Chapter 16: Toxin types, toxicokinetics and toxicodynamics

Andrew Humpage^{1,2,3}

¹Australian Water Quality Centre, PMB 3, Salisbury, Adelaide, SA 5108, Australia. ²Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, SA 5005, Australia. ³Cooperative Research Centre for Water Quality and Treatment, PMB 3, Salisbury, Adelaide, SA 5108, Australia

Introduction

Cyanobacteria produce a wide array of bioactive secondary metabolites (see Table A.1 in Appendix A), some which are toxic (Namikoshi and Rinehart 1996; Skulberg 2000). Those toxic to mammals include the microcystins, cylindrospermopsins, saxitoxins, nodularins, anatoxin-a, homoanatoxin-a, and anatoxin-a(s). It has been recently suggested that β -methylamino alanine (BMAA) may be a new cyanobacterial toxin (Cox et al. 2003; Cox et al. 2005). The public health risks of cyanotoxins in drinking water have recently been reviewed (Falconer and Humpage 2005b). The aim of this paper is to concisely review our current knowledge of their acute toxicity, mechanisms of action, toxicokinetics and toxicodynamics.

Microcystins

Microcystins (MCs) are a group of at least 80 variants based on a cyclic heptapeptide structure (Fig. 1). All toxic microcystin structural variants contain a unique hydrophobic amino acid, 3-amino-9-methoxy-10-phenyl-2,6,8-trimethyl-deca-4(E),6(E)-dienoic acid (ADDA). The prototype-compound is MC-LR, which has leucine and arginine at the two hypervariable positions in the ring structure (X and Y, respectively, in Fig. 1). Sub-

stitution of other amino acids at these sites, or methylation of residues at other sites, leads to wide structural variability (Namikoshi et al. 1990; Namikoshi et al. 1992d; Namikoshi et al. 1992b; Namikoshi et al. 1992c; Namikoshi et al. 1992a; Namikoshi et al. 1995; Namikoshi et al. 1998; Sivonen and Jones 1999). These toxins are produced by a wide variety of planktonic evanobacteria including *Microcystis aeruginosa*. M. viridis. M. ichthvoblabe, M. botrys, Planktothrix argardhii, P. rubescens, P. mougeotii, Anabaena flos-aquae, A. circinalis, A. lemmermannii, Nostoc spp., and Snowella lacustris (Botes et al. 1982; Codd and Carmichael 1982; Botes et al. 1985; Kusumi et al. 1987; Krishnamurthy et al. 1989; Sivonen et al. 1990; Harada et al. 1991; Watanabe et al. 1991; Sivonen et al. 1992; Ueno et al. 1996; Vezie et al. 1998; Marsalek et al. 2000; Fastner et al. 2001). The species most often cited as microcystin producers are M. aeruginosa (worldwide) and the *Planktothrix* species (Northern Europe). Microcystin production has also been linked with some benthic species: Haphalosiphon hibernicus and Oscillatoria limnosa (Prinsep et al. 1992b; Mez et al. 1997). Other benthic species have been implicated, but the difficulty of culturing these species has precluded clear identification of the organisms responsible.

Fig. 1. General structure of the microcystins

The primary site of toxic action of the microcystins is the active site of protein phosphatases 1 and 2A (Eriksson et al. 1990; MacKintosh et al. 1990; Runnegar et al. 1995b). This activity is mediated principally by the

ADDA group (Goldberg et al. 1995) although most microcystin variants contain dehydroalanine, which can undergo covalent linkage to a cysteinyl sulphur on the phosphatase. This makes the inhibition irreversible.

