
SAND REPORT
SAND2004-3268
Unlimited Release
Printed June 2004

Teuchos::RefCountPtr Beginner’s Guide

An Introduction to the Trilinos Smart
Reference-Counted Pointer Class for
(Almost) Automatic Dynamic Memory

Management in C++

Roscoe A. Bartlett
Optimization and Uncertainty Estimation

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

ITED

STATES OF AM

ER
IC

A

SAND2004-3268
Unlimited Release
Printed June 2004

Teuchos::RefCountPtr Beginner’s Guide
An Introduction to the Trilinos Smart Reference-Counted
Pointer Class for (Almost) Automatic Dynamic Memory

Management in C++

Roscoe A. Bartlett
Optimization and Uncertainty Estimation

Sandia National Laboratories∗, Albuquerque NM 87185 USA,

Abstract

Dynamic memory management in C++ is one of the most common areas of difficulty and er-
rors for amateur and expert C++ developers alike. The improper use of operatornew and opera-
tor delete is arguably the most common cause of incorrect program behavior and segmentation
faults in C++ programs. Here we introduce a templated concrete C++ classTeuchos::Ref-
CountPtr<> , which is part of the Trilinos tools packageTeuchos , that combines the concepts
of smart pointers and reference counting to build a low-overhead but effective tool for sim-
plifying dynamic memory management in C++. We discuss why the use of raw pointers for
memory management, managed through explicit calls to operatornew and operatordelete , is
so difficult to accomplish without making mistakes and how programs that use raw pointers for
memory management can easily be modified to useRefCountPtr<> . In addition, explicit calls
to operatordelete is fragile and results in memory leaks in the presents of C++ exceptions. In
its most basic usage,RefCountPtr<> automatically determines when operatordelete should
be called to free an object allocated with operatornew and is not fragile in the presents of excep-
tions. The class also supports more sophisticated use cases as well. This document describes
just the most basic usage ofRefCountPtr<> to allow developers to get started using it right
away. However, more detailed information on the design and advanced features ofRefCount-
Ptr<> is provided by the companion document “Teuchos::RefCountPtr : The Trilinos Smart
Reference-Counted Pointer Class for (Almost) Automatic Dynamic Memory Management in
C++” [2].

∗Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC04-94AL85000.

3

Acknowledgments

The author would like to thank Carl Laird, Heidi Thornquist, Mike Heroux and Marzio Sala for
comments on earlier drafts of this document.

The format of this report is based on information found in [5].

4

Contents

1 Introduction . 7
2 An example C++ program. 9

2.1 Example C++ program using raw dynamic memory management 9
2.2 Refactored example C++ program usingRefCountPtr<> . 12

3 Additional and advanced features ofRefCountPtr<> . 14
4 Summary. 15
References . 17

Appendix

A C++ declarations forRefCountPtr<> . 19
B RefCountPtr<> quick-start and reference . 21
C Commandments for the use ofRefCountPtr<> . 25
D Recommendations for passing objects to and from C++ functions . 27
E Listing: Example C++ program using raw dynamic memory management. 29
F Listing: Refactored example C++ program usingRefCountPtr<> . 31

5

6

Teuchos::RefCountPtr
Beginner’s Guide

An Introduction to the Trilinos Smart
Reference-Counted Pointer Class for

(Almost) Automatic Dynamic Memory
Management in C++

1 Introduction

The main purpose of this document is to provide a quick-start guide on how to incorporate the
reference-counting smart pointer classTeuchos::RefCountPtr<> into C++ programs that use dy-
namic memory allocation and object orientation. This code is included in the Trilinos [4] tools
packageTeuchos . The design ofTeuchos::RefCountPtr<> is based partly on the interface for
std::auto ptr<> and Items 28 and 29 in ”More Effective C++” [6]. In short,RefCountPtr<>
allows one client to dynamically create an object (using operatornew for instance), pass the object
around to other clients that need to access the object and never require any client to explicitly call
operatordelete . The object will (almost magically) be deleted when all of the clients remove their
references to the object. In principle, this is very similar to the type of garbage collection that is
in languages like Perl and Java. There are some pathological cases (such as the classic problem of
circular references, see [6, Item 29, page 212]) whereRefCountPtr<> will result in a memory leak,
but these situations can be avoided through the careful use ofRefCountPtr<> . However, realizing
the potential of hands-off garbage collection withRefCountPtr<> requires following some rules.
These rules are partially spelled out in the form of commandments in Appendix C.

Note that direct calls to operatordelete are discouraged in modern C++ programs that are
designed to be robust in the presence of C++ exception handing. This is because the raw use of
operatordelete often results in memory leaks when exceptions are thrown. For example, in the
code fragment:

void someFunction() {
A *a = new A;
a->f();
delete a;

}

if an exception is thrown in the function calla->f() then the statementdelete a will never be

7

executed and a memory leak will have been created. The classstd::auto ptr<> was added to the
standard C++ library (see [6, Items 9 and 10]) to protect against these types of memory leaks. For
example, the rewritten function:

void someFunction() {
std::auto_ptr<A> a(new A);
a->f();

}

is robust in the event of exceptions and no memory leak will occur. However,std::auto ptr<>
can not be used to share a resource between two or more clients and therefore is not an answer to
the issue of general garbage collection. The classRefCountPtr<> not only is robust in the event
of exceptions but also implements reference counting and is therefore more general (but admittedly
more complex and expensive) thanstd::auto ptr<> .

