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1 Introduction

We propose a novel methodology based on the concept of Bayesian network (BN, see Cowellet al., 1999) for the estimation of
a joint probability distribution of a set of categorical variables when samples are drawn according to complex survey designs.
Note that, restricting ourselves to categorical variables, the previous aim corresponds to estimation of a contingency table, a
very frequent problem in Official Statistics.

BNs are graphical devices largely used in many different scientific contexts, such as artificial intelligence and multivariate
statistics (Neapolitan, 2004). However, when estimating and using BNs, observations have always been considered as i.i.d.
generations from a suitable joint distribution function. Up to now, BNs have never been defined and applied when sampling
from finite populations.
This paper shows that BNs can be easily adapted to the context of finite survey sampling via the definition of a suitable additional
variable, in the following denoted withSD, representing the survey design. Hence,SD will be a categorical variable with as
many states as the different inclusion probabilities of first order. The BN representation allows the definition of a much larger
class of estimators, of the model assisted type (see Särndalet al., 1992). Also, the possibility to use poststratification methods
and, in general, integration of different surveys is illustrated.

1.1 Bayesian networks
Despite the name, the term ‘Bayesian’ does not refer to the Bayesian inferential paradigm. A Bayesian network is just a
graphical and numerical representation of a joint distribution of a set of variables,(X1, . . . , Xk) say. Hence, a BN is the
objective of the inference, which can be determined under either a likelihood based or a Bayesian procedure, see Neapolitan
(2004) and references therein. The term Bayesian is due to an efficient information propagation algorithm based on the Bayes
theorem. This characteristic will be crucial, for instance, when applying poststratification (Section 2.4). A BN is characterized
by: (i) a directed acyclic graph (DAG) showing the set of dependencies among variables and (ii) an inferential engine to make
inference on the parameters of the model. A DAG is composed of nodes, each node representing a variable, and edges, each
edge is an arrow linking a pair of nodes (for basics and definitions on DAGs and BNs see for instance Jensen, 1996). Cycles are
forbidden, in the sense that, following the direction of the arrows it is impossible to start from a node and end up in it. When
two nodesXi andXj are connected by an arrow(i, j) pointing fromXi to Xj , the two nodes are probabilistically dependent
andXi is said to be a parent ofXj . Each node has attached the conditional distribution of the corresponding variable, sayXj ,
given its parentspa(Xj). This representation allows the joint distribution of(X1, . . . , Xk) to be factorized according to the
dependencies shown in the DAG:

P (X1, . . . , Xk) =
k∏

j=1

P (Xj |pa(Xj)), (1)

wherepa(Xj) can possibly be the empty set (in this caseP (Xj |pa(Xj)) = P (Xj)). Once the BN has been estimated, its
modular structure can be exploited to apply fast and efficient algorithms. For instance, the effect of changes in the distribution
of some of the variables on the other variables can be easily computed (see Section 2.3). The interpretation of a BN in terms
of the probabilistic relations among the variables can be described by the networks in Figure 1. Network (1), known also as
‘complete network’, implies that each variable is connected with the others. Network (2) shows independence ofB andC
givenA. Network (3) shows marginal independence betweenB andC but conditional dependence betweenB andC givenA.
Network (4) shows independence between all the variables.
As already anticipated, both the structure of the BN (i.e. the set of edges) and the parameters of the distributions in (1) can be
estimated under either a likelihood based or a Bayesian perspective. In the following, we will assume the structure of the BN as
given. Given the structure, parameters will be estimated according to appropriate finite population estimators. Note that we will
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Figure 1: Four possible network structures for the nodes(A,B,C). Note that redirections of some arrows in networks (1) and
(2) produce equivalent joint distribution functions

not consider explicitly any model based assumption, hence the estimators cannot be justified under either a likelihood based
or a Bayesian approach. However, the parameter estimates will resemble those determined under maximum likelihood. This
allows the use of usual software tools for computing probability distributions in BNs (as Hugin,http:\\www.hugin.com).