MC-LR has a LD₅₀ (ip, mice, 24hr) of 60 µg kg⁻¹. The primary acute effect of protein phosphatase inhibition is hyperphosphorylation of many cellular proteins including the hepatocellular cytoskeleton, which causes loss of cell-cell contacts and intra-hepatic haemorrhage. Death is due to hypovolemic shock (Runnegar and Falconer 1986; Falconer and Yeung 1992; Runnegar et al. 1993). Other acute effects include altered mitochondrial membrane permeability, generation of reactive oxygen species and induction of apoptosis (Fladmark et al. 1999; Humpage and Falconer 1999; Ding et al. 2000; Hooser 2000), most likely due to a fatal loss of control of regulatory phosphorylation. Uptake is via specific organic anion transport proteins (Runnegar et al. 1991: Runnegar et al. 1995a; Fischer et al. 2005): hence MCs exhibit a predominantly hepatic organotropism, although enteric and even dermal effects have been demonstrated in certain circumstances (Falconer and Buckley 1989; Falconer et al. 1992). Studies of tissue distribution using radio-labelled toxin have confirmed the liver as the main site of toxin accumulation (~70% of a sub-lethal iv dose) and that the toxin level in this organ remains constant for up to 6 days post treatment (Falconer et al. 1986; Runnegar et al. 1986; Brooks and Codd 1987; Robinson et al. 1989; Robinson et al. 1990; Robinson et al. 1991). Bile acids and compounds that block bile acid uptake inhibit microcystin hepatic uptake and toxicity (Runnegar et al. 1981; Thompson et al. 1988; Thompson and Pace 1992; Runnegar et al. 1995a). Formation of glutathione metabolites of MC-LR and MC-RR has been demonstrated (Kondo et al. 1996). Toxin is rapidly cleared from the blood, after which time the main albeit slow route of excretion is via the faeces (Robinson et al. 1991). Human acute intoxication via renal dialysis (possibly in combination with cylindrospermopsin) resulted in visual disturbances, nausea, vomiting and death from liver failure (Carmichael et al. 2001; Azevedo et al. 2002), whereas sub-lethal exposure resulted in elevation of liver enzyme activities in the serum (Falconer et al. 1983).

Lower microcystin concentrations (pM) appear to suppress apoptosis and promote cell division in polyploid hepatocytes in vitro (Humpage and Falconer 1999), effects which may be linked to the enhancement of the growth of hepatic and colonic pre-cancerous lesions in animal models (Fujiki and Suganuma 1993; Ito et al. 1997; Humpage et al. 2000b). Microcystin exposure has been linked to human liver and colon cancer incidence (Yu 1995; Fleming et al. 2002; Zhou et al. 2002).

Cylindrospermopsins

The cylindrospermopsins (CYNs, Fig. 2) are alkaloids comprised of a tricyclic guanidino moiety linked via a hydroxylated bridging carbon (C7) to uracil (Ohtani et al. 1992). Structural variants are 7-epi-CYN and 7-deoxy-CYN (Norris et al. 1999; Banker et al. 2000), the latter having slightly lower potency than the 7-hydroxylated variants (Looper et al. 2005). The uracil moiety is required for toxicity (Banker et al. 2001; Runnegar et al. 2002). CYN's are produced by *Cylindrospermopsis raciborskii*, *Aphanizomenon ovalisporum*, *Anabaena bergii*, *Umezakia natans*, *Raphidiopsis curvata*, and as yet other unidentified species (Hawkins et al. 1985; Harada et al. 1994; Banker et al. 1997; Hawkins et al. 1997; Shaw et al. 1999; Li et al. 2001a; Schembri et al. 2001).

Fig. 2. Structure of cylindrospermopsin

The LD₅₀ of CYN indicates a delayed toxicity (2.0 mg kg⁻¹, ip mouse, after 24 hrs but 0.2 mg kg⁻¹ after 5 days; Ohtani et al. 1992). The primary toxic effect of the parent compound appears to be irreversible protein synthesis inhibition (Terao et al. 1994; Froscio et al. 2001, 2003; Looper et al. 2005). However, there is also evidence for metabolic activation as inhibitors of CYP450's are able to reduce acute toxicity (Runnegar et al. 1994; Froscio et al. 2003), CYN-dependent inhibition of glutathione synthesis (Runnegar et al. 1995c), and genotoxicity (Humpage et al. 2005). The evidence for CYP450 involvement in the in vivo toxicosis is less clear (Norris et al. 2002). Acute CYN poisoning results in lipid accumulation in the liver followed by hepatocellular necrosis (Terao et al. 1994; Seawright et al.

1999). Non-hepatic effects include destruction of the proximal tubules of the kidney (Falconer et al. 1999), as well as cytotoxic and thrombotic effects in other tissues. Intraperitoneal injection of radio-labelled CYN resulted in predominantly hepatic and, to a lesser extent, renal distribution of the toxin (Norris et al. 2001). There was some evidence for the formation of metabolites, but these were not characterised. Sub-chronic oral exposure resulted in mainly hepatic and renal effects (Humpage and Falconer 2003). Effects of poisoning in humans included hepatoenteritis and renal insufficiency (Byth 1980).

