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1 Introduction

We propose a novel methodology based on the concept of Bayesian network (BN, seegCalydlD99) for the estimation of

a joint probability distribution of a set of categorical variables when samples are drawn according to complex survey designs.
Note that, restricting ourselves to categorical variables, the previous aim corresponds to estimation of a contingency table, a
very frequent problem in Official Statistics.

BNs are graphical devices largely used in many different scientific contexts, such as artificial intelligence and multivariate
statistics (Neapolitan, 2004). However, when estimating and using BNs, observations have always been considered as i.i.d.
generations from a suitable joint distribution function. Up to now, BNs have never been defined and applied when sampling
from finite populations.

This paper shows that BNs can be easily adapted to the context of finite survey sampling via the definition of a suitable additional
variable, in the following denoted with D, representing the survey design. Heng®) will be a categorical variable with as

many states as the different inclusion probabilities of first order. The BN representation allows the definition of a much larger
class of estimators, of the model assisted type (Serdalet al, 1992). Also, the possibility to use poststratification methods

and, in general, integration of different surveys is illustrated.

1.1 Bayesian networks

Despite the name, the term ‘Bayesian’ does not refer to the Bayesian inferential paradigm. A Bayesian network is just a
graphical and numerical representation of a joint distribution of a set of variaptgs, .., X)) say. Hence, a BN is the
objective of the inference, which can be determined under either a likelihood based or a Bayesian procedure, see Neapolitan
(2004) and references therein. The term Bayesian is due to an efficient information propagation algorithm based on the Bayes
theorem. This characteristic will be crucial, for instance, when applying poststratification (Section 2.4). A BN is characterized
by: (i) a directed acyclic graph (DAG) showing the set of dependencies among variables and (ii) an inferential engine to make
inference on the parameters of the model. A DAG is composed of nodes, each node representing a variable, and edges, each
edge is an arrow linking a pair of nodes (for basics and definitions on DAGs and BNs see for instance Jensen, 1996). Cycles are
forbidden, in the sense that, following the direction of the arrows it is impossible to start from a node and end up in it. When
two nodesX; and.X; are connected by an arraii, j) pointing fromX; to X, the two nodes are probabilistically dependent

and.X; is said to be a parent of ;. Each node has attached the conditional distribution of the corresponding variahle;,say

given its parentga(X;). This representation allows the joint distribution(df:, ..., X}) to be factorized according to the
dependencies shown in the DAG:

.
P(Xy,.... Xp) = [[ P(Xjlpa(X;)), 1)
j=1

wherepa(X ;) can possibly be the empty set (in this cd3eX;|pa(X;)) = P(X;)). Once the BN has been estimated, its
modular structure can be exploited to apply fast and efficient algorithms. For instance, the effect of changes in the distribution
of some of the variables on the other variables can be easily computed (see Section 2.3). The interpretation of a BN in terms
of the probabilistic relations among the variables can be described by the networks in Figure 1. Network (1), known also as
‘complete network’, implies that each variable is connected with the others. Network (2) shows independBnaeddf

given A. Network (3) shows marginal independence betwBeandC' but conditional dependence betwerandC' given A.

Network (4) shows independence between all the variables.

As already anticipated, both the structure of the BN (i.e. the set of edges) and the parameters of the distributions in (1) can be
estimated under either a likelihood based or a Bayesian perspective. In the following, we will assume the structure of the BN as
given. Given the structure, parameters will be estimated according to appropriate finite population estimators. Note that we will
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Figure 1: Four possible network structures for the nddesB, C). Note that redirections of some arrows in networks (1) and
(2) produce equivalent joint distribution functions

not consider explicitly any model based assumption, hence the estimators cannot be justified under either a likelihood based
or a Bayesian approach. However, the parameter estimates will resemble those determined under maximum likelihood. This
allows the use of usual software tools for computing probability distributions in BNs (as Hugip; \\www. hugin. com).