2. BN and finite populations

Let us consider a finite population ofN units, and let(xi1, . . . , xik), i = 1, . . . , N , be the values ofk variables of interest,
(X1, . . . , Xk), of the population units. As already stated, we will restrict only to categorical variables. In this case, the joint
distribution function corresponds to the relative frequency distribution computed on the population:

P (x1, . . . , xk) =
1
N

N∑
i=1

Ix1,...,xk
(xi1, . . . , xik), (2)

whereIx1,...,xk
(xi1, . . . , xik) is the indicator function.

Assume that a random sampleS of n units is drawn fro the population according to a sampling design that assigns a probability
of inclusionπi to each uniti = 1, . . . , N . Let ωi, i ∈ S, be the final weight based on the sampling strategy (i.e. sampling
design and estimator). The usual estimator of the joint distribution function (2) is:

P̂ (x1, . . . , xk) =
∑
i∈S

Ix1,...,xk
(xi1, . . . , xik)

ωi∑
i∈S ωi

, (3)

henceforth the Direct Joint (DJ) estimator. Note that the DJ estimator is a ratio estimator, which corresponds to a Horwitz–
Thompson estimator when

∑
i∈S ωi = N . The DJ estimator can equivalently be rewritten with the help of a particular BN.

This is just one of the possible estimators that the BNs can define. In order to show all of them, it is necessary to highlight
the role played by the weightsωi in (2). LetSD be an additional categorical variable assuming as many states as the different
survey weights, sayH. Let ω(h), h = 1, . . . ,H, be theSD states,sh be the set of labels of the sample units withωi = ω(h),
andnh be the number of units insh. SD is associated to the marginal probability distribution given by the fraction of the total
sample weight associated to the units insh:

P (SD = h) =

∑
i∈sh

ωi∑
i∈S ωi

=
nhω(h)∑H

h=1 nhω(h)

, h = 1, . . . ,H.

Given that information on the survey design is completely contained inSD, estimators computed givenSD do not depend on
the survey weights any more. For instance, the estimators of the marginal and conditional frequencies of a variable givenSD
are:

P̂ (Xu = xu|SD = h) =

∑
i∈sh

Ixu
(xiu)

nh
, P̂ (Xu = xu|SD = h, Xv = xv) =

∑
i∈sh

Ixu,xv
(xiu, xiv)∑

i∈ss
Ixv

(xiv)
∀ xj , h.

The DJ estimator (3) can consequently be rewritten via the following factorization:

P̂ (x1, . . . , xk) =
H∑

h=1

nhω(h)∑H
h=1 nhω(h)

∑
i∈sh

Ix1(xi1)
nh

∑
i∈sh

Ix1,x2(xi1, xi2)∑H
i∈sh

Ix1(xi1)
· · ·

∑
i∈sh

Ix1,...,xk
(xi1, . . . , xik)∑

i∈sh
Ix1,...,xk−1(xi1, . . . , xik−1)

=
H∑

h=1

P (SD = h)P̂ (X1 = x1|SD)
k∏

j=2

P̂ (Xj = xj |SD = h, X1 = x1, . . . , Xj−1 = xj−1). (4)
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Figure 2: Eight possible BN structures for the nodes(SD,X, Y, Z)

The factorization in (4) corresponds to a particular BN for the variables(SD, X1, . . . , Xk): the clique (see Figure 1(1)). As a
matter of fact, this is the most complex model for(SD,X1, . . . , Xk). When some of these variables are not directly connected
(for marginal independence or conditional independence), the complete network is an overparameterized model. Hence, the
usual DJ estimator might be less efficient than the one that reproduces the actual dependence model among the variables. For
the sake of simplicity, letX, Y andZ be three variables of interest andSD the node representing the survey design. Figure
2 shows 8 different BNs for these variables. The BN (1) shows the already discussed complete network. The other networks
are simplified in the sense that some of the arrows do not appear. Note that it may happen that a variable of interest does
not admitSD as a parent. In order to take into account the sample weights also for these variables, the definition of a BN
based estimator of the joint probability distribution would consider 4 different groups of variables (a much simplified BN based
estimator, which disregards sample weights for variables unconnected withSD, is in Ballin et al. 2005). The first two groups
are the descendants ofSD, while the other two groups are composed ofSD non descendants.