Genotoxic effects of CYN have been demonstrated in vitro using the cytokinesis-blocked micronucleus assay (Humpage et al. 2000a) and the comet assay (Humpage et al. 2005). Strand breakage and loss of whole chromosomes were demonstrated to occur at concentrations below those that caused overt cytotoxicity. Hepatic DNA fragmentation has also been demonstrated in vivo after a single intraperitoneal dose of cylindrospermopsin (Shen et al. 2002). There is some evidence of carcinogenicity in vivo (Falconer and Humpage 2001), but more work is required to confirm this.

Saxitoxins (Paralytic Shellfish Toxins (PSTs))

The saxitoxins (Fig. 3) have been extensively studied due to their involvement in paralytic shellfish poisoning where toxigenic marine dinoflagellates are consumed by shellfish, which concentrate the toxins and can deliver toxic quantities to consumers of the shellfish (Kao 1993). Saxitoxins are alkaloids based on a 3,4,6-trialkyl tetrahydropurine skeleton which can be further carbamylated, sulphated or N-sulphocarbamylated to produce a range of perhaps 30 analogues (Shimizu 2000), some of which are found only in freshwater cyanobacteria (Onodera et al. 1997b; Lagos et al. 1999; Molica et al. 2002). They are produced in the freshwater environment by *Aphanizomenon* spp., *Anabaena circinalis, Cylindrospermopsis raciborskii, Lyngbya wollei, Planktothrix* spp., and other unidentified species (Jackim and Gentile 1968; Ikawa et al. 1982; Humpage et al. 1994; Carmichael et al. 1997; Lagos et al. 1999; Kaas and Henriksen 2000; Pomati et al. 2000; Li et al. 2000; Li et al. 2003).

$$R_4$$
 R_1
 NH
 NH
 NH
 OH
 R_5
 R_2
 R_3

Fig. 3. General structure of the saxitoxins

Toxin	R1	R2	R3	R5	Net Charge	Relative mouse toxicity
$\overline{R4 = CONH_2 (carban)}$	nate to	oxins)				<u> </u>
STX	Н	Н	Н	ОН	+2	1.000
neoSTX	ОН	Н	Н	ОН	+2	0.924
GTX1	ОН	Н	OSO ₃	ОН	+1	0.994
GTX2	Н	Н	OSO ₃	ОН	+1	0.359
GTX3	Н	OSO ₃	Н	ОН	+1	0.638
GTX4	ОН	OSO ₃	Н	ОН	+1	0.726
$R4 = CONHSO_3^- (n-st)$	ulfoca	arbamo	yl (sulfa	ımat	e) toxins)	
GTX5 (B1)	Н	Н	Н	ОН	+1	0.064
GTX6 (B2)	ОН	Н	Н	ОН	+1	-
C1	Н	Н	OSO ₃	ОН	0	0.006
C2	Н	OSO ₃	Н	ОН	0	0.096
C3	ОН	Н	OSO ₃	ОН	0	0.013
C4	ОН	OSO ₃	Н	ОН	0	0.058
R4 = H (decarbamoyl)	toxin	is)				
dcSTX	Н	Н	Н	ОН	+2	0.513
deneoSTX	ОН	Н	Н	ОН	+2	-
dcGTX1	ОН	Н	OSO ₃	ОН	+1	-
dcGTX2	Н	Н	OSO ₃	ОН	+1	0.651
dcGTX3	Н	OSO ₃	Н	ОН	+1	0.754
dcGTX4	ОН	OSO ₃	Н	ОН	+1	-
LWTX4	Н	Н	Н	Н	+2	< 0.004

$R4 = COCH_3$ (Lyngby)	a wo	llei toxi	ins)			
LWTX1	Н	OSO ₃	Н	Н	+1	< 0.004
LWTX2	Н	OSO ₃	Н	ОН	+1	0.072
LWTX3	Н	Н	OSO ₃	ОН	+1	0.021
LWTX5	Н	Н	Н	ОН	+2	0.139
LWTX6	Н	Н	Н	Н	+2	< 0.004
$R4 = COC_6H_4OH (Gy$	mno	dinium d	catenati	um to.	xins)	
GC1	Н	Н	OSO ₃	ОН	+1	-
GC2	Н	OSO ₃	Н	ОН	+1	-
GC3	Н	Н	Н	ОН	+2	-

