(UCRL-PRES-226782)

BROADENING THE HEAT FLUX VIA FORCED OR INSTABILITY-DRIVEN TOROIDAL POTENTIAL VARIATION

R.H. Cohen, D.D. Ryutov, LLNL

NSTX Boundary Physics Brainstorming Meeting PPPL February 12, 2006

Work performed under the auspices of U.S. DOE by UC LLNL under Contract No.W-7405-Eng-48.

\mathbf{E}_{\perp} within flux surface leads to SOL broadening \boldsymbol{U}

- Φ variation from field line to field line within flux surface $\rightarrow E_{\perp,pol} \rightarrow v_r$
- Various ways to exploit
 - Instabilities: limited coherence leads to radial diffusion
 - Forced variation (DC)
 - e.g. by toroidal (+ radial) spatial modulation of boundary conditions
 - Create convective cells
 - If strong enough, creates sheardriven instabilities
 - Tried on MAST and it works (see below)
 - Forced variation (AC): no obvious advantage

X-point magnetic shear can confine potential perturbations to a divertor leg

- A flux tube that is circular in the divertor leg becomes highly squeezed, to Δr < ρ_I, as it passes X point into main SOL
- (Similarly circular flux tube at SOL midplane squeezed in divertor leg)
- Isolates divertor leg from main SOL
- Opens possibility of manipulating divertor leg to stir up plasma and so broaden heat load, without impacting main SOL or core plasma.

Divertor-leg instabilities may be exploitable to broaden divertor-leg plasma

- Divertor-leg instabilities can be driven by curvature and sheath boundary conditions
- These instabilities have the potential to grow into blobs
- Growth rate (and blob speed) strongly impacted by radial tilt of divertor plates
- Reference: Cohen et al, IAEA 2006 (to be submitted to Nuc. Fusion)

Another option is to deliberately introduce asymmetries

- There are a variety of ways to do this.
- Toroidally asymmetric biasing has been demonstrated to be effective on MAST
 - Broadens divertor leg plasma
 - No effect (except change in toroidal-av. Φ_{float}) in main SOL
 - Results agree with theory
- Other more reactor-friendly approaches should also be effective

References available for more information

- R.H. Cohen, D.D. Ryutov, G. F. Counsell, P. Helander. "Current and potential distribution in a divertor with toroidally-asymmetric biasing of the divertor plate." PPCF 49, 1 (2006).
- R.H. Cohen, D.D. Ryutov. "Plasma convection induced by toroidal asymmetries of the divertor plates and gas puffing". Nucl. Fusion **37**, 621 (1997).
- D.D. Ryutov, R.H. Cohen. "Instability Driven by Sheath Boundary Conditions and Limited to Divertor Legs." Contributions to Plasma Physics 44, 168 (2004).
- G.F. Counsell, R.H. Cohen, P. Helander, D.D. Ryutov, and the MAST team. "Reduction of Divertor Power Loading in MAST." 30th EPS Conference on Controlled Fusion and Plasma Physics, St Petersburg, June 2003, paper P-3.202 (<u>http://epsppd.epfl.ch/StPetersburg/start.html</u>)
- R.H. Cohen, B. LaBombard, L.L. LoDestro, T.D. Rognlien, D.D. Ryutov, J.L. Terry, M.V. Umansky, X.Q. Xu, S. Zweben, "Fluid Simulations and Theory of Boundary Plasma Fluctuations", 2006 IAEA Meeting, <u>http://wwwpub.iaea.org/MTCD/Meetings/FEC2006/th_p6-25.pdf</u>; and to be submitted to Nucl. Fusion.