

Quasi-Experimental Designs for Studying QI Interventions: Strengths & Pitfalls

Rodney A. Hayward, MD
VA Ann Arbor HSR&D
Center of Excellence

The Challenge of QI Research

- Need to evaluate system changes when managers & providers:
 - Are overwhelmed
 - Have external accountabilities
 - Are evaluated based upon what is achieved
 - Often feel undervalued
- 2. Large scale implementation at multiple sites
- Maintain methodological rigor
- 4. Everyone wants immediate results

Why Is It So Difficult to Do Effectiveness Studies Using RCT Designs?

Patient self selection (consent)

Ethical and political issues

Often want to change the entire system

Study Question

What are the costs and benefits of implementing a comprehensive diabetes case-management system?

Why not an RCT?

 Randomizing patients does not answer the question and is probably not feasible.

 Randomizing enough clinics is probably prohibitively expensive.

An RCT to Examine Wide-Scale, Real-World DM Case-Management

Pros:

Gold standard for efficacy evaluation

Cons:

- Would need to either:
 - Randomize > 20-40 sites, or
 - Randomize within sites

Aren't Quasi-Experiments a Weak Methodology?

Most published QE's are terrible, but

Can produce strong evidence

Inherent Shortcoming of QE's

Can never eliminate the possibility of confounding

(Threat to Internal Validity)

What is a Quasi-Experiment?

An intervention is studied but

1. Receipt of the intervention is non-random,

or

2. Randomized units are too few to be analyzed as random effects (<10-20 per intervention group)

Common Quasi-Experimental Designs

Pre-Post comparison

Time-series designs

- Non-random (non-equivalent) comparison groups
- Preference allocation

Simple Pre-Post Design

Intervention Group:

Time Series Analysis

Intervention Group:

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow X \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$$

Non- randomized control groups

Intervention group

$$0 \rightarrow X \longrightarrow 0$$

$$0 \rightarrow X \longrightarrow 0$$

Comparison Group

$$0 \longrightarrow 0$$

$$0 \longrightarrow 0$$

Common Pitfalls that Can Usually Be Addressed

Regression towards the mean

 Confounding due to temporal or site-specific effects/events

Simple Pre-Post Design

Intervention Group:

An Evaluation of An Intervention (Pre-Post)

Select 1000 people with A1c > 9%

 At 6 months, A1c decreased by 1.5 points (p < 0.001)

Regression Towards the Mean

Regression Towards the Mean

Why Does Regression towards the Mean Occur

 Imprecise measurement leads to both misclassification errors and over-estimation of population variance or

 Averaging over time decreases population variance

When Will Regression towards the Mean Occur

Whenever:

 Baseline measures are imperfectly correlated with follow-up measures (in the absence of intervention),

AND

2) You preferentially sample subjects that are above or below the mean.

How to Prevent Regression towards the Mean Biasing Results

- Do not sample based upon baseline values (you do not need to intervene on the entire sample, however)
- Use a control group, or
- Use time-series analyses (increase baseline replicates)

How Big Can Regression to the Mean Be?

$$P_{rm} = 100 (1-r)$$

P_{rm} = % regression towards mean

r = correlation of pre-post measures

How Big Can Regression to the Mean Be?

$$P_{rm} = 100 (1-r)$$

P_{rm} = % regression towards mean

r = correlation of pre-post measures

```
If r = 1, then no regression
If r = 0.5, then 50% regression towards mean
If r = 0, then complete regression
```

Precision of Baseline Measurement is Critical

Replicate measures to estimate reliability

 Measurements over time to estimate temporal stability or trends

Time Series Analysis

Intervention Group:

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow X \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$$

Time-series trial

Transfer & Impulse-Response Functions (Box-Jenkins, dynamic regression, etc)

- Examines for 2 things
 - Abrupt change
 - Change in slope of temporal changes

Time-series trial

Non- randomized control groups

Intervention group

$$0 \rightarrow X \longrightarrow 0$$

$$0 \rightarrow X \longrightarrow 0$$

Comparison Group

$$0 \longrightarrow 0$$

$$0 \longrightarrow 0$$

Difference-in-Differences Estimation

FIGURE 11.1 The Differences-in-Differences Estimator

The post-treatment difference between the treatment and control groups is 80 - 30 = 50, but this overstates the treatment effect because before the treatment Y was higher for the treatment than the control group by 40 - 20 = 20. The differences-in-differences estimator is the difference between the final and initial gaps, so that $\hat{\beta}_1^{diffs-in-diffs} =$ (80 - 30) - (40 - 20) = 50 - 20 = 30.Equivalently, the differences-in-differences estimator is the average change for the treatment group minus the average change for the control group, that is, $\hat{\beta}_1^{\text{diffs-in-diffs}} = \Delta \overline{Y}^{\text{treatment}} - \Delta \overline{Y}^{\text{control}} =$ (80 - 40) - (30 - 20) = 30.

JH Stock & MW Watson. Introduction to Econometrics

A Couple of Other QE Designs

Cross-Lagged Designs

(Tries to infer causality by examining temporal correlations between two variables)

Regression-Discontinuity Design

(Allows statistically robust design even if you preferentially offer the intervention to outliers)

Regression-Discontinuity Design

 Allows more statistically accurate assessment of studies that target interventions preferentially to those who are most likely to need (and benefit) from the intervention

 Key issue = Measure all subjects pre and post, but preferentially intervene on those with greater need for the intervention

Two Ways to Enhance Internal Validity

- Qualitative Evaluations for:
 - Evaluations of confounders
 - Examination of pathways

 Quantitative evaluation of pathways (intervening variables)

Designs For When Everyone Needs to Get an Intervention

Randomize who gets the intervention first

Randomize two interventions with different outcomes

QI Research as A Partnership

Respect

Understanding

Sharing Credit

Partnership Issues

 Your Partners will usually be evaluated on tangible results

Unhappy constituents can get them fired

They are often overwhelmed with other tasks

Study Question

What are the costs and benefits of implementing a comprehensive diabetes case-management system?

Basic Design Issues

- Unit of intervention allocation (doctor, clinic half-day, site?)
- Pre-Post, Time-series, Control sites?
- Baseline data?
- Intervening variable?
- Qualitative Evaluations?
- Partnership Issues?

Key Points

- QE's are often the optimal design for answering policy-relevant effectiveness questions
- QE's can be very strong designs, especially if:
 - Combine time-series & comparison group designs
 - Qualitative examination of micro-environment
 - Examine pathways (intervening factors)

Cyber Seminars

Today's session was recorded and will be available online!

Check <u>hsrd.webex.com</u> for the archived version of this session!

For more information on HSRD Cyber Seminars visit

www.hsrd.research.va.gov/for_researchers/cyber_seminars/