Modified from Nicholson and Burch (2001)

Fig. 3 (cont). General structure of the saxitoxins

These toxins are potent voltage-gated sodium channel antagonists, causing numbness, paralysis and death by respiratory arrest. Analogue potency varies greatly, with saxitoxin having an LD $_{50}$ (ip mouse) of 10 μ g kg $^{-1}$, but C1 being at least 160-fold less toxic (Oshima 1995). Toxin uptake and toxicokinetics of a number of analogues have been studied in cats (Andrinolo et al. 1999; Andrinolo et al. 2002b; Andrinolo et al. 2002a). Oral uptake was efficient, and toxin distributed rapidly throughout the body, including the brain. Clearance was via simple glomerular filtration, and there was no evidence of metabolism of the toxins. Toxicological studies to date have assumed the acute exposure paradigm of shellfish poisoning rather than sub-chronic low-dose as might be expected from drinking water. Evidence for development of tolerance to PSTs has been presented (Kuiper-Goodman et al. 1999). Neuro-developmental disturbances have been demonstrated in fish (Lefebvre 2002) but these have not been studied in mammals.

Nodularins

Nodularins (Fig. 4) are hepatotoxic cyclic peptides of similar structure to the microcystins except that they are composed of 5 amino acids rather than 7 (Rinehart and Namikoshi 1994). Variants due to substitution of arginine with homoarginine or valine (motuporin) have been described (de Silva et al. 1992; Namikoshi et al. 1993; Namikoshi et al. 1994), but these appear to be relatively rare. ADDA is still present but dehydroalanine is replaced by N-methyl-dehydrobutyrine (Rinehart et al. 1988). The smaller

ring size prevents this latter moiety from coordinating with the phosphatase cysteine, and so nodularin does not bind covalently (Lanaras et al. 1991; Craig et al. 1996; Bagu et al. 1997). However, due to the high affinity of ADDA for the active site, this lack of covalent binding does not affect toxin potency, which is similar to that of microcystin-LR (Ki's are of the order 0.1 – 1.5 nM; Honkanen et al. 1990; MacKintosh et al. 1990; Honkanen et al. 1991). This lack of covalent binding may allow nodularin to reach other sites in the cell, and this has been suggested as a mechanism by which this toxin might act as a direct carcinogen (Ohta et al. 1994; Bagu et al. 1997). *Nodularia spumigena* appears to be the sole freshwater cyanobacterial source of nodularin (motuporin was isolated from a marine sponge). *N. spumigena* generally prefers brackish waters and so has had only localised impacts on human drinking water sources (for example, in Lake Alexandrina, South Australia in the early 1990's).

Fig. 4. Structure of nodularin

Anatoxin-a/Homoanatoxin-a

Anatoxin-a (2-acetyl-9-azabicyclo(4-2-1)non-2-ene; (Fig. 5) and/or homo-anatoxin-a (propionyl residue replaces acetyl at C2) are produced by *Anabaena flos-aquae*, *A. planktonica*, *Aphanizomenon spp.*, *Planktothrix formosa*, and a benthic *Oscillatoria* spp. (Carmichael et al. 1975; Carmichael and Gorham 1978; Sivonen et al. 1989; Edwards et al. 1992; Skulberg et al. 1992; Bruno et al. 1994; Bumke-Vogt et al. 1999). These toxins are

nicotinic acetylcholine receptor agonists having a LD₅₀ of 200 µg kg⁻¹ (Carmichael et al. 1979; Carmichael 1994). Residence of these toxins at post-synaptic cholinergic receptors results in nerve depolarisation (Swanson et al. 1990; Huby et al. 1991; Swanson et al. 1991; Wonnacott et al. 1991). Typical symptoms in mice are loss of muscle coordination, gasping, convulsions and death within minutes from respiratory arrest (Carmichael et al. 1979). Dog deaths have been attributed to poisoning by these toxins when the animals have licked their coats after swimming (Codd et al. 1992; Edwards et al. 1992; Falconer and Nicholson, personal communication). A single human fatality has been attributed to poisoning by anatoxina after the victim swam in a scum-covered pond (Behm 2003), but further investigation suggests that this is unlikely to be correct (Carmichael et al. 2004). Anatoxins have not been linked to human poisoning via drinking water, although evidence has been presented that such a risk may exist in Florida (Burns 2005).