The use ofRefCountPtr<> is critically important in the development and maintenance of large
complex object-oriented programs composed of many separately-developed pieces (such as Trili-
nos). This discussion assumes that the reader has a basic familiarity and some programming experi-
ence with C++ and has at least been exposed to the basic concepts of object-oriented programming
(good sources include [3] and [7]). Furthermore, the reader should be comfortable with the use of
C++ pointers and references.

The appendices contain basic reference material forRefCountPtr<> . In many respects, the
appendices are the most important contribution of this document. For those readers that like to
see the C++ declarations right away, Appendix A contains the C++ declarations for the template
classRefCountPtr<> and some important associated non-member templated functions. Appendix
B is a short reference-card-like quick-start for the use ofRefCountPtr<> . The quick-start in this
appendix shows how to createRefCountPtr<> objects from raw C++ pointers, how to represent dif-
ferent forms on constantness, cast from one pointer type to another, access the underlying reference-
counted object as well as to associate and manage extra data. Appendix C gives some command-
ments for the use ofRefCountPtr<> and reinforces the material in Appendix B. Appendix D gives
tables of recommended idioms for how to pass raw C++ objects andRefCountPtr<> -wrapped ob-
jects to and from functions. More detailed discussions of all of the material in the appendices is
contained in the design document forRefCountPtr<> [2]. Appendix E gives a listing for an ex-
ample program that uses raw pointer variables and direct calls to operatornew and operatordelete
while Appendix F shows a refactoring of this example program to useRefCountPtr<> .

Note! Anxious readers are encouraged to jump directly to Appendix E and F to get an idea
of what RefCountPtr<> is all about. This example, together with the reference material in the
appendices, should be enough for semi-experienced C++ developers to start usingRefCountPtr<>
right away.

For less anxious readers, in the following section, we describe why the use of raw C++ pointers
and raw calls to operatornew and especially operatordelete is difficult to program correctly in even

8

moderately complex C++ programs. We then discuss the different ways C++ pointers are used in
such programs and describe how to refactor these programs to replace some of the raw C++ pointers
and raw calls to operatordelete with RefCountPtr<> . In the following discussion we will define
persistingandnon-persistingassociations and will make a distinction between them (see page 11).
RefCountPtr<> is recommended for use only withpersistingassociations. The consistent use of
RefCountPtr<> extends the vocabulary of C++ in helping to distinguish between these two types of
relationships. In addition,RefCountPtr<> is designed for the memory management of individual
objects, not raw C++ arrays of objects. Array allocation and deallocation should be performed
using standard C++ containers such asstd::vector<> , std::valarray<> or some other such
convenient C++ array class. However, it is quite common to dynamically allocate arrays ofRef-
CountPtr<> objects and useRefCountPtr<> to manage the lifetime of such array class objects.

2 An example C++ program

The use of object-oriented (OO) programing in C++ is the major motivation for the development
of RefCountPtr<> . OO programs are characterized by the use of abstract classes (i.e. interfaces)
and concrete subclasses (i.e. implementations). In OO programs it is common that the selection
of which concrete subclass(es) to use is not known until runtime. The “Abstract Factory” [3] is
a popular design pattern that allows the flexible runtime selection of what concrete subclasses to
create.

Below we describe a fictitious program that demonstrates some of the typical features of an OO
program that uses dynamic memory management in C++. In this simple program, handling memory
management using raw C++ pointers and calls to operatornew and operatordelete will appear
fairly easy but larger more realistic OO programs are much more complicated and it is definitely not
easy to do memory management without some help.

2.1 Example C++ program using raw dynamic memory management

One of the predominate features of this example program is the use of the following abstract inter-
face base classUtilityBase that defines an interface to provide some useful capability.

class UtilityBase {
public:

virtual void f() const = 0;
};

In our example program,UtilityBase will have two subclasses where one or the other will be
used at runtime.

9

class UtilityA : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityA::f() called, this="<<this<<"\n"; }
};

class UtilityB : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityB::f() called, this="<<this<<"\n"; }
};

In this example program the above implementation functions just print to standard out.

Some of the clients in this program have to createUtilityBase objects without knowing ex-
actly what concrete subclasses are being used. This is accomplished through the use of the “Abstract
Factory” design pattern [3]. ForUtilityBase , the abstract factory looks like

class UtilityBaseFactory {
public:

virtual UtilityBase* createUtility() const = 0;
};

and has the following factory subclasses for creatingUtilityA andUtilityB objects.

class UtilityAFactory : public UtilityBaseFactory {
public:

UtilityBase* createUtility() const { return new UtilityA(); }
};

class UtilityBFactory : public UtilityBaseFactory {
public:

UtilityBase* createUtility() const { return new UtilityB(); }
};

Now let’s assume that our example program has the following client classes.

