bez = Be‖,

the perturbed distribution function is obtained by integrating along the unperturbed orbits

[1],

f1 (r,p, t) = −qei(k·r−ωt)

{∫ ∞

0

dτ eiβExU cos (φ+ Ωτ) + EyU sin (φ+ Ωτ) (8)

+Ez

[

∂f0

∂p‖
− V cos (φ− θ + Ωτ)

]}

,

V ≡
k⊥
ω

(

v⊥
∂f0

∂p‖
− v‖

∂f0

∂p⊥

)

, (9)

β ≡ −z [sin (φ− θ + Ωτ) − sin (φ− θ)] + ωkτ , (10)

ωk ≡ ω − k‖v‖ , (11)

where k =k‖e‖+k⊥ cos θ ex +k⊥ sin θ ey, and Imω > 0. Without loss of generality, we choose

θ = 0. The cases for θ 6= 0 can be obtained easily by a rotation [1]. When θ = 0, the three

terms in the orbit integral in Eq. (8) can be reduced to a single term by means of the following

4



equations

g (φ, z) ≡

∫ ∞

0

exp [−iz sin (φ+ Ωτ) + iωkτ ] dτ (12)

=
1

Ω

∫ ∞

0

exp [−iz sin (φ+ s) + ias] ds ,

s ≡ Ωτ , a ≡
ωk

Ω
=
ω − k‖v‖

Ω
, (13)

∂g

∂φ
=

1

Ω

∫ ∞

0

exp [−iz sin (φ+ s) + ias] [−iz cos (φ+ s)] ds , (14)

∂g

∂z
=

1

Ω

∫ ∞

0

exp [−iz sin (φ+ s) + ias] [−i sin (φ+ s)] ds . (15)

In terms of g(φ, z), the perturbed distribution function can be expressed as

f1 (r,p, t) = −qei(k·r−ωt)eiz sinφ

{

ExU

−iz

∂g

∂φ
+
EyU

−i

∂g

∂z
+ Ez

[

∂f0

∂p‖
g −

V

−iz

∂g

∂φ

]}

. (16)

The standard approach in completing the orbit integral in Eq. (12) is to use Eq. (7) to expand

it into an infinite sum of Bessel functions, and the resulting plasma susceptibility is given

by Eq. (1). Here, we adopt a different approach by exploiting an important symmetry in

Eq. (12). The symmetry of interest is the discrete symmetry associated with the definition

of gyrophase φ, i .e.,

g (φ, z) = g (φ+ 2π, z) . (17)

From Eq. (17), we obtain

g (φ, z) =
1

Ω

∫ ∞

0

exp [−iz sin (φ+ s+ 2π) + ia (s+ 2π)] e−i2πads

=
1

Ω
e−i2πa

∫ ∞

2π

exp [−iz sin (φ+ t) + ia (t)] dt

= e−i2πa

[

g −
1

Ω

∫ 2π

0

exp [−iz sin (φ+ t) + iat] dt

]

, (18)

which gives

g (φ, z) =
1

Ω

1

1 − ei2πa

∫ 2π

0

exp [−iz sin (φ+ γ) + iaγ] dγ (19)

=
c0
2π

∫ 2π

0

exp [−iz sin (φ+ γ) + iaγ] dγ,
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where

c0 ≡
−e−iaππ

iΩ sin πa
. (20)

There are two advantages of Eq. (19), compared with its conventional form using the infinite

sum of Bessel functions. First of all, Eq. (19) replaces the infinite sum by a definite integral

over one gyroperiod, whose numerical calculation can be much more efficient. Secondly,

Eq. (19) explicitly displays the cyclotron resonances of all orders by the sin πa term in the

denominator of c0. The resonance condition is

sin πa = 0, or equivalently ω − k‖v‖ = nΩ, (21)

where n is an integer.