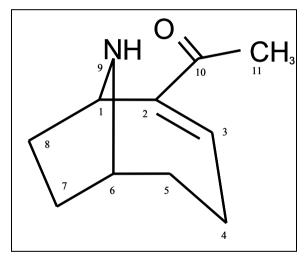


Fig. 5. Structure of anatoxin-a

Anatoxin-a(s)

Anatoxin-a(s) (Fig. 6) is a phosphorylated cyclic N-hydroxyguanine, with a structure and action similar to organophosphate pesticides (Mahmood and Carmichael 1986, 1987; Hyde and Carmichael 1991). It is a potent acetylcholinesterase inhibitor with a LD₅₀ (ip, mouse) of 20 μg kg⁻¹. The in vivo toxic effects are similar to those of anatoxin-a but with the addition of salivation (hence the "s") and lacrimation (Mahmood and Carmichael

1986, 1987; Matsunaga et al. 1989). Anatoxin-a(s) is produced by *Anabaena flos-aquae* and *A. lemmermannii* (Matsunaga et al. 1989; Onodera et al. 1997a), and the latter has been implicated in the deaths of water birds in Denmark (Onodera et al. 1997a). No human illness has been attributed to this toxin.

Fig. 6. Structure of anatoxin-a(s)

β-Methylamino alanine

β-Methylamino alanine (BMAA) (Fig. 7) is an old toxin that has recently been found to be of cyanobacterial origin (Cox et al. 2005). Whether cyanobacteria are the only source is not known. BMAA was described in 1967 in extracts of cycad seeds from Guam, and suggested as a possible causative agent of certain neurodegenerative disorders that were prevalent on the island (Vega and Bell 1967). Early studies in monkeys dosed with high levels of BMAA produced effects similar to those seen in humans (Spencer et al. 1987). BMAA was found to be a glutaminergic agonist capable of producing excitotoxicity, but only at relatively high concentrations (EC $_{50}$ in cell-lines of 300 μM; Weiss et al. 1989a; Weiss et al.

1989b). Sodium bicarbonate is required as a cofactor due to the spontaneous formation of the carbamate, turning the monocarboxylic BMAA into a dicarboxylic glutamate mimic (Myers and Nelson 1990). Toxicokinetic studies in rats and monkeys demonstrated rapid and virtually complete uptake via the oral route, and distribution throughout the body, including the brain (Duncan et al. 1991; Duncan et al. 1992), although the latter organ only contained about 0.08% of the administered dose by 48 hrs. There was evidence of active transport across the blood-brain barrier via the large neutral amino acid carrier (Km=2.9mM), but this would not be rapid when BMAA is in competition with normal levels of natural amino acids (Duncan et al. 1992; Jalaludin and Smith 1992). Approximately 1.4% of an oral dose, and 1.8% of an iv dose, were excreted unmetabolised in the urine by 48 hrs, whereas approximately 22% could be accounted for in total (unmetabolised plus acid hydrolysable; Duncan et al. 1992; Jalaludin and Smith 1992). L-amino acid oxidase has been shown to metabolise BMAA, eventually leading to N-methylglycine, but the rate appears to be quite slow (Hashmi and Anders 1991). Multiple sub-lethal doses were shown to be non-cumulative (Seawright et al. 1990). Based on these and other studies, and the likely concentrations of BMAA in cycad seed flour, it was suggested that this toxin was unlikely to be the sole causative agent of the Guam neurodegenerative disease (Duncan et al. 1990). The hypothesis that BMAA might bio-accumulate in cycad seed-consuming flying foxes (Cox and Sacks 2002), and then the demonstration of high levels of the toxin not only in museum exhibits of flying foxes, but also in the brains of patients who died from neurodegenerative disorders in both Guam and Canada, has re-ignited the debate (Banack and Cox 2003; Cox et al. 2003; Murch et al. 2004a; Murch et al. 2004b). Finally, the demonstration that many species of cyanobacteria produce BMAA (Cox et al. 2005) has made this an issue of potential concern for the provision of safe drinking water. Much more work needs to be done before a proper assessment can be made of this "new" cyanotoxin.

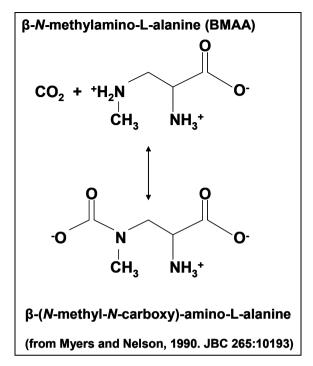


Fig. 7. Structure of BMAA and its reaction with CO₂.