// Simple client with no state
class ClientA {
public:

void f(const UtilityBase &utility) const { utility.f(); }
};

// Client that maintains a pointer to a Utility object
class ClientB {

10

UtilityBase *utility_;
public:

ClientB() : utility_(0) {}
˜ClientB() { delete utility_; }
void initialize(UtilityBase *utility) { utility_ = utility; }
void g(const ClientA &a) { a.f(*utility_); }

};

// Client that maintains pointers to UtilityFactory and Utility objects
class ClientC {

const UtilityBaseFactory *utilityFactory_;
UtilityBase *utility_;
bool shareUtility_;

public:
ClientC(const UtilityBaseFactory *utilityFactory, bool shareUtility)

:utilityFactory_(utilityFactory)
,utility_(utilityFactory->createUtility())
,shareUtility_(shareUtility) {}

˜ClientC() { delete utilityFactory_; delete utility_; }
void h(ClientB *b) {

if(shareUtility_) b->initialize(utility_);
else b->initialize(utilityFactory_->createUtility());

}
};

The type of logic used inClientC for determining when new objects should be created or when
objects should be reused and passed around is common in larger more complicated OO programs.

The above client classes demonstrate two different types of associations between objects:non-
persistingandpersisting.

Non-Persistingassociations exist only within a single function call and do not extend after the
function has finished executing. For example, objects of typeClientA and UtilityBase have
a non-persisting relationship through the functionClientA::f(const UtilityBase &utility) .
Likewise, objects of typeClientB andClientA have a non-persisting association through the func-
tion ClientB::g(const ClientA &a) .

Persistingassociations are where a relationship between two objects exists past a single function
call. The most typical kind of persisting association in an OO C++ program is where one object
maintains a private pointer data member to another object. For example, persisting associations
exist between aClientC object, aUtilityBaseFactory and aUtilityBase object through the
the private C++ pointer data membersClientC::utilityFactory andClientC::utility re-
spectively. Likewise, a persisting association exists between aClientB object and aUtilityBase
object through the private pointer data memberClientB::utility .

Persisting relationships are significantly more complex than non-persisting relationships since

11

a persisting relationship usually implies that some objects must be responsible for the lifetime of
other objects. This is never the case in a non-persisting relationship as defined above.

Appendix E shows an example program that uses all of the C++ classes described above. The
program in Appendix E has several memory management problems. An astute reader will notice
that theUtilityBaseFactory created inmain() gets deleted twice; once in the destructor for
the ClientC objectc and again at the end ofmain() in an explicit call to operatordelete . This
problem could be fixed in this program by arbitrating “ownership” of theUtilityBaseFactory
object to eithermain() or theClientC object, but not both which is the case in Appendix E.

A more difficult memory management problem to catch and fix occurs in theClientB and
ClientC objects regrading a sharedUtilityBase object. WhenshareUtility is set tofalse
(by the user in the commandline arguments) the objectsb1, b2 andc each own a pointer to differ-
entUtilityBase objects and the software will correctly delete each dynamically allocated object
using one and only one call to operatordelete (in the destructors of these classes). However,
whenshareUtility is to set totrue the objectsb1, b2 andc will contain pointers to the same
UtilityBase object and operatordelete will be called on this sharedUtilityBase object multi-
ple times whenb1, b2 andc are destroyed. In this case, it is not so easy to arbitrate ownership of
the sharedUtilityBase object to theClientB or theClientC objects. Logic could be developed
in this simple program to insure that ownership was assigned properly but such logic would enlarge
the program, complicate maintenance, and would ultimately make the software components less
reusable. In more complex programs, trying to dynamically arbitrate ownership at run time is much
more difficult and error prone if done manually.

2.2 Refactored example C++ program usingRefCountPtr<>

Now we describe howRefCountPtr<> can be used to greatly simplify dynamic memory manage-
ment in these types of OO programs. Appendix F shows the refactoring of the program in Appendix
E to useRefCountPtr<> for all persisting relationships. In general, refactoring software that uses
raw C++ pointers to useRefCountPtr<> is as simple as replacing the typeT* with RefCount-
Ptr<T> , whereT is nearly any class or built-in data type.

The first persisting relationship for whichRefCountPtr<> is used is the relationship between
a UtilityBaseFactory object and a client that uses it. The refactoring changes the return type
of UtilityBaseFactory::createUtility() from a rawUtilityBase* pointer to aRefCount-
Ptr<UtilityBase> object. The new “Abstract Factory” class declarations (assuming that the sym-
bols from theTeuchos namespace are in scope so that explicitTeuchos:: qualification is not
necessary) become

class UtilityBaseFactory {
public:

virtual RefCountPtr<UtilityBase> createUtility() const = 0;

12

};

class UtilityAFactory : public UtilityBaseFactory {
public:

RefCountPtr<UtilityBase> createUtility() const { return rcp(new UtilityA()); }
};

class UtilityBFactory : public UtilityBaseFactory {
public:

RefCountPtr<UtilityBase> createUtility() const { return rcp(new UtilityB()); }
};

In addition to the change of the return type, the refactoring also requires that calls to operator
new be wrapped in calls to the templated functionTeuchos::rcp(...) .