Type (a) nodesThe nodes of type (a) are all those nodes withSD among their parents. In general, denoting withA the set of
labels of the variables of type (a), the estimator of the joint distribution of nodesXA is:

P̂ (XA) =
H∑

h=1

P (SD = h)
∏
a∈A

P (Xa|pa(Xa)). (5)

In Figure 2, networks (1), (2) and (3) have nodes only of type (a), while networks (4), (5), (6) and (7) are such that justX
andZ are type (a). For instance the estimator of the joint distribution of(X, Y, Z) for network (1),P̂1(x, y, z), is defined
by (3) or, equivalently, by (4), while the estimators for networks (2) and (3) are respectively:

P̂2(x, y, z) =
H∑

h=1

nhω(h)∑H
h=1 nhω(h)

∑
i∈sh

Ix(xi)
nh

∑
i∈sh

Iy(yi)
nh

∑
i∈sh

Iz(zi)
nh

,

P̂3(x, y, z) =
H∑

h=1

nhω(h)∑H
h=1 nhω(h)

∑
i∈sh

Ix(xi)
nh

∑
i∈sh

Iy(yi)
nh

∑
i∈sh

Ixyz(xi, yi, zi)∑
i∈sh

Ixy(xi, yi)
.

The estimator of the(X, Z) distribution for networks (4), (5), (6) and (7) are respectively:

P̂ (4)(x, z) =
H∑

h=1

nhω(h)∑H
h=1 nhω(h)

∑
i∈sh

Ix(xi)
nh

∑
i∈sh

Ixz(xi, zi)∑
i∈sh

Ix(xi)
,

P̂ (5)(x, z) =
H∑

h=1

nhω(h)∑H
h=1 nhω(h)

∑
i∈sh

Ix(xi)
nh

∑
i∈sh

Iz(zi)
nh

,

P̂ (6)(x, z|y) =
H∑

h=1

nhω(h)∑H
h=1 nhω(h)

∑
i∈sh

Ix(xi)
nh

∑
i∈sh

Iyz(yi, zi)∑
i∈sh

Iy(yi)
,



Figure 3: A BN structure for variablesSD,X1, . . . , X8

P̂ (7)(x, z|y) =
H∑

h=1

nhω(h)∑H
h=1 nhω(h)

∑
i∈sh

Ix(xi)
nh

∑
i∈sh

Ixyz(xi, yi, zi)∑
i∈sh

Ixy(xi, yi)
.

Type (b) nodes A node of type (b) has at least a type (a) ancestor butSD is not one of its parents. For instance, networks (4)
and (5) are such thatY is of type (b). In this case, we take as estimators of the joint distribution function for networks (4)
and (5) respectively:

P̂4(x, y, z) = P̂ (4)(x, z)
H∑

h=1

nhω(h)∑H
h=1 nhω(h)

∑
i∈sh

Iyz(yi, zi)∑
i∈sh

Iz(zi)
,

P̂5(x, y, z) = P̂ (5)(x, z)
H∑

h=1

nhω(h)∑H
h=1 nhω(h)

∑
i∈sh

Iyz(yi, zi)∑
i∈sh

Iz(zi)
.

In order to get these estimators, we implicitly add a fictitious arrow fromSD to each type (b) node and estimate its
distribution with the survey weights, distinctly from type (a) nodes.

