Spectral Calibration of the EO-1 Advanced Land Imager*

Jeffrey A. Mendenhall

Advanced Space Systems and Concepts Group

MIT/Lincoln Laboratory

50 years

*This work was sponsored by NASA/Goddard Space Flight Center under U.S. Air Force Contract number F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

ALI Tech_Trans-1 JAM 10/23/01

- Introduction
- Collimator
- Technique
- Results
- Summary

EO-1 ALI MS/PAN Spectral and Spatial Coverage

Band	Wavelength(mm)	Detector Type	GSD (m)	# of Detectors
Pan	0.480-0.690	Si Photodiode	10	3840
MS-1'	0.433-0.453	Si Photodiode	30	1280
MS-1	0.450-0.515			
MS-2	0.525-0.605			
MS-3	0.630-0.690			
MS-4	0.775-0.805			
MS-4'	0.845-0.890			
MS-5'	1.200-1.300	PV HgCdTe	30	1280
MS-5	1.550-1.750			
MS-7	2.080-2.350			

MS/PAN Flight Module

MIT Lincoln Laboratory

Spectral Filters

MIT Lincoln Laboratory

- Introduction
- Collimator
- Technique
- Results
- Summary

Spectral Collimator

• Source

- Quartz tungsten halogen lamp
- Oriel MS257 monochromator
- 2" diameter (id) integrating sphere
 - 0.5" diameter exit port
- Collimating Optics(0.5° field)
 - 6" diameter Condensing lens
 - 17" diameter, 100" focal length off-axis parabola
 - 20" diameter turning flat
- Careful baffling to ensure proper stray light rejection

Spectral Collimator

MIT Lincoln Laboratory

- Introduction
- Collimator
- Technique
- Results
- Summary

- Measure spectral response of multispectral and panchromatic detectors from 0.4-2.5 mm
- Technique
 - Flood focal plane with 2 nm FWHM beam sequentially from 350 to 1000 nm in 2 nm intervals for VNIR
 - Flood focal plane with 4 nm FWHM beam sequentially from 1000 to 2500 nm in 4 nm intervals for SWIR
 - Record response of focal plane at each interval
 - Record response of spectrally calibrated silicon and lead sulfide detectors to monitor flux and stability of beam

- A pixel's spectral response is derived by normalizing its response as a function of wavelength to account for various artifacts
 - Dark current
 - Vacuum tank window transmission
 - Beam flux

$$S_P(b,\mathbf{I}) = \frac{R_P(dn,\mathbf{I}) R_d(\mathbf{I})}{T_W(\mathbf{I})F(\mathbf{I})}.$$

- S_P(b,1) is the derived spectral response for pixel P as a function of band b and wavelength 1
- $R_P(dn, 1)$ is the ALI dark subtracted focal plane response for pixel P as a function of wavelength
- $R_d(\mathbf{l})$ is the spectral responsivity of the reference detector used to monitor the beam
- $T_w(1)$ is the spectral transmission of the vacuum tank window
- F(1) is the measured flux of the beam as a function of wavelength

- Introduction
- Collimator
- Technique
- Results
- Summary

Spectral Calibration Results: Band 1p and 1

Spectral Calibration Results: Bands 2 and 3

Spectral Calibration Results: Bands 4 and 4p

Spectral Calibration Results: Bands 5p, 5, and 7

MIT Lincoln Laboratory

ALI Tech_Trans-16 JAM 10/23/01

Spectral Calibration Results: Panchromatic Band

ALI Spectral Response Functions

- Introduction
- Collimator
- Technique
- Results
- Summary

- We find excellent morphological agreement between system and subsystem level spectral calibration measurements.
- Based on system level measurements, the finer subsystem level calculations were adopted for the flight spectral response functions of the ALI.
- Characterization of a fully populated array would require substantial commitment at the system level and may be more appropriate at the subsystem level.