2. BN and finite populations
Let us consider a finite population &f units, and let(x;1,...,x), ¢ = 1,..., N, be the values of variables of interest,

(X1,...,Xy), of the population units. As already stated, we will restrict only to categorical variables. In this case, the joint
distribution function corresponds to the relative frequency distribution computed on the population:

N
1
P((L‘17-"axk):Nzlwl,...,wk(xil7'-')mik)7 (2)
=1
wherel,, . .. (zi1,...,x;) is the indicator function.
Assume that a random samdeof n units is drawn fro the population according to a sampling design that assigns a probability
of inclusionr; to each unit = 1,..., N. Letw;, i € S, be the final weight based on the sampling strategy (i.e. sampling
design and estimator). The usual estimator of the joint distribution function (2) is:
. ws
P(ay,...,xp) =Y Lo (@it Tik) =——— ()
iGZS ' i dies Wi

henceforth the Direct Joint (DJ) estimator. Note that the DJ estimator is a ratio estimator, which corresponds to a Horwitz—
Thompson estimator whey, s w; = N. The DJ estimator can equivalently be rewritten with the help of a particular BN.
This is just one of the possible estimators that the BNs can define. In order to show all of them, it is necessary to highlight
the role played by the weights; in (2). Let.SD be an additional categorical variable assuming as many states as the different
survey weights, sayl. Letw,), h = 1,..., H, be theSD statess;, be the set of labels of the sample units with= wy,),

andny, be the number of units igy,. SD is associated to the marginal probability distribution given by the fraction of the total
sample weight associated to the unitgjn

EieSh Wi . nhw(h)

P(SD = h) = - ,
( Yieswi Y, MW (h)

h=1,... H.

Given that information on the survey design is completely containgd’inestimators computed give$D do not depend on
the survey weights any more. For instance, the estimators of the marginal and conditional frequencies of a variaBle given
are:

~ i Iz Ty ~ i€s Iwu oy \Lius Tiv
Np ZZESS Imﬂ (LL‘“))
The DJ estimator (3) can consequently be rewritten via the following factorization:
. A Ny Dics, Lo (Ti) Dies, Luyas (Tin, Tiz) Y icsy, Lovray (@it - Tik)
P(Jil,...,l‘k) = Z H H Vi
W1 Dohe1 NAW(R) np Y icsy, La (Ti1) Diesy Lovvan s (Tits oo, Tik—1)

H k
= ZP(SD:h)P(X1:$1|SD)HP(Xj:.Tj‘SD:h,Xl:Il,...,Xj_lzxj_l). (4)
h=1 Jj=2
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Figure 2: Eight possible BN structures for the nodé®, X, Y, 7)

The factorization in (4) corresponds to a particular BN for the variaf#d3, X1, ..., X}): the clique (see Figure 1(1)). As a

matter of fact, this is the most complex model {8tD, X1, ..., Xi). When some of these variables are not directly connected

(for marginal independence or conditional independence), the complete network is an overparameterized model. Hence, the
usual DJ estimator might be less efficient than the one that reproduces the actual dependence model among the variables. For
the sake of simplicity, lefX, Y and Z be three variables of interest asd the node representing the survey design. Figure

2 shows 8 different BNs for these variables. The BN (1) shows the already discussed complete network. The other networks
are simplified in the sense that some of the arrows do not appear. Note that it may happen that a variable of interest does
not admitSD as a parent. In order to take into account the sample weights also for these variables, the definition of a BN
based estimator of the joint probability distribution would consider 4 different groups of variables (a much simplified BN based
estimator, which disregards sample weights for variables unconnected itfs in Ballin et al. 2005). The first two groups

are the descendants 80, while the other two groups are composedsd non descendants.

Type (a) nodes The nodes of type (a) are all those nodes wiih among their parents. In general, denoting wittthe set of
labels of the variables of type (a), the estimator of the joint distribution of n¥dess:

H

P(Xa)=) P(SD=h) || P(Xalpa(Xa)). (5)
h=1 acA

In Figure 2, networks (1), (2) and (3) have nodes only of type (a), while networks (4), (5), (6) and (7) are such #at just

andZ are type (a). For instance the estimator of the joint distributiaofY, Z) for network (1),}51(377 Yy, z), is defined
by (3) or, equivalently, by (4), while the estimators for networks (2) and (3) are respectively:

H
Po(a,y,2) = 3 =) Sics, Lo(@) Yica, Ty(Wi) Yics, 1=(2i)
h=1 2211 NpW(h) np np n,
H
Py(z,y,2) = Z Wy Dies, Lo(Ti) Dics, Ly(Wi) Dics, Loy=(is i, 2i)
3 2 -
= S nhw nh nh Dics, Loy(Tisyi)