III. SUSCEPTIBILITY WITHOUT INFINITE SUMS AND THE ASYMPTOTIC

FORM FOR LARGE z

To calculate the susceptibility, we need to take the velocity moment of f1 to obtain the

perturbed current in terms of the perturbed electric field. Some algebraic manipulation gives

j ≡ −
iω

4π
χ · E = q

∫

p⊥dp⊥dp‖dφ
(

v‖e‖ + v⊥ cosφex + v⊥ sinφey

)

f1

= jxex + jyey + j‖e‖ , (22)

where

jx = −ei(k·r−ωt)q22π

∫

p⊥dp⊥dp‖ v⊥

[

ExUG33 + EyUG32 + E‖

(

∂f0

∂p‖
G31 − V G33

)]

, (23)

jy = −ei(k·r−ωt)q22π

∫

p⊥dp⊥dp‖ v⊥

[

ExUG23 + EyUG22 + E‖

(

∂f0

∂p‖
G21 − V G23

)]

, (24)

j‖ = −ei(k·r−ωt)q22π

∫

p⊥dp⊥dp‖ v‖

[

ExUG13 + EyUG12 + E‖

(

∂f0

∂p‖
G11 − V G13

)]

, (25)
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and

Gij ≡
1

2π

∫ 2π

0

dφ eiz sinφ























g i
∂g

∂z

i

z

∂g

∂φ

g sinφ i
∂g

∂z
sinφ

i

z

∂g

∂φ
sinφ

g cosφ i
∂g

∂z
cosφ

i

z

∂g

∂φ
cos φ























. (26)

The susceptibility tensor χ can therefore be expressed as

χ =
2πω2

p

ωΩ

∫

p⊥dp⊥dp‖ S , (27)

S ≡ −iΩ

























p⊥UG33 p⊥UG32
∂f0

∂p‖
p⊥G31 − p⊥V G33

p⊥UG23 p⊥UG22
∂f0

∂p‖
p⊥G21 − p⊥V G23

p‖UG23 p‖UG12
∂f0

∂p‖
p‖G11 − p‖V G13

























. (28)

The susceptibility χ given by Eq. (27) is expressed in terms of double definite integrals over

one gyroperiod of the form
∫ 2π

0
dγ

∫ 2π

0
dφ ..., whereas the conventional result is expressed in

terms of infinite sums of products of Bessel functions. Obviously, Eq. (27) is preferable for

the purpose of numerical calculation, especially in circumstances where the infinite sums in

Eq. (1) converge slowly for large z.

It turns out that the double integrals of the form
∫ 2π

0
dγ

∫ 2π

0
dφ ... in every element of G

can be carried out using the familiar integral representation of a single Bessel function,

Jm (x) =
1

2π

∫ 2π

0

dα exp [−imα + ix sinα] , (29)

where m is an integer, and the following less familiar but famous integral representation of
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the products of Bessel functions due to Cauchy [15],

J−µ (z) Jµ (z) =
2

π

∫ π/2

0

dθ J0 (2z cos θ) cos (2µθ) (30)

=
1

2π
eiµπ

∫ 2π

0

dβ J0

(

2z sin
β

2

)

e−iµβ .

For example, it follows that

G11 =
1

2π

∫ 2π

0

dφ geiz sinφ (31)

=
c0
2π

∫ 2π

0

dφ
1

2π

∫ 2π

0

dγ exp [−iz sin (φ+ γ) + iaγ + iz sinφ]

=
c0
2π

∫ 2π

0

dγeiaγ 1

2π

∫ 2π

0

dφ exp [−iz sin (φ+ γ) + iz sin φ]

=
c0
2π

∫ 2π

0

dγeiaγ 1

2π

∫ 2π

0

dφ exp
[

2iz sin
(

−
γ

2

)

cos
(

−
γ

2
− φ

)]

=
c0
2π

∫ 2π

0

dγeiaγ J0

(

2z sin
γ

2

)

= −
π

iΩ sin πa
J−a (z) Ja (z) ,

where a =
(

ω − k‖v‖
)

/Ω and z = k⊥v⊥/Ω. Detailed calculations of all the other elements of

G are given in Appendix A. The final result is

G =





















−
π

iΩ sin πa
J−aJa −

π

2Ω sin πa

∂

∂z
(J−aJa)

1

izΩ

(

1 −
πa

sin πa
J−aJa

)

π

2Ω sin πa

∂

∂z
(J−aJa)

i

Ω

( π

sin πa
J ′
−aJ

′
a +

a

z2

) πa

2zΩ sin πa

∂

∂z
(J−aJa)

1

izΩ

(

1 −
πa

sin πa
J−aJa

)

−
πa

2zΩ sin πa

∂

∂z
(J−aJa)

a

iz2Ω

(

1 −
πa

sin πa
J−aJa

)





















,

or equivalently,

G =























−
1

iΩa
Q −

1

2Ωa
Q′ 1

izΩ
(1 −Q)