The refactoring shown in Appendix F does not impact the definition of the classClientA since
this class does not have any persisting relationships with any other objects. However, the definitions
of the classesClientB andClientC do change and become

class ClientB {
RefCountPtr<UtilityBase> utility_;

public:
void initialize(const RefCountPtr<UtilityBase> &utility) { utility_=utility; }
void g(const ClientA &a) { a.f(*utility_); }

};

class ClientC {
RefCountPtr<UtilityBaseFactory> utilityFactory_;
RefCountPtr<UtilityBase> utility_;
bool shareUtility_;

public:
ClientC(const RefCountPtr<UtilityBaseFactory> &utilityFactory, bool shareUtility)

:utilityFactory_(utilityFactory)
,utility_(utilityFactory->createUtility())
,shareUtility_(shareUtility) {}

void h(ClientB *b) {
if(shareUtility_) b->initialize(utility_);
else b->initialize(utilityFactory_->createUtility());

}
};

The first thing that one should notice about the refactoredClientB andClientC classes is that
their destructors are gone. It turns out that the compiler-generated destructors do exactly the correct
thing (i.e. call the destructor on theRefCountPtr<> data members which in turns calls operator
delete on the underlying reference-counted object when the reference count goes to zero). The

13

second thing that one should notice is that the old default constructorClientB::ClientB() which
initialized the raw C++ pointerutility to null is no longer needed sinceRefCountPtr<> has a
default constructor that does that. A third thing to notice about these refactored client classes is that
theRefCountPtr<> objects are passed byconst reference (see Appendix D) and not by value as
the corresponding raw pointers where in the original unfactored classes. PassingRefCountPtr<>
objects byconst reference yields slightly more efficient code and simplifies stepping through the
code in a debugger. For example, a function declared as

void someFunction(RefCountPtr<A> a);

will always result in the copy constructor forRefCountPtr<> being called (and therefore stepped
into in a debugger) while this same function declared as:

void someFunction(const RefCountPtr<A> &a);

will often not require the copy constructor be called (except in cases where an implicit conversion
is being performed as described in Appendix B) and thereby easing debugging.

As an aside, note that Appendix D gives recommended idioms for how to pass raw C++ ob-
jects andRefCountPtr<> -wrapped objects to and from functions in a way that result in function
prototypes becoming as self documenting as possible, help to avoid coding errors and increase the
readability of C++ code. Also, in addition to the benefit thatRefCountPtr<> eases dynamic mem-
ory management, the selective use ofRefCountPtr<> and raw C++ object references extends the
vocabulary of the C++ language by helping to distinguish between persisting and non-persisting
associations. For example, when a one sees a function prototype where an object is passed through
a RefCountPtr<> such as

class SomeClass {
public:

void someFunction(const RefCountPtr<A> &a);
}

one can automatically deduce that “memory” of theA object will be retained (through a private
RefCountPtr<A> data member inSomeClass no doubt) and that should automatically alter how
the developer plans on calling that function and passing theA object. The refactored C++ program
in Appendix F provides an example of how the idioms presented in Appendix D are put to use.

3 Additional and advanced features ofRefCountPtr<>

The use cases forRefCountPtr<> described above comprise a large majority of the relavent use
cases in most programs, but there there are some other use cases that require additional and more

14

advanced features. Some of these additional features (the C++ declarations for which are shown in
Appendix A) are mentioned below:

1. Casting

RefCountPtr<> objects can be casted in a manner similar to casting raw C++ pointers and the
same types of conversion rules apply. Analogs of the built-in castsstatic cast<> , const -
cast<> anddynamic cast<> are supported by the non-member templated functionsrcp -
static cast<> , rcp const cast<> andrcp dynamic cast<> respectively. See Appendix
B for examples of how they are used.

2. Reference-count information

The functionRefCountPtr<>::count() returns the number ofRefCountPtr<> objects that
point to the underlying reference-counted object. This information can be useful in some
cases.

3. Associating extra data with a reference-counted object

There are some more difficult use cases where certain types of information or other objects
must be bundled with a reference-counted object and must not be deleted until the reference-
counted object is deleted. The non-member templated functionsset extra data<>(...)
andget extra data<>(...) serve this purpose (see item (5) in Appendix B).

4. Customized deallocation policies

The default behavior ofRefCountPtr<> is to call operatordelete on reference-counted
objects once the reference count goes to zero. While this is the most commonly needed
behavior, there are use cases where more specialized dellocation polices are required. For
these cases, there is an overloaded form of the templated functionTeuchos::rcp(...) that
takes a templated deallocation policy object that defines how a reference-counted object is
deallocated when required.

These features are discussed in detail in the design document [2].

4 Summary

The templated C++ classRefCountPtr<> provides a low-overhead option for (almost) automatic
memory management in C++. This class has been developed and refined over many years and has
been instrumental in improving the quality of software projects that use it consistently (for example
see MOOCHO [1]). Careful use ofRefCountPtr<> eliminates the need to manually call operator
delete when dynamically allocated objects are no longer needed. Furthermore, it helps to reduce
the amount of code that developers have to write. For example, most classes that useRefCount-
Ptr<> for dynamically allocated memory do not need developer-supplied destructors. This because

15

the compiler-generated destructors do the exactly correct thing which is to call destructors on an
object’s constituent data members. This was demonstrated in the difference between the original
and refactored classesClientB andClientC described in Sections 2.1 and 2.2.

The classRefCountPtr<> also has advanced features not found in other smart-pointer imple-
mentations such as the ability to attach extra data and the customization of the deallocation policy.

16

References

[1] R. A. Bartlett. MOOCHO : Multifunctional Object-Oriented arCHitecture for Optimization,
User’s Guide. Sandia National Labs, 2003.

[2] Roscoe A. Bartlett. Teuchos::RefCountPtr : The Trilinos smart reference-counted pointer class
for (almost) automatic dynamic memory management in C++. Technical Report In preparation,
Sandia National Laboratories, 2004.