Type (c) nodesThis group consists of all those non descendants ofSD connected toSD by a non directed path. For instance,
Y in networks (6) and (7) is a type (c) node. Also in this case, add a fictitious arrow fromSD to the type (c) nodes and
estimate their distribution separately from type (a) and (b) nodes. For networks (6) and (7) the estimators are

P̂6(x, y, z) =
H∑

h=1

nhω(h)∑H
h=1 nhω(h)

∑
i∈sh

Iy(yi)
nh

P̂ (6)(x, z|y),

P̂7(x, y, z) =
H∑

h=1

nhω(h)∑H
h=1 nhω(h)

∑
i∈sh

Iy(yi)
nh

P̂ (7)(x, z|y).

Type (d) nodes This group consists of all those nodes (or groups of nodes) unconnected withSD, type (a), (b) and (c) nodes.
For instance, network (8) consists of 3 different isolated nodes. Again, add a fictitious arrow fromSD to each isolated
node or group of nodes and estimate them distinctly. The estimator of the joint distribution defined via the BN in network
(8) is:

P̂8(x, y, z) =

[
H∑

h=1

nhω(h)∑H
h=1 nhω(h)

∑
i∈sh

Ix(xi)
nh

] [
H∑

h=1

nhω(h)∑H
h=1 nhω(h)

∑
i∈sh

Iy(yi)
nh

] [
H∑

h=1

nhω(h)∑H
h=1 nhω(h)

∑
i∈sh

Iz(zi)
nh

]
.

While nodes of type (a) form always a single factor that should be marginalized with respect toSD, the other groups may be
partitioned in distinct subgroups (as in the example for network (8) in Figure 2). In general these subgroups are separated by
type (a) or (b) nodes, while for the nodes in the same subgroup it is possible to find a path composed just of nodes of the same
subgroup connecting any pair of nodes. An example is presented in Figure 3. Here the nodes are of the following types:X1

andX2 are type (a);X3 is type (b);X4 andX5 are first type (c) subgroup;X6 is a second type (c) subgroup;X7 andX8 are
the only type (d) group. According to this partition, the joint distribution function should estimate the following components:
P (X1, X2|X4), P (X3|X2, X6), P (X4, X5), P (X6), P (X7, X8).



Network P̂1 P̂2 P̂3 P̂4 P̂5 P̂6 P̂7 P̂8

1 35.59 63.84 39.27 59.93 78.49 83.42 58.16 98.89
2 31.39 18.34 26.74 49.64 48.09 188.44 194.56 250.07
3 34.76 53.06 31.47 135.96 143.86 150.52 133.87 152.25
4 34.63 749.77 53.98 23.80 68.12 59.03 44.49 765.77
5 35.99 45.56 31.65 25.39 23.81 26.80 32.57 158.67
6 34.52 31.88 29.39 31.30 29.83 21.17 26.64 76.06
7 36.80 38.30 31.83 27.06 40.96 42.9330.50 28.35
8 43.27 15.80 37.01 27.78 23.22 23.61 37.1915.69

Table 1: Average of the chi-square distances of the actual and estimated joint distribution of the 8 populations generated
according to the 8 networks of Figure 2.

In general, letT , V , andW be the number of these subgroups respectively for type (b), (c) and (d) nodes. Further, letBt,
t = 1, . . . , T , Cv, v = 1, . . . , V andDw, w = 1, . . . ,W the set of labels of the variables in each subgroup. Then, the general
form of the estimator based on the BN is:

P̂ (X1, . . . , Xk) = P̂ (XA,XB1 , . . . ,XBT
,XC1 , . . . ,XCV

,XD1 , . . . ,XDW
)

=

[
W∏

w=1

P̂ (XDw
)

] [
V∏

v=1

P̂ (XCv
)

] [
P̂ (XA|XC1 , . . . ,XCV

)
] [

T∏
t=1

P̂ (XBt
|XA,XC1 , . . . ,XCV

)

]
(6)

=

[
W∏

w=1

H∑
h=1

P (SD)
∏

d∈Dw

P̂ (Xd|SD, pa(Xd))

] [
V∏

v=1

H∑
h=1

P (SD)
∏

c∈Cv

P̂ (Xc|SD, pa(Xc))

]
[

H∑
h=1

P (SD)
∏
a∈A

P̂ (Xa|pa(Xa))

] [
T∏

t=1

H∑
h=1

P (SD)
∏

b∈Bt

P̂ (Xb|SD, pa(Xb))

]
.