The estimator of théX, Z) distribution for networks (4), (5), (6) and (7) are respectively:

p) (2, 2) = Z NhW(n) Ziesh I (z) Ziesh, Ipo (i, 2i)

el SRE AR S S Yies, Lo(mi)
PO (2, 2) = XH: W) Dicsy, Lo(@i) Yiey, L2(21)
, h=1 ZhH:1 ThW(h) " "h ’

H
P(6)(5L‘, z\y) _ Z NpW(p) Ziesh, Ix(xl) Ziesh Iyz(yiv ZZ)

h=1 Zf:l N hW(h) Th ZiESh I’y(yz‘) ’



Figure 3: A BN structure for variablesSD, X1, ..., Xs

H
P (z,2]y) = Z hW(h) Ziesh I (i) Ziesh Loy (i, i, %)
- . TR SR PR e
h=1 Zh:l NhW(h) h icsy, toy\Ti, Yi
Type (b) nodes A node of type (b) has at least a type (a) ancestorSdtis not one of its parents. For instance, networks (4)

and (5) are such thaf is of type (b). In this case, we take as estimators of the joint distribution function for networks (4)
and (5) respectively:

H
: : W) Dics, luz(Wis 2i)
Py(z,y,2) ZP(4)(:L’,z) 7
hgl ZhH:1 nhw(h) ZiES;L IZ (Z’L)

H
: p Wy Dies, Ty (Yir %)
Ps(z,y,2) = p®) (z,2)

;;1 S nhwy 2oies, L2(2)

In order to get these estimators, we implicitly add a fictitious arrow fi®bh to each type (b) node and estimate its
distribution with the survey weights, distinctly from type (a) nodes.

Type (c) nodes This group consists of all those non descendantsidfconnected t& D by a non directed path. For instance,
Y in networks (6) and (7) is a type (c) node. Also in this case, add a fictitious arrowSi0rto the type (c) nodes and
estimate their distribution separately from type (a) and (b) nodes. For networks (6) and (7) the estimators are

H
~ NpW(k 21 s I (yl) ~
Po,y,2) = Y g SIE BEL PO (g 1)y,
ol 2ah=1 W (h) h
A ul NpW(h) Ziez; Iy(yi) -
P7(x,y,z) = — P(7)(lvz|y)
fi]
o1 2ah=1 ThW(h) h

Type (d) nodes This group consists of all those nodes (or groups of nodes) unconnectef Bijttype (a), (b) and (c) nodes.
For instance, network (8) consists of 3 different isolated nodes. Again, add a fictitious arrow focm each isolated
node or group of nodes and estimate them distinctly. The estimator of the joint distribution defined via the BN in network
(8) is:

Pg(x y,2) = EH: NpW(R) Ziesh Ix(xi)] [EH: NpW(R) Ziesh, Iy(yi)] [EH: NhW(hn) Ziesh I.(2i)
Y, %) = i3 " 2§
he1 Doh=1 MhW(h) "h he1 2h=1MhW(h) h he1 2h=1MhW(h) "h

While nodes of type (a) form always a single factor that should be marginalized with resp#ot the other groups may be
partitioned in distinct subgroups (as in the example for network (8) in Figure 2). In general these subgroups are separated by
type (a) or (b) nodes, while for the nodes in the same subgroup it is possible to find a path composed just of nodes of the same
subgroup connecting any pair of nodes. An example is presented in Figure 3. Here the nodes are of the followitg types:
and X, are type (a);X3 is type (b); X4 and X5 are first type (c) subgroup¥s is a second type (c) subgroui;; and Xg are

the only type (d) group. According to this partition, the joint distribution function should estimate the following components:
P(X1, X3|Xy), P(X3|Xs, Xg), P(X4, X5), P(Xg), P(X7, X3).



Network [:)1 PQ Pg P4 p5 p@ Py Py
3559 63.84 39.27 5993 7849 8342 58.16 98.89
31.39 1834 26.74 49.64 48.09 188.44 19456 250.07
3476 53.06 31.47 13596 143.86 150.52 133.87 152.25
34.63 749.77 53.98 23.80 68.12 59.03 44.49 765.77
3599 4556 31.65 2539 23.81 26.80 32.57 158.67
3452 3188 29.39 3130 29.8321.17 26.64 76.06
36.80 38.30 31.83 27.06 4096 42.9330.50 28.35
43.27 1580 37.01 27.78 2322 23.61 37.1915.69
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Table 1. Average of the chi-square distances of the actual and estimated joint distribution of the 8 populations generated
according to the 8 networks of Figure 2.