Undiscovered cyanotoxins and other cyanobacterial bioactive compounds

Given the range of bioactive compounds known to be produced by cyanobacteria (see Table A.1 in Appendix A for a non-exhaustive list of "non-cyanotoxin" cyanobacterial bioactive compounds) it is not surprising that a few have turned out to be toxic to mammals. It is unlikely that we have found all of the toxins because unexplained toxicity has been observed, for example, in *C. raciborskii* (Hawkins et al. 1997; Bernard et al. 2003; Fastner et al. 2003; Saker et al. 2003), in *Anabaena* spp. (Baker and Humpage 1994), and in a *Phormidium* spp. (Baker et al. 2001). Furthermore, new toxin analogues continue to be reported (Onodera et al. 1997b; Banker et al. 2000; Molica et al. 2002; Negri et al. 2003). The fact that known toxins are usually found in new locations once people look for them, for example, recent discoveries of CYN in New Zealand (Stirling and Quilliam 2001), Thailand (Li et al. 2001b), Germany (Fastner et al. 2003), Brazil (Carmichael et al. 2001) and Florida (Burns 2005), suggests that the toxigenic species are widespread and that no country should consider itself immune

from the risk to public health even from the known toxins. A further point that needs reinforcing is that single microcystins or single cylindrospermopsins almost never occur in nature. Instead mixtures of toxins are the norm, and so we need to understand toxin interactions. This will enable the calibration of studies done using MC-LR and the formulation of regulations to be based on toxicity equivalents rather than quantities of individual compounds.

Research Needs

Research into the toxicology of cyanotoxins is still lacking in a number of important areas:

• Microcystins:

- Epidemiological studies into links with human cancer. This requires a biomarker of low dose exposure for which ELISA may be an option (Hilborn et al. 2005).
- Chronic animal studies into links with cancer.
- Effects of mixtures of microcystin analogues, and of microcystins with cylindrospermopsin.

• Cylindrospermopsin:

- Human effects An opportunity exists for follow-up of exposed humans on Palm Island, Australia.
- Animal studies for Guideline formulation: Toxicokinetics, Chronic exposure, Carcinogenicity, Reproductive toxicity.
- Effects of mixtures (with microcystins).
- Cell-based studies: To better understand mechanism(s) of toxic and genotoxic action, leading to identification of biomarkers of exposure & effect (Falconer and Humpage 2005a).

• Neurotoxins:

- Episodic and chronic low dose exposures – particularly any effect on neural development.

• BMAA:

- Confirm association with neurodegenerative disease.
- Mechanism of bioaccumulation.
- Mechanism of toxicity (glutaminergic excitotoxicity or other effects eg disruption of protein structure/function?).
- Trophic studies to determine routes of human exposure.