1

2Ωa
Q′ i

Ω

(

1

a
Q′ +

a

z2

)

1

2zΩ
Q′

1

izΩ
(1 −Q) −

1

2zΩ
Q′ a

iz2Ω
(1 −Q)























, (32)
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where

Q ≡
πa

sin πa
J−a(z)Ja(z) , Q′ =

πa

sin πa

∂

∂z
(J−aJa) . (33)

The dependence on V in the last column of S in Eq. (28) can be factored out to give a

compact expression for the plasma susceptibility, i.e.,

χ =
ω2

p

ωΩ

∫

2πp⊥dp⊥dp‖

[

e‖e‖
Ω

ω

p‖
p⊥

(

p⊥
∂f0

∂p‖
− p‖

∂f0

∂p⊥

)

+ p⊥UT

]

, (34)

T ≡























a

z2
(Q− 1)

−i

2z
Q′ 1

z
Q
p‖
p⊥

i

2z
Q′ aQ +

a

z2
−
ia

2
Q′

1

z
(Q− 1)

p‖
p⊥

ia

2
Q′ aQ

(

p‖
p⊥

)2























. (35)

To evaluate the plasma susceptibility according to Eqs. (34) and (35), it is only necessary

to evaluate the Bessel function factors once, whereas the infinite sums of products of Bessel

functions are needed to be calculated if using the conventional expression in Eq. (1). Equa-

tions. (1) and (35) are particularly advantageous when |z| � 1 and the infinite sums converge

slowly. Depending on the value of z, the computational savings enabled by using this rep-

resentation can be several orders-of-magnitude.

To demonstrate a simple but important application of the result given in Eq. (34), we

calculate the asymptotic form of the plasma susceptibility for |z| → ∞. It is necessary to

determine the asymptotic form of T only for large z, which can be easily calculated from

the asymptotic form of Ja (z) displayed in Eq. (5). We obtain

T ∼
T1

z
+

T2

z2
+ ... , (36)
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where

T1 =























0 0 −
p‖
p⊥

0 aA −
iaA

π
cos 2z

−
p‖
p⊥

iaA

π
cos 2z

aA

π
(sin 2z + cos aπ)

(

p‖
p⊥

)2























, (37)

T2 =

























a −
iA

π
cos 2z

A

π
(sin 2z + cos aπ)

p‖
p⊥

iA

π
cos 2z a

(

−
A (4a2 + 3)

4π
cos 2z + 1

)

iaA

2π
(4a2 sin 2z + cos aπ)

A

π
(sin 2z + cos aπ)

p‖
p⊥

−
iaA

2π
(4a2 sin 2z + cos aπ)

aA (4a2 − 1)

4π
cos 2z

(

p‖
p⊥

)2

























,

(38)

and

A ≡
πa

sin πa
. (39)

What is retained in Eq. (36) are the two leading orders of magnetic field effects for parti-

cles with large gyroradius. Obviously, this result is not accessible from the conventional

expression for χ in Eq. (1) using infinite sums.

IV. CONCLUSIONS AND FUTURE WORK

We have shown that the susceptibility χ of a hot, magnetized plasma can be derived with-

out using infinite sums of Bessel functions. The infinite sums appearing in the conventional

expression for χ are replaced by definite double integrals over one gyroperiod. Further-

more, the double integrals can be carried out and expressed in terms of Bessel functions of

complex order. These results are of importance for the numerical evaluation of the plasma

susceptibility tensor. Instead of using the infinite sums over Bessel functions according to

the conventional expression in Eq. (1), it is only necessary to evaluate the Bessel functions

once according to the new result given in Eq. (34). For applications with large z, such as
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alpha-particle dynamics interacting with low-hybrid waves, and the focusing of charged par-

ticle beams using a solenoidal magnetic field, the infinite sums in Eq. (1) converge slowly,

and the new results in Eqs. (27)-(34) obviously have significant advantages. From Eq. (34),

it is straightforward to derive the asymptotic form for the plasma susceptibility for large z,

which is not accessible from the conventional representation of χ in terms of infinite sums

of products of Bessel functions. Previous treatments of the large k⊥ρ asymptotic limit were

focused on electrostatic waves for thermal distributions of particles [13, 16, 17]