[3] E. Gamma, R. Helm, R. Johnson, and John Vlissides.Design Patterns: Elements fo Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[4] Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jonathan Hu, Tamara Kolda,
Richard Lehoucq, Kevin Long, Roger Pawlowski, Eric Phipps, Andrew Salinger, Heidi Thorn-
quist, Ray Tuminaro, James Willenbring, and Alan Williams. An Overview of Trilinos. Tech-
nical Report SAND2003-2927, Sandia National Laboratories, 2003.

[5] Tamara K. Locke. Guide to preparing SAND reports. Technical report SAND98-0730, Sandia
National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550,
May 1998.

[6] S. Meyers.More Effective C++. Addison-Wesley, 1996.

[7] B. Stroustrup.The C++ Programming Language, special edition. Addison-Wesley, New York,
2000.

17

18

A C++ declarations for RefCountPtr<>

namespace Teuchos {

enum ENull { null };

template<class T>
class DeallocDelete { public: void free(T* ptr) { if(ptr) delete ptr; } };

template<class T>
class RefCountPtr {
public:

typedef T element_type;
RefCountPtr(ENull null_arg = null);
RefCountPtr(const RefCountPtr<T>& r_ptr);
template<class T2> RefCountPtr(const RefCountPtr<T2>& r_ptr);
˜RefCountPtr();
RefCountPtr<T>& operator=(const RefCountPtr<T>& r_ptr);
T* operator->() const;
T& operator*() const;
T* get() const;
T* release();
int count() const;
void set_has_ownership();
bool has_ownership() const;
bool shares_resource(const RefCountPtr<T>& r_ptr) const;

private:
...

};

template<class T> RefCountPtr<T> rcp(T* p);
template<class T> RefCountPtr<T> rcp(T* p, bool owns_mem);
template<class T

,class Dealloc_T> RefCountPtr<T> rcp(T* p, Dealloc_T dealloc, bool owns_mem);
template<class T2, class T1> RefCountPtr<T2> rcp_implicit_cast(const RefCountPtr<T1>& p1);
template<class T2, class T1> RefCountPtr<T2> rcp_static_cast(const RefCountPtr<T1>& p1);
template<class T2, class T1> RefCountPtr<T2> rcp_const_cast(const RefCountPtr<T1>& p1);
template<class T2, class T1> RefCountPtr<T2> rcp_dynamic_cast(const RefCountPtr<T1>& p1);
template<class T1, class T2> int set_extra_data(const T1 &extra_data

,const std::string& name, RefCountPtr<T2> *p
,bool force_unique = true);

template<class T1, class T2> T1& get_extra_data(RefCountPtr<T2>& p
,const std::string& name);

template<class T1, class T2> const T1& get_extra_data(const RefCountPtr<T2>& p
,const std::string& name);

template<class Dealloc_T
, class T> Dealloc_T& get_dealloc(RefCountPtr<T>& p);

template<class Dealloc_T
, class T> const Dealloc_T& get_dealloc(const RefCountPtr<T>& p);

}

19

20

B RefCountPtr<> quick-start and reference

This appendix presents a short, but fairly comprehensive, quick-start for the use ofRefCountPtr<> .
The use cases described here should cover the overwhelming majority of the use instances ofRef-
CountPtr<> in a typical program.

The following class hierarchy will be used in the C++ examples given below.

class A { public: virtual ˜A(){} A& operator=(const A&){} virtual void f(){} };
class B1 : virtual public A {};
class B2 : virtual public A {};
class C : virtual public B1, virtual public B2 {};

class D {};
class E : public D {};

All of the following code examples used in this appendix are assumed to be in the names-
paceTeuchos or have appropriateusing Teuchos::... declarations. This removes the need to
explicitly useTeuchos:: to qualify classes, functions and other declarations from theTeuchos
namespace.

1. Creation of RefCountPtr<> objects

(a) Creating a RefCountPtr<> object usingnew

RefCountPtr<C> c_ptr = rcp(new C);

(b) Initializing a RefCountPtr<> object to NULL

RefCountPtr<C> c_ptr;

or

RefCountPtr<C> c_ptr = null;

(c) Initializing a RefCountPtr<> object to an object notallocated with new

C c;
RefCountPtr<C> c_ptr = rcp(&c,false);

(d) Representing constantness and non-constantness

i. Non-constant pointer to non-constant object
RefCountPtr<C> c_ptr;

ii. Constant pointer to non-constant object
const RefCountPtr<C> c_ptr;

iii. Non-Constant pointer to constant object
RefCountPtr<const C> c_ptr;

21

iv. Constant pointer to constant object
const RefCountPtr<const C> c_ptr;

(e) Copy constructor (implicit casting)

RefCountPtr<C> c_ptr = rcp(new C); // No cast
RefCountPtr<A> a_ptr = c_ptr; // Cast to base class
RefCountPtr<const A> ca_ptr = a_ptr; // Cast from non-const to const

2. Reinitialization of RefCountPtr<> objects (using assignment operator)

(a) Resetting from a raw pointer

RefCountPtr<A> a_ptr;
a_ptr = rcp(new C());

(b) Resetting to null

RefCountPtr<A> a_ptr = rcp(new C());
a_ptr = null; // The C object will be deleted here

(c) Assigning from aRefCountPtr<> object

RefCountPtr<A> a_ptr1;
RefCountPtr<A> a_ptr2 = rcp(new C());
a_ptr1 = a_ptr2; // Now a_ptr1 and a_ptr2 point to same C object

3. Accessing the reference-counted object

(a) Access to object reference (runtime checked)

C &c_ref = *c_ptr;

(b) Access to object pointer (unchecked, may returnNULL)

C *c_rptr = c_ptr.get();

(c) Access to object pointer (runtime checked, will not returnNULL)

C *c_rptr = &*c_ptr;

(d) Access of object’s member (runtime checked)

c_ptr->f();

4. Casting

(a) Implicit casting (see copy constructor above)

(b) Casting awayconst

RefCountPtr<const A> ca_ptr = rcp(new C);
RefCountPtr<A> a_ptr = rcp_const_cast<A>(ca_ptr); // cast away const!