As a matter of fact, the distinction among the 4 different types of nodes seems unnecessary. If a node is not directly linked with
SD, its (conditional) distribution should be estimated without any marginalization with respect toP (SD). In other words, they
should be estimated without weighting the units with their sample weights. However, this approach would be correct when
independence holds in the strict sense of its definition (the joint distribution factorizes in the product of the marginal ones).
Although the data generating model fulfills independence in the strict sense, the population generally just fits this model (i.e. if
a test had been applied, the hypothesis of independence would have not been rejected). The use of unweighted estimators for
type (b), (c) and (d) nodes is illustrated in Ballinet al. (2005).
Note that, in any case, the BN based estimator corresponds to a change in the form of the estimator suggested (or in other words
assisted) by the variable dependence model (the structure of the BN).

2.1 Comparison via a Monte Carlo simulation
Eight populations of 10 000 units with variablesX (2 states),Y (3 states) andZ (2 states) have been generated according to
the 8 networks in Figure 2. From each population, 500 samples with 1 000 units have been extracted with a simple stratified
sampling design with three strata. Table 1 shows the results of the average chi-square distance between the actual frequency
distribution in the population of 10 000 units and the estimated ones. The BN based estimator always wins. It is also robust
against mild misspecification of the BN. For instance, for the population generated from network (5) the estimatorP̂4 is second
best. Note also that the usual DJ estimatorP̂1 performs almost identically in all the 8 populations. On the contrary, the other
BN based estimators can be very inefficient when the population structure is markedly different from the one that defines the
estimator.

2.2 Relationship between the BN based estimators and the DJ estimator
Which is the relation between the DJ estimator (3) and the BN estimator (6)? Is the BN estimator a linear estimator in the
sample weights for at least some marginal distributions? The following proposition details necessary and sufficient conditions
for equality between the results of the two estimators.
Proposition 1 - Let P̂ (X) be the BN based estimator of the joint distribution function ofX = (X1, . . . , Xk). LetXsub be a
subvector ofX. Let P̂ (Xsub) be the estimator of the joint distribution ofXsub obtained through marginalization.̂P (Xsub)



coincides with the one defined by the DJ estimator if and only if:
(1) Xsub is composed of variables of the same type and in the same subgroup;
(2) Xsub is in a clique withSD (after the inclusion of the fictitious arrows for nodes of type (b), (c) and (d));
(3) each pair of parents ofXsub and of its ancestors is joined by an arrow;
(4) Xsub admits only ancestors of its type.
Issue (4) implies that any marginal and joint distribution involving type (b) nodes can never be estimated as DJ estimators. As
an example, the BN in Figure 3 implies thatX1, X2, (X4, X5), X6 and(X7, X8) are the maximal tables that can be estimated
according to the DJ.

2.3 BN as a tool for incorporating further information
BNs can be updated when new information is available (informative shock). Information is in terms of a new frequency
distribution for one or more of the variables of interest gained from an archive or a new survey. The relationship among the
variables of a BN (i.e. the arrows) are the highway for the propagation of this kind of information. For the sake of simplicity,
let the BN be composed of just two nodes,X1 andX2, joined by the arrowX1− > X2. Hence, the BN is composed of the
following probability distributions:P (X1 = x1), P (X2 = x2|X1 = x1). Let the marginal probability distribution forX2

be changed in:P ∗(X2 = x2). In order for the network to incorporate the new distributionP ∗(X2 = x2) leaving unchanged
the relationship between the variables, i.e. the conditional distribution ofX2 givenX1, it is necessary to modify the marginal
distribution ofX1:

P ∗(X1 = x1) =
∑
x2

P (X1 = x1|X2 = x2)P ∗(X2 = x2) =
∑
x2

P (X1 = x1, X2 = x2)
P ∗(X2 = x2)
P (X2 = x2)

.