The basic technique developed in this paper may be applicable to other plasma physics

problems as well. In particular, we expect that calculations in gyrokinetic theory for general

plasma waves [18–20] can be significantly simplified using similar methods.
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APPENDIX A: CALCULATION OF THE G MATRIX

The double integral over
∫ 2π

0
dφ

∫ 2π

0
dγ ... for every element of G can be carried out and

expressed in terms of Bessel functions. For example, G11 is given by Eq. (31). All the other

elements of G can be calculated by using similar methods. Some straightforward algebra

11



gives

G21 =
1

2π

∫ 2π

0

dφ g sinφeiz sinφ (A1)

=
c0
2π

∫ 2π

0

dφ
1

2π

∫ 2π

0

dγ exp [−iz sin (φ+ γ) + iaγ + iz sin φ] sinφ

=
c0
2π

∫ 2π

0

dγeiaγ 1

2π

∫ 2π

0

dψ exp
[

2iz sin
(

−
γ

2

)

cosψ
]

sin
(

ψ −
γ

2

)

=
c0
2π

∫ 2π

0

dγeiaγ 1

2π

∫ 2π

0

dψ exp
[

2iz sin
(

−
γ

2

)

cosψ
]

cosψ sin
−γ

2

=
c0
2π

∫ 2π

0

dγeiaγ 1

2i

∂

∂z

{

1

2π

∫ 2π

0

dψ exp
[

2iz sin
(

−
γ

2

)

cosψ
]

}

=
π

2Ω sin πa

∂

∂z
[J−a (z) Ja (z)] ,

G12 =
i

2π

∫ 2π

0

dφ
∂g

∂z
eiz sin φ (A2)

=
∂

∂z

[

i

2π

∫ 2π

0

dφgeiz sin φ

]

−
i

2π

∫ 2π

0

dφgeiz sin φi sinφ

=
∂

∂z
[iG11] +G21 =

i

2

∂

∂z
G11

= −
π

2Ω sin πa

∂

∂z
[J−a (z) Ja (z)]

= −G21 ,

G31 =
1

2π

∫ 2π

0

dφ g cosφeiz sin φ (A3)

=
c0
2π

∫ 2π

0

dφ
1

2π

∫ 2π

0

dγ exp [−iz sin (φ+ γ) + iaγ + iz sinφ] cosφ

=
c0
2π

∫ 2π

0

dγeiaγ 1

2π

∫ 2π

0

dψ exp
[

2iz sin
(

−
γ

2

)

cosψ
]

cos
(

ψ −
γ

2

)

=
c0
2π

∫ 2π

0

dγeiaγ 1

2π

∫ 2π

0

dψ exp
[

2iz sin
(

−
γ

2

)

cosψ
]

cosψ cos
γ

2

=
c0
2π

∫ 2π

0

dγeiaγ −1

iz

∂

∂γ

{

1

2π

∫ 2π

0

dψ exp
[

2iz sin
(

−
γ

2

)

cosψ
]

}

=
c0
2π

∫ 2π

0

dγeiaγ −1

iz

∂

∂γ
J0

(

2z sin
γ

2

)

=
1

izΩ

[

1 −
πa

sin πa
J−a (z) Ja (z)

]

,
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and

G13 =
i

z

1

2π

∫ 2π

0

dφ
∂g

∂φ
eiz sin φ (A4)

=
1

2π

∫ 2π

0

dφ g cos φeiz sinφ

= G31 .

To calculate G23, G32, G22, G33 we make use of the following simple variations of Eq. (29):

J ′
0 (x) =

i

2π

∫ 2π

0

dα exp [ix sinα] sinα =
i

2π

∫ 2π

0

dα exp [ix cosα] cosα , (A5)

J ′′
0 (x) =

−1

2π

∫ 2π

0

dα exp [ix sinα] sin2 α =
−1

2π

∫ 2π

0

dα exp [ix cosα] cos2 α , (A6)

and

J0 = J0

(

2z sin
γ

2

)

, J ′′
0 +

J ′
0

2z sin
(

γ
2

) + J0 = 0 , (A7)

∂J0

∂z
= J ′

02 sin
(γ

2

)

, (A8)

∂2J0

∂z2
= J ′′

0 4 sin2
(γ

2

)

, (A9)

∂J0

∂γ
= J ′

0z cos
(γ

2

)

, (A10)

∂2J0

∂γ2
= J ′′

0 z
2 cos2

(γ

2

)