(c) Static cast (no runtime check)

RefCountPtr<D> d_ptr = rcp(new E);
RefCountPtr<E> e_ptr = rcp_static_cast<E>(d_ptr); // Unchecked, unsafe?

22

(d) Dynamic cast (runtime checked)

RefCountPtr<A> a_ptr = rcp(new C);
RefCountPtr<B1> b1_ptr = rcp_dynamic_cast<B1>(a_ptr); // Checked, safe!
RefCountPtr<B2> b2_ptr = rcp_dynamic_cast<B2>(b1_ptr); // Checked, safe!
RefCountPtr<C> c_ptr = rcp_dynamic_cast<C>(b2_ptr); // Checked, safe!

5. Managing extra data

(a) Adding extra data

set_extra_data(rcp(new B1),"A:B1",&a_ptr);

(b) Retrieving extra data

get_extra_data<RefCountPtr<B1> >(a_ptr,"A:B1")->f();

(c) Resetting extra data

get_extra_data<RefCountPtr<B1> >(a_ptr,"A:B1") = rcp(new C);

23

24

C Commandments for the use ofRefCountPtr<>

Here are listed commandments for the use ofRefCountPtr<> . These commandments reinforce
some of the material in the quick-start in Appendix B. The reasoning behind these commandments
can be found in the design document forRefCountPtr<> [2]. Along with each commandment is
one or more anti-commandments stating the negative of the commandment. C++ code fragments
are also included to demonstrate each commandment and anti-commandment.

Commandment 1 Thou shall put a pointer for an object allocated with operatornew into aRef-
CountPtr<> object only once. The best way to insure this is to call operatornew directly in a call
to rcp(...) to create a dynamically allocated object that is to be managed by aRefCount-
Ptr<> object (see item (1a) in Appendix B).

Anti-Commandment 1 Thou shall never give a raw C++ pointer returned from operatornew to
more than oneRefCountPtr<> object.

Example:

A *ra_ptr = new C;
RefCountPtr<A> a_ptr1 = rcp(ra_ptr); // Okay
RefCountPtr<A> a_ptr2 = rcp(ra_ptr); // no, No, NO !!!!

Anti-Commandment 2 Thou shall never give a raw C++ pointer to an array of objects returned
from operatornew[] to aRefCountPtr<> object.

Example:

RefCountPtr<std::vector<C> > c_array_ptr1 = rcp(new std::vector<C>(N)); // Okay
RefCountPtr<C> c_array_ptr2 = rcp(new C[N]); // no, No, NO !!!!

Commandment 2 Thou shall only create aNULL RefCountPtr<> object by using the default
constructor or by using thenull enum (and its associated special constructor) (see item (1b) in
Appendix B). Trying to assign toNULLor 0 will not compile.

Anti-Commandment 3 Thou shall not create aNULL RefCountPtr<> object using the tem-
plated functionrcp(...) since it is very verbose and complicates maintenance.

Example:

25

RefCountPtr<A> a_ptr1 = null; // Yes :-)
RefCountPtr<A> a_ptr2 = rcp<A>(NULL); // No, too verbose :-(

Commandment 3 Thou shall only pass a raw pointer for an object that is notallocated by op-
erator new (e.g. allocated on the stack) into aRefCountPtr<> object by using the templated
functionrcp<T>(T* p, bool owns mem) and settingowns memto false (see item (1c)
in Appendix B).

Anti-Commandment 4 Thou shall never pass a pointer for an object notallocated with operator
new into aRefCountPtr<> object without settingowns memto false .

Example:

C c;
RefCountPtr<A> a_ptr1 = rcp(&c,false); // Yes :-)
RefCountPtr<A> a_ptr2 = rcp(&c); // no, No, NO !!!!

Commandment 4 Thou shalt only cast betweenRefCountPtr<> objects using the default copy
constructor (for implicit conversions) and the nonmember template functionsrcp static cast<>(-
...) , rcp const cast<>(...) and rcp dynamic cast<>(...) (see item (4) in Ap-
pendix B).

Anti-Commandment 5 Thou shall never convert betweenRefCountPtr<> objects using raw
pointer access.

Example:

RefCountPtr<A> a_ptr = rcp(new C);
RefCountPtr<B1> b1_ptr1 = rcp_dynamic_cast<B1>(a_ptr); // Yes :-)
RefCountPtr<B1> b1_ptr2 = rcp(dynamic_cast<B1*>(a_ptr.get())); // no, No, NO !!!