In general, letl’, V, andW be the number of these subgroups respectively for type (b), (¢) and (d) nodes. Furthgr, let
t=1,....,7,C,,v=1,...,VandD,,w = 1,..., W the set of labels of the variables in each subgroup. Then, the general
form of the estimator based on the BN is:

P(Xy,....Xx) = PXuxXs,....X5.,Xc,,.... X, XDy, XDy )

W Vv T

- |11 P(XDw)] I 2Xc.) {P(XA|X01, Xey) HP(XBtXA,XCI,...,XCV)] 6)
:wv‘:/l . v=1 A v t=1 A

= |1 >_Pwsp) I P(XalSD,pa(Xa)) [H > P(SD) P(XCSD,pa(Xc))]
Lw=1 h=1 d€D,, v=1h=1 ceCly
T H ) T H R
> PsSD)]] P(Xa|pa<Xa))] lH > Psp) ] P(Xb|SD,pa<Xb))] :
Lh=1 a€A t=1h=1 beB;

As a matter of fact, the distinction among the 4 different types of nodes seems unnecessary. If a node is not directly linked with
SD, its (conditional) distribution should be estimated without any marginalization with respB¢6tD). In other words, they

should be estimated without weighting the units with their sample weights. However, this approach would be correct when
independence holds in the strict sense of its definition (the joint distribution factorizes in the product of the marginal ones).
Although the data generating model fulfills independence in the strict sense, the population generally just fits this model (i.e. if

a test had been applied, the hypothesis of independence would have not been rejected). The use of unweighted estimators for
type (b), (c) and (d) nodes is illustrated in Bal&hal. (2005).

Note that, in any case, the BN based estimator corresponds to a change in the form of the estimator suggested (or in other words
assistedl by the variable dependence model (the structure of the BN).

2.1 Comparison via a Monte Carlo simulation

Eight populations of 10 000 units with variablés (2 states)Y (3 states) and (2 states) have been generated according to

the 8 networks in Figure 2. From each population, 500 samples with 1 000 units have been extracted with a simple stratified
sampling design with three strata. Table 1 shows the results of the average chi-square distance between the actual frequency
distribution in the population of 10 000 units and the estimated ones. The BN based estimator always wins. It is also robust
against mild misspecification of the BN. For instance, for the population generated from network (5) the egtinsmsecond

best. Note also that the usual DJ estima®piperforms almost identically in all the 8 populations. On the contrary, the other

BN based estimators can be very inefficient when the population structure is markedly different from the one that defines the
estimator.

2.2 Relationship between the BN based estimators and the DJ estimator

Which is the relation between the DJ estimator (3) and the BN estimator (6)? Is the BN estimator a linear estimator in the
sample weights for at least some marginal distributions? The following proposition details necessary and sufficient conditions
for equality between the results of the two estimators.

Proposition 1 - LetP(X) be the BN based estimator of the joint distribution functioXXof= (X, ..., X;). LetX,,; be a
subvector ofX. LetP(Xsub) be the estimator of the joint distribution &,,,;, obtained through marginalizationlf’(Xsub)



coincides with the one defined by the DJ estimator if and only if:

(1) X,up is composed of variables of the same type and in the same subgroup;

(2) X,up is in a clique withS D (after the inclusion of the fictitious arrows for nodes of type (b), (c) and (d));

(3) each pair of parents dX ,,;, and of its ancestors is joined by an arrow;

(4) X5 admits only ancestors of its type.

Issue (4) implies that any marginal and joint distribution involving type (b) nodes can never be estimated as DJ estimators. As
an example, the BN in Figure 3 implies th¥{, X», (X4, X5), X¢ and(X7, Xg) are the maximal tables that can be estimated
according to the DJ.

