Leica Absolute Distance Meter

Technology Days at NASA/MSFC May 22-23, 2002

Ron Eng NASA/MSFC
256-544-3603
ron.eng@msfc.nasa.gov

- Used during SBMD and NMSD tests for radius of curvature measurements.
- Time of flight ranging device.
- +/- 2mm accuracy.
- 1.5 to 50 meters range.
- Works best with diffuse targets.
- Compact.
- Inexpensive.

Requirements for measuring AMSD radius of curvature

- Remote measurement device to be located at or near ROC.
- Absolute distance measurement or ranging device.
- 1 micron measurement resolution.
- Better than 25 microns measurement accuracy.
- Better than 25 microns measurement repeatability.
- Greater than 50 meters range.
- Specular surface and corner cube.
- Fast sample rate.
- Compact.
- Easy to use.

Leica laser tracker

CPU, power supply, and ADM

Ranging system principle

Distance D , is determined by measuring the phase angle between the transmitted sine wave and the received sine wave.

The relationship between phase angle ϕ_{r}, time delay t_{r}, and modulation frequency f_{0}, is:

$$
\begin{aligned}
& t_{\mathrm{r}}=\phi_{\mathrm{r}} / 2 \pi f_{0} \\
& \mathrm{D}=C t_{\mathrm{r}} / 2=C \phi_{\mathrm{r}} / 4 \pi f_{0}
\end{aligned}
$$

$$
\mathrm{D}_{0}=N_{0} C / 2 f_{0}
$$

ADM description

IR laser diode 780nm (1mW max output)
Visible laser diode for pointing
Polarization modulation
External modulation with LiTaO_{3} crystal @ $700-900 \mathrm{MHz}$
Differential signal detection
Detection of the same signal (same phase position)
Frequency Shift $==>0^{\circ}$ Phase
Minimal measurement distance 1.5 m due to minimum bandwidth of 150 MHz

Maximum measurement range 50 m
Distance measurement resolution $1 \mu \mathrm{~m}$
Distance measurement accuracy better than $50 \mu \mathrm{~m}$.
$400 \times 120 \times 40 \mathrm{~mm}(\mathrm{~L} \times \mathrm{H} \times \mathrm{T}$)
2 kg

ADM schematic

ADM - Modulation methods

External modulation with LiTaO_{3} crystal

- not directly influencing the laser
- using non linearity effects
- beam velocity is different at different axis E_{X} and E_{Y}

Polarization Modulation systematical change of the beam shift by an electronic oscillation circuit
high frequency 700-900 MHz

ADM - Beam Pass and Phase Control

Overview - Major Functionality Blocks

Modulator - High Frequency Circuit

Systematical influencing of the refraction indices n_{e} and n_{o} of the crystal High frequency with enough power Optimized modulation voltage ==> enough modulation strength

Back - Coupling (same phase)

Wobble - Frequency
Overlay

Digital synthesizer

Synthesizer for flexible and defined frequency movement
Very short reaction time
Very small frequency steps (system resolution)

ADM - Differential Signal Detection

ADM - Differential Signal Detection

ADM - Differential Signal Detection

if $\operatorname{Int}<0$, measured frequency f is smaller
than frequency at minimum position

Sampling along a Minimum Position

Using difference method to sample along a minimum position, the intensity values will follow a line

```
Intensity values [in A/D converter units]
```


Micro - Controller Functionality

Measurement flow and distance calculation

Atmospheric Influence

Accuracy depends on refractive index of air between the ADM and the target.

Refractive Index

- T = air temperature in degrees Celsius
- $\mathbf{P}=$ pressure in millimeters of Mercury
- $\mathbf{R}=$ relative humidity in percent

$$
N_{G r}=0.3889479 \cdot P \cdot\left[\frac{1+10^{-6} \cdot P \cdot(0.817-0.0133 \cdot T)}{1+0.0036610 \cdot T}\right]-556.68 \cdot 10^{-6} \cdot R \cdot 10^{\frac{7.5 \cdot T}{T+237.3}+0.6609}
$$

Shortest Distance

Limitations are related to:
Bandwidth of the modulator of $150 \mathbf{M H z}$
Modulation frequency

ADM measurement output

ADM Measurement						
Refraction $=1.00027529886$						
A	$=-498$	00000				
Dist. [m]	C	K [um]	P [um]	f [Hz]	M [m]	SD [um]
20.465532	124	-3	2	840019528	20.465532	0.000000000
20.465532	124	0	1	840019472	20.465532	0.000000000
20.465534	125	-1	2	840019472	20.465532	1.168007728
20.465534	124	-1	2	840019472	20.465533	1.168007728
20.465534	124	-1	2	840019472	20.465533	1.118282261
20.465532	123	-3	2	840019528	20.465533	1.087356019
20.465532	123	-3	2	840019528	20.465532	1.066240300
20.465534	124	0	2	840019416	20.465533	1.081365031
20.465534	123	-1	1	840019472	20.465533	1.092571186
20.465534	124	0	2	840019416	20.465533	1.054326627
20.465534	124	0	2	840019416	20.465533	1.000222061
20.465534	124	0	2	840019416	20.465533	0.996080337

Acceptance test methods

Repeatability test
S.D. of 30 measurements to a corner cube <25 um
S.D. of 30 measurements to a mirror <50 um

Relative accuracy test
20 distance measurements to a corner cube, compare distance with LTD500, deviation $\Delta \mathrm{D}<25$ um

20 distance measurements to a mirror, compare distance with LTD500, deviation $\Delta \mathrm{D}<50$ um

Acceptance test methods (continue)

ADM offset determination (LTD500 required)
3 distances to be measured from both directions with LTD500
3 distances to be measured from both directions with ADM
Deviation between (D1 + D2) and D3 < 35 um

Acceptance test methods (continue)

Absolute distance accuracy test (LTD500 required)
Measure 3 distances between 3 points with LTD500
Measure 3 distances between 3 points with ADM
Deviation between (D1 + D2) and D3 < 35 um

Acceptance test results

	Requirements	ADM s/n 166	ADM s/n 406
Repeatability to corner cube	S.D. < 25 um	<1.3	<1.8
Repeatability to mirror	S.D. < 50 um	<3.5	<2.7
Relative accuracy to corner cube	$\Delta \mathrm{D}<25 \mathrm{um}$	<1.1	<1.8
Relative accuracy to mirror	$\Delta \mathrm{D}<50 \mathrm{um}$	<19	<35
Absolute distance accuracy	$\Delta \mathrm{D}<35 \mathrm{um}$	<21	<36

Conclusions

ADM measurements are very accurate and repeatable for corner cubes.

Performed cryo deformation test of Gr-Ep reaction structure with ADM.

Software interface is easy to use.
May have problem measuring to Be mirror due to polarization properties or scatter.

Currently have no method to calibrate the ADM in house.
Demo is available on Friday during tour at XRCF. Demonstrate relative accuracy with a HP DMI.