26

D Recommendations for passing objects to and from C++ functions

Below are recommended idioms for passing required1 and optional2 arguments into and out of C++
functions for various use cases and different types of objects. These idioms show how to write
function arguments prototypes which exploit the C++ language in a way that makes these function
prototypes as self documenting as possible, avoid coding errors and increase readability of C++
code. In general,RefCountPtr<> objects should be passed and manipulated as though they where
raw C++ pointers. The main difference is that while raw C++ pointer objects should generally
be passed by value,RefCountPtr<> objects should generally be passed by reference for several
reasons (see [2] for more details).

Argument purpose Non-Persisting Persisting

non-mutable object (required1)

.

S s
or

const S s
or

const S &s
.

const RefCountPtr<const S> &s

non-mutable object (optional2) const S *s const RefCountPtr<const S> &s
mutable object S *s const RefCountPtr<S> &s

array of non-mutable objects const S s[] const RefCountPtr<const S> s[]
array of mutable objects S s[] const RefCountPtr<S> s[]

C++ declarations for passing small concrete (i.e. with value semantics) objects to and from
functions whereS is a place holder for an actual built-in or user-defined data type.

Argument purpose Non-Persisting Persisting

non-mutable object (required1) const A &a const RefCountPtr<const A> &a
non-mutable object (optional2) const A *a const RefCountPtr<const A> &a

mutable object A *a const RefCountPtr<A> &a
array of non-mutable objects const A* a[] const RefCountPtr<const A> a[]

array of mutable objects A* a[] const RefCountPtr<A> a[]

C++ declarations for passing abstract (i.e. with reference or pointer semantics) or large concrete
objects to and from functions whereA is a place holder for an actual abstract C++ base class.

1Required arguments must be bound to valid objects (i.e. can not beNULL)
2Optional arguments may beNULL in some cases

27

28

E Listing: Example C++ program using raw dynamic memory man-
agement

#include "example_get_args.hpp"

// Abstract interfaces
class UtilityBase {
public:

virtual void f() const = 0;
};
class UtilityBaseFactory {
public:

virtual UtilityBase* createUtility() const = 0;
};

// Concrete implementations
class UtilityA : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityA::f() called, this="<<this<<"\n"; }
};
class UtilityB : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityB::f() called, this="<<this<<"\n"; }
};
class UtilityAFactory : public UtilityBaseFactory {
public:

UtilityBase* createUtility() const { return new UtilityA(); }
};
class UtilityBFactory : public UtilityBaseFactory {
public:

UtilityBase* createUtility() const { return new UtilityB(); }
};

// Client classes
class ClientA {
public:

void f(const UtilityBase &utility) const { utility.f(); }
};
class ClientB {

UtilityBase *utility_;
public:

ClientB() : utility_(0) {}
˜ClientB() { delete utility_; }
void initialize(UtilityBase *utility) { utility_ = utility; }
void g(const ClientA &a) { a.f(*utility_); }

};
class ClientC {

29

const UtilityBaseFactory *utilityFactory_;
UtilityBase *utility_;
bool shareUtility_;

public:
ClientC(const UtilityBaseFactory *utilityFactory, bool shareUtility)

:utilityFactory_(utilityFactory)
,utility_(utilityFactory->createUtility())
,shareUtility_(shareUtility) {}

˜ClientC() { delete utilityFactory_; delete utility_; }
void h(ClientB *b) {

if(shareUtility_) b->initialize(utility_);
else b->initialize(utilityFactory_->createUtility());

}
};

// Main program
int main(int argc, char* argv[])
{

// Read options from the commandline
bool useA, shareUtility;
example_get_args(argc,argv,&useA,&shareUtility);
// Create factory
UtilityBaseFactory *utilityFactory = 0;
if(useA) utilityFactory = new UtilityAFactory();
else utilityFactory = new UtilityBFactory();
// Create cleints
ClientA a;
ClientB b1, b2;
ClientC c(utilityFactory,shareUtility);
// Do some stuff
c.h(&b1);
c.h(&b2);
b1.g(a);
b2.g(a);
// Cleanup memory
delete utilityFactory;

}

30

F Listing: Refactored example C++ program usingRefCountPtr<>

#include "Teuchos_RefCountPtr.hpp"
#include "example_get_args.hpp"

// Inject symbols for RefCountPtr so we don’t need Teuchos:: qualification
using Teuchos::RefCountPtr;
using Teuchos::rcp;

// Abstract interfaces
class UtilityBase {
public:

virtual void f() const = 0;
};
class UtilityBaseFactory {
public:

virtual RefCountPtr<UtilityBase> createUtility() const = 0;
};

// Concrete implementations
class UtilityA : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityA::f() called, this="<<this<<"\n"; }
};
class UtilityB : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityB::f() called, this="<<this<<"\n"; }
};
class UtilityAFactory : public UtilityBaseFactory {
public:

RefCountPtr<UtilityBase> createUtility() const { return rcp(new UtilityA()); }
};
class UtilityBFactory : public UtilityBaseFactory {
public:

RefCountPtr<UtilityBase> createUtility() const { return rcp(new UtilityB()); }
};

// Client classes
class ClientA {
public:

void f(const UtilityBase &utility) const { utility.f(); }
};
class ClientB {

RefCountPtr<UtilityBase> utility_;
public:

void initialize(const RefCountPtr<UtilityBase> &utility) { utility_=utility; }
void g(const ClientA &a) { a.f(*utility_); }