In other words, the old joint distributionP (X1 = x1, X2 = x2) is updated via the ratio of the new and old marginal distributions
of X2:

P ∗(X2 = x2)
P (X2 = x2)

. (7)

What explained for two variables can be generalized for general situations when new information updates more than one
variable distribution. To this purpose, different efficient algorithms based on the concept ofjunction trees(see Jensen, 1996)
have been defined.

2.4 Poststratification
What described in the previous paragraph for a general BN can be easily applied for the traditional poststratification procedure
in finite survey sampling. Let us consider the usual DJ estimator (3) or, equivalently the BN based estimator corresponding to
the clique (4). For the sake of simplicity let the informative shock be relative to just variableX1 in the following situation: a
sampleS is drawn according to a design which is not stratified with respect toX1, and we have an informative shock on the
X1 frequency distribution, sayN∗

1q, q = 1, . . . , Q. This informative shock can be used in order to poststratify the sample with
respect toX1. The old sample weightsωi are consequently changed into:

ω∗i = ωi

N∗
1q∑

i ωiIx1i(q)
= ωi

N∗
1q

N̂1q

, i : Ix1i(q) = 1, q = 1, . . . , Q (8)

whereN̂1q are the frequency estimates computed on the old survey weights. This operation is quite similar to the one in (7). In
fact, the change is in the nodeSD, which modifies into a new nodeSD∗ with the following characteristics: (i)SD∗ categories
are given by the Cartesian product of theSD andX1 categories i.e.(h, q), h = 1, . . . ,H, q = 1, . . . , Q; (ii) the units in the
same category(h, q) have the same weight,ω∗(h,q). Again, Bayes theorem allows the computation of the probability distribution
of SD givenX1:

P (SD = h|X1 = q) =
P (SD = h)P (X1 = q|SD = h)∑H

h=1 P (SD = h)P (X1 = q|SD = h)
, q = 1, . . . , Q;h = 1, . . . ,H.

Leaving unchanged the previous distribution, i.e. the statistical relationship betweenSD andX1 according to the initial survey
design, poststratification with respect to the new distribution ofX1, N∗

1 (q), q = 1, . . . , Q, or better to the relative frequency



Figure 4: Transformation of a BN after poststratification.

distribution:P ∗
1 (q) = N∗

1q/N , q = 1, . . . , Q, corresponds to consider this new joint distribution:

P (SD∗ = (h, q)) = P (SD = h, X1 = q) = P (SD = h|X1 = q)P ∗
1 (q) =

=
P (SD = h)P (X1 = q|SD = h)∑H

h=1 P (SD = q)P (X1 = q|SD = h)
P ∗

1 (q) =

=
nhω(h)∑H

h=1 nhω(h)

nhq

nh

P ∗
1 (q)

P̂1(q)
, q = 1, . . . , Q;h = 1, . . . ,H. (9)

The new weightω∗(h,q) must be constant for all the units in the sameSD∗ category, of sizenhq. Hence:

ω∗(h,q) =
∑H

h=1 nhω(h)

nhq
P (SD∗ = (h, q)) = ω(h)

P ∗
1 (q)

P̂1(q)
= ω(h)

N∗
1 (q)

N̂1(q)
N̂

N
(10)

whereN̂ =
∑N

i=1 ωi.
This procedure remains unchanged in case the variables are all of the same type in the same subgroup. For example consider
Figure 4. The network on the left contains only type (a) nodes. Poststratification with respect toX1 produces the network on
the right where the design variableSD∗ is now the clique(SD, X1).

As shown before, the BN representation allows to propose many estimators according to the different types of variables.
Therefore some issues need further study.

(1) Which is the role of different network structures forSD∗.

(2) How to define poststratification when variables of different type define the BN.

(3) How to poststratify when joint information on variables of different types is available.

(4) What connection there is with ratio raking estimators.

(5) How to generalize this procedure to the case of integration of two or more surveys, as in Ballin and Vicard (2001).
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