Next: Conclusions Up: Results for Example Applications Previous: Analysis of fly ashes

3.2 Analysis of cement ground to different finenesses

A set of clinkers ground to Blaine finenesses [10] ranging from about 200 m2/kg to 650 m2/kg have also been analyzed using the SEM/X-ray techniques. The same clinker was analyzed using optical microscopy to estimate its phase composition. Figure 6 provides final processed images for two of the grinding levels. One can clearly observe the differences in grain size and phase distributions present in the two images. As the cement is ground more finely, additional surface area is exposed, so that the surface area to volume ratio of the cements increases. This is illustrated quantitatively in Figure 7 which shows that the SEM measured fineness (surface area to volume ratio) correlates well with the measured Blaine fineness.

  
Figure 6: Final processed 2-D SEM/X-ray images for a portland cement ground to different fineness: top- 540.7 m2/kg, and bottom- 197.0 m2/kg. Each image is 256 µm by 200 µm. Colors correspond to the following phases: red- C3S, aqua- C2S, green- C3A, orange- C4AF, pale green- calcium sulfates, yellow- K2SO 4 , and white- free lime.

In Table I, the quantitative phase analysis results from the final segmented 2-D SEM/X-ray images are compared to one another and to the phase fractions estimated using optical microscopy point counting on the raw clinker. In general, the agreement between the different cement powder images and the raw clinker image is quite reasonable. The volume fractions of the C 4AF phase are slightly greater in the SEM images than in the clinker analysis, perhaps illustrating that an accurate determination of the ferrite phase via conventional optical microscopy is somewhat difficult, perhaps due to its small grain size. When comparing the results for the different finenesses, there are not any significant differences between the surface area phase fractions (relative to the corresponding volume fractions) to indicate that one particular phase is being preferentially exposed by the grinding. In general, the surface area fractions for the C3 A are higher than its corresponding volume fractions, and vice versa for the C3 S. This indicates that the cement particle surfaces are enriched in C3 A and deficient in C3S relative to the cement's bulk composition. This is at least partially due to the fact that the C3S tends to be located in the larger particles, which have a reduced surface area to volume ratio relative to the smaller particles often containing the C3 A phase.

One important application for the images and the quantitative phase analysis results presented in this paper is to provide input for cement hydration and microstructural development models [11,12]. Based on the quantitative phase fractions and the two-point correlation functions measured for the phases, a 3-D cement particle image can be reconstructed which matches the phase volume fractions, phase surface area fractions, and correlation structure of any cement of interest [8]. It is only after the starting cement powder is adequately characterized that accurate modelling of the hydration behavior and physical properties of cement-based materials is possible [13].


Table 1: Volume fraction and surface area fraction for portland cement ground to different finenesses
    Cement powder
    Blaine fineness (m2/kg)
Phase Clinker 654.0 540.7 370.0 279.0 197.0
  Volume fractions
C3S 0.740 0.770 0.752 0.746 0.643 0.763
C2S 0.163 0.142 0.134 0.130 0.212 0.089
C3A 0.076 0.045 0.077 0.084 0.077 0.083
C4AF 0.022 0.043 0.037 0.041 0.068 0.065
    Surface area fractions
C3S   0.713 0.712 0.692 0.599 0.713
C2S   0.176 0.131 0.122 0.233 0.098
C3A   0.061 0.110 0.123 0.098 0.116
C4AF   0.050 0.048 0.064 0.070 0.073

 
Figure 7: Image analysis surface area to volume ratio for four major clinker phases vs. measured Blaine fineness for a portland cement ground to five different finenesses. Error bars indicate one standard deviation for cases where two images were analyzed at a given fineness


Next: Conclusions Up: Results for Example Applications Previous: Analysis of fly ashes