31

};
class ClientC {

RefCountPtr<UtilityBaseFactory> utilityFactory_;
RefCountPtr<UtilityBase> utility_;
bool shareUtility_;

public:
ClientC(const RefCountPtr<UtilityBaseFactory> &utilityFactory, bool shareUtility)

:utilityFactory_(utilityFactory)
,utility_(utilityFactory->createUtility())
,shareUtility_(shareUtility) {}

void h(ClientB *b) {
if(shareUtility_) b->initialize(utility_);
else b->initialize(utilityFactory_->createUtility());

}
};

// Main program
int main(int argc, char* argv[])
{

// Read options from the commandline
bool useA, shareUtility;
example_get_args(argc,argv,&useA,&shareUtility);
// Create factory
RefCountPtr<UtilityBaseFactory> utilityFactory;
if(useA) utilityFactory = rcp(new UtilityAFactory());
else utilityFactory = rcp(new UtilityBFactory());
// Create cleints
ClientA a;
ClientB b1, b2;
ClientC c(utilityFactory,shareUtility);
// Do some stuff
c.h(&b1);
c.h(&b2);
b1.g(a);
b2.g(a);

}

32

DISTRIBUTION:

1 Carl Laird
Department Chemical Engineering
Carnegie Mellon University
5000 Forms Ave.
Pittsburgh, PA 15213

1 Matthias Heinkenschloss
Department of Computational and Ap-
plied Mathematics
MS 134 Rice University
6100 S. Main Street
Houston, TX 77005-1892

1 Bill Symes
Department of Computational and Ap-
plied Mathematics
MS 134 Rice University
6100 S. Main Street
Houston, TX 77005-1892

1 Tony Padula
Department of Computational and Ap-
plied Mathematics
MS 134 Rice University
6100 S. Main Street
Houston, TX 77005-1892

1 Mark Gockenbach
Department of Mathematical Sciences
Michigan Technological University
1400 Townsend Drive
Houghton, Michigan 49931-1295, U.S.A.

1 Paul Sexton
Box 1560
St. John’s University
Collegeville, MN 56321

1 MS 0370
Scott Mitchell, 9211

1 MS 0370
David Gay, 9211

5 MS 0370
Roscoe Bartlett, 9211

1 MS 0370
Scott Collis, 9211

1 MS 0370
Bart van Bloemen Waanders,
9211

1 MS 0370
Mike Eldred, 9211

1 MS 0370
Laura Swiler, 9211

1 MS 9159
Mark Adams, 9214

1 MS 1110
Pavel Bochev, 9214

1 MS 1110
Todd Coffey, 9214

1 MS 1110
David Day, 9214

1 MS 1110
John Delaurentis, 9214

1 MS 1110
Michael Heroux, 9214

1 MS 1110
Ulrich Hetmaniuk, 9214

1 MS 9217
Jonathan Hu, 9214

1 MS 1110
Richard Lehoucq, 9214

1 MS 1110
Louis Romero, 9214

1 MS 1110
David Ropp, 9214

33

1 MS 1110
Mazio Sala, 9214

1 MS 1110
Kendall Stanley, 9214

1 MS 1110
Heidi Thornquist, 9214

1 MS 9217
Raymond Tuminaro, 9214

1 MS 1110
James Willenbring, 9214

1 MS 1110
William Hart, 9215

1 MS 1110
Erik Boman, 9215

1 MS 9159
Paul Boggs, 8962

1 MS 9159
Kevin Long, 8962

1 MS 9159
Patricia Hough, 8962

1 MS 9159
Tamara Kolda, 8962

1 MS 9159
Monica Martinez-Canales, 8962

1 MS 9159
Pamela Williams, 8962

1 MS 9159
Victoria Howle, 8962

1 MS 0316
Eric Keiter, 9233

1 MS 0316
Scott Hutchinson, 9233

1 MS 0316
Robert Hoekstra, 9233

1 MS 0316
Curt Ober, 9233

1 MS 0316
Tom Smith, 9233

1 MS 0316
Russel Hooper, 9233

1 MS 0382
Carter Edwards, 9143

1 MS 0382
James Stewart, 9143

1 MS 0316
Alan Williams, 9143

1 MS 0617
Ricard Drake, 9231

1 MS 0316
Roger Pawlowski, 9233

1 MS 0316
Eric Phipps, 9233

1 MS 1110
Andrew Salinger, 9233

1 MS 1110
Brett Bader, 9233

1 MS 0316
Gary Hennigan, 9233

1 MS 9018
Central Technical Files, 8945-1

2 MS 0899
Technical Library, 9610

2 MS 0612
Review & Approval Desk, 4916

34

	Teuchos::RefCountPtr Beginner’s Guide
	Abstract
	Acknowledgments
	Contents
	Appendix
	1 Introduction
	2 An example C++ program
	2.1 Example C++ program using raw dynamic memory management
	2.2 Refactored example C++ program using RefCountPtr<>

	3 Additional and advanced features of RefCountPtr<>
	4 Summary
	References
	A C++ declarations for RefCountPtr<>
	B RefCountPtr<> quick-start and reference
	C Commandments for the use of RefCountPtr<>
	D Recommendations for passing objects to and from C++ functions
	E Listing: Example C++ program using raw dynamic memory management
	F Listing: Refactored example C++ program using RefCountPtr<>
	DISTRIBUTION