− J ′
0

z

2
sin

(γ

2

)

, (A11)

J ′′
0 sin2 γ

2
=

1

4

∂2J0

∂z2
, (A12)

J ′′
0 cos2 γ

2
=

1

z2

∂2J0

∂γ2
+

1

4z

∂J0

∂z
, (A13)

∂2J0

∂z∂γ
= J ′′

0 2z sin
(γ

2

)

cos
(γ

2

)

+
∂J0

∂γ

1

z
. (A14)
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In Eqs. (A7)-(A14) and in the subsequent analysis, the argument of J0 is 2z sin γ
2
. For the

elements of G23, G32, G22, and G33, we obtain

G23 =
c0
2π

∫ 2π

0

dφ
1

2π

∫ 2π

0

dγ exp [−iz sin (φ+ γ) + iaγ + iz sinφ] cos (φ+ γ) sin φ

=
c0
2π

∫ 2π

0

dγeiaγ −1

2π

∫ 2π

0

dψ exp
[

2iz sin
(

−
γ

2

)

cosψ
]

sin
(γ

2

)

cos
(γ

2

)

=
c0
2π

∫ 2π

0

dγeiaγ(−1)J0 sin
(γ

2

)

cos
(γ

2

)

=
c0
2π

∫ 2π

0

dγeiaγ 1

2z

∂2J0

∂z∂γ

=
1

2zΩ

πa

sin πa

∂

∂z
[J−a (z) Ja (z)]

=
a

z
G21 , (A15)

G32 =
c0
2π

∫ 2π

0

dφ
1

2π

∫ 2π

0

dγ exp [−iz sin (φ+ γ) + iaγ + iz sinφ] sin (φ+ γ) cos φ

=
c0
2π

∫ 2π

0

dγeiaγ −1

2π

∫ 2π

0

dψ exp
[

2iz sin
(

−
γ

2

)

cosψ
]

sin
(γ

2

)

cos
(γ

2

)

= −G32 , (A16)

G22 =
c0
2π

∫ 2π

0

dφ
1

2π

∫ 2π

0

dγ exp [−iz sin (φ+ γ) + iaγ + iz sinφ] sin (φ+ γ) sin φ

=
c0
2π

∫ 2π

0

dγeiaγ −1

2π

∫ 2π

0

dψ exp
[

2iz sin
(

−
γ

2

)

cosψ
]

[

1 +
1

2
cos γ +

1

2
cos 2ψ − 2 cos2 ψ

]

= G11 +G33 +
c0
2π

∫ 2π

0

dγeiaγ 1

2π

∫ 2π

0

dψ exp
[

2iz sin
(

−
γ

2

)

cosψ
]

[

−2 cos2 ψ
]

= G11 +G33 +
c0
2π

∫ 2π

0

dγeiaγ 2J ′′
0

= G11 +G33 +
2c0
2π

∫ 2π

0

dγeiaγ

[

1

4

∂2J0

∂z2
+

1

z2

∂2J0

∂γ2
+

1

4z

∂J0

∂z

]

= G11 +G33 + 2c0
1

4

[

∂2

∂z2
+

1

z

∂

∂z

]

[

eiaπJ−a (z) Ja (z)
]

+
1

z2

2c0
2π

∫ 2π

0

dγeiaγ ∂2J0

∂γ2

=
i

Ω

[ π

sin πa
J ′
−a (z) J ′

a(z) +
a

z2

]

, (A17)
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and

G33 =
c0
2π

∫ 2π

0

dφ
1

2π

∫ 2π

0

dγ exp [−iz sin (φ+ γ) + iaγ + iz sin φ] cos (φ+ γ) cosφ

=
c0
2π

∫ 2π

0

dγeiaγ 1

2π

∫ 2π

0

dψ exp
[

2iz sin
(

−
γ

2

)

cosψ
] [

cos2 ψ − sin2
(γ

2

)]

=
c0
2π

∫ 2π

0

dγeiaγ

{

−J ′′
0

[

2z sin
(γ

2

)]

− J0

[

2z sin

(

−γ

2

)]

sin2
(γ

2

)

}

=
c0
2π

∫ 2π

0

dγeiaγ

[

−
1

z2

∂2J0

∂γ2

]

=
a

iΩz2

[

1 −
πa

sin πa
J−a (z) Ja (z)

]

=
a

z
G31 . (A18)
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