References

- Andrinolo D, Michea LF, Lagos N (1999) Toxic effects, pharmacokinetics and clearance of saxitoxin, a component of paralytic shellfish poison (PSP), in cats. Toxicon 37: 447-464
- Andrinolo D, Iglesias V, Garcia C, Lagos N (2002a) Toxicokinetics and toxicodynamics of gonyautoxins after an oral toxin dose in cats. Toxicon 40: 699-709
- Andrinolo D, Gomes P, Fraga S, Soares-da-Silva P, Lagos N (2002b) Transport of the organic cations gonyautoxin 2/3 epimers, a paralytic shellfish poison toxin, through the human and rat intestinal epitheliums. Toxicon 40: 1389-1397
- Azevedo S, Carmichael WW, Jochimsen EM, Rinehart KL, Lau S, Shaw GR, Eaglesham GK (2002) Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology 181: 441-446
- Bagu JR, Sykes BD, Craig MM, Holmes CFB (1997) A molecular basis for different interactions of marine toxins with protein phosphatase-1. J Biol Chem 8: 5087-5097
- Baker PD, Humpage AR (1994) Toxicity associated with commonly occurring cyanobacteria in surface waters of the Murray-Darling Basin, Australia. Australian Journal of Marine and Freshwater Research 45: 773-786
- Baker PD, Steffensen DA, Humpage AR, Nicholson BC, Falconer IR, Lanthois B et al. (2001) Preliminary evidence of toxicity associated with the benthic cyanobacterium Phormidium in South Australia. Environ Toxicol 16: 506-511
- Banack SA, Cox PA (2003) Biomagnification of cycad neurotoxins in flying foxes Implications for ALS-PDC in Guam. Neurology 61: 387-389
- Banker R, Teltsch B, Sukenik A, Carmeli S (2000) 7-Epicylindrospermopsin, a toxic minor metabolite of the cyanobacterium Aphanizomenon ovalisporum from lake Kinneret, Israel. J Nat Prod 63: 387-389
- Banker R, Carmeli S, Hadas O, Teltsch B, Porat R, Sukenik A (1997) Identification of cylindrospermopsin in Aphanizomenon ovalisporum (cyanophyceae) isolated from Lake Kinneret, Israel. Journal of Phycology 33: 613-616
- Banker R, Carmeli S, Werman M, Teltsch B, Porat R, Sukenik A (2001) Uracil moiety is required for toxicity of the cyanobacterial hepatotoxin cylindrospermopsin. J Toxicol Environ Health A 62: 281-288
- Barchi JJ, Moore RE, Patterson GML (1984) Acutiphycin and 20,21-didehydroacutiphycin, new antineoplastic agents from the cyanophyte Oscillatoria acutissima. Journal of the American Chemical Society 106: 8193-8197
- Behm D (2003) Coroner cites algae in teen's death. In Milwaukee Journal Sentinal, Milwaukee
- Bernard C, Harvey M, Briand JF, Bire R, Krys S, Fontaine JJ (2003) Toxicological comparison of diverse Cylindrospermopsis raciborskii strains: Evidence of liver damage caused by a French C. raciborskii strain. Environmental Toxicology 18: 176-186
- Berry JP, Gantar M, Gawley RE, Wang M, Rein KS (2004) Pharmacology and toxicology of pahayokolide A, a bioactive metabolite from a freshwater spe-

- cies of Lyngbya isolated from the Florida Everglades. Comp Biochem Physiol C Toxicol Pharmacol 139: 231-238
- Botes DP, Kruger H, Viljoen CC (1982) Isolation and characterisation of four toxins from the blue-green alga, Microcystis aeruginosa. Toxicon 20, 6: 945-954
- Botes DP, Wessels PL, Kruger H, Runnegar MTC, Santikarn S, Smith RJ et al. (1985) Structural studies on cyanoginosins-LR, -YR, -YA, and -YM, peptide toxins Microcystis aeruginosa. Journal of the Chemical Society, Perkin Transactions 1: 2747-2748
- Brooks WP, Codd GA (1987) Distribution of Microcystis aeruginosa peptide toxin and interactions with hepatic microsomes in mice. Pharmacology and Toxicology 60: 187-191
- Bruno M, Barbini DA, Pierdominici E, Serse AP, Ioppolo A (1994) Anatoxin-a and a previously unknown toxin in Anabaena planctonica from blooms found in Lake Mulargia (Italy). Toxicon 32: 369-373
- Bumke-Vogt C, Mailahn W, Chorus I (1999) Anatoxin-a and neurotoxic cyanobacteria in German lakes and Reservoirs. Environmental Toxicology 14: 117-125
- Burns J (2005) Assessment of Cyanotoxins in Florida's Surface Waters and Associated Drinking Water Resources. Final Report to the Florida Harmful Algal Bloom Task Force, Florida Fish and Wildlife Conservation Commission. St. Johns River Water Management District, St Petersburg, Florida
- Byth S (1980) Palm Island Mystery Disease. Medical Journal of Australia 2: 40-42.
- Cardelina JH, Moore RE (eds) Malyngic Acid, a New Fatty Acid from Lyngbya majuscula. Tetrahedron Letters 36: 993-996
- Cardelina JH, Marner FJ, Moore RE (1979) Structure and Absolute Configuration of Malyngolide, and Antibiotic from the Marine Blue-Green Alga. Journal of Organic Chemistry 44: 4039-4042
- Carmeli S, Moore RE, Patterson GML (1990a) Polytoxin and new scytophycins from three species of Scytonema. Journal of Natural Products 53, 6: 1533-1542
- Carmeli S, Moore RE, Patterson GML (1990b) Tantazoles: unusual cytotoxic alkaloids from the blue-green alga Scytonema mirabile. Journal of the American Chemical Society