2.3 BN as a tool for incorporating further information

BNs can be updated when new information is availabéofmative shock Information is in terms of a new frequency
distribution for one or more of the variables of interest gained from an archive or a new survey. The relationship among the
variables of a BN (i.e. the arrows) are the highway for the propagation of this kind of information. For the sake of simplicity,
let the BN be composed of just two nodes, and X, joined by the arronX; — > X,. Hence, the BN is composed of the
following probability distributions:P(X; = z;1), P(X2s = xz3]|X; = z1). Let the marginal probability distribution faks

be changed inP*(X, = x5). In order for the network to incorporate the new distributl®h( X, = x5) leaving unchanged

the relationship between the variables, i.e. the conditional distributiof,afiven X1, it is necessary to modify the marginal
distribution of X;:

P*(XQ = 1'2)

PY (X, =a1) = ZP(X1 =21 Xy = 22)P* (X = 1) = ZP(X1 =21, X2 = x2) P(Xs —a2)

T2 Z2

In other words, the old joint distributioR (X, = z1, X2 = x2) is updated via the ratio of the new and old marginal distributions
of Xo:
P* (X2 = SCQ)
N = 7
P(XQ = (EQ) ( )

What explained for two variables can be generalized for general situations when new information updates more than one
variable distribution. To this purpose, different efficient algorithms based on the congepttibn treegsee Jensen, 1996)
have been defined.

2.4 Poststratification
What described in the previous paragraph for a general BN can be easily applied for the traditional poststratification procedure
in finite survey sampling. Let us consider the usual DJ estimator (3) or, equivalently the BN based estimator corresponding to
the clique (4). For the sake of simplicity let the informative shock be relative to just vatkpie the following situation: a
sampleS is drawn according to a design which is not stratified with respeéftoand we have an informative shock on the
X, frequency distribution, say;,, ¢ = 1,..., Q. This informative shock can be used in order to poststratify the sample with
respect taX;. The old sample weights; are consequently changed into:

Ny, Ni, - B B
S ol (@) w; qu, it Iy, (@)=1,¢=1,...,Q (8)

Wi = w;
Wherequ are the frequency estimates computed on the old survey weights. This operation is quite similar to the one in (7). In
fact, the change is in the nod&), which modifies into a new node&D* with the following characteristics: (iy D* categories
are given by the Cartesian product of th® and X, categories i.e(h,q), h = 1,...,H, ¢ = 1,...,Q; (ii) the units in the
same categorgh, ¢) have the same Weighv(*h’q). Again, Bayes theorem allows the computation of the probability distribution
of SD given X;:

P(SD = h)P(X, = ¢|SD = h) —1,...,Q:h=1,....H

P(SD = h|X; =q) = v 4=
S P(SD = h)P(X, = q|SD = h)

Leaving unchanged the previous distribution, i.e. the statistical relationship beS#2and X, according to the initial survey
design, poststratification with respect to the new distributioXof N;(¢), ¢ = 1,...,Q, or better to the relative frequency
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Figure 4: Transformation of a BN after poststratification.

distribution: Py’ (q) = Ny,/N,q = 1,...,Q, corresponds to consider this new joint distribution:
P(SD* = (h,q)) = P(SD=h,X1 =q) = P(SD = h|X1 = q)P{(q) =
P(SD=h)P(X;=q|SD=h) .
H Pr(q) =
Y oh—1 P(SD = q)P(X1 =q|SD = h)
_ e A e S TN 1 ©)
h=1 M) " Pa(g)

The new Weighwz‘h 4) Must be constant for all the units in the saf®@* category, of sizex;,,. Hence:

. St hw(n) .
Wh,q) = ==———=P(SD" = (h,q)) = W(h) = = W)=

Mhq Pi(q)

(10)

whereN = Y w;.
This procedure remains unchanged in case the variables are all of the same type in the same subgroup. For example consider
Figure 4. The network on the left contains only type (a) nodes. Poststratification with respgcptoduces the network on
the right where the design variab$D* is now the cliqugSD, X;).

As shown before, the BN representation allows to propose many estimators according to the different types of variables.
Therefore some issues need further study.

(1) Which is the role of different network structures f®D*.

(2) How to define poststratification when variables of different type define the BN.

(3) How to poststratify when joint information on variables of different types is available.
(4) What connection there is with ratio raking estimators.

(5) How to generalize this procedure to the case of integration of two or more surveys, as in Ballin and Vicard (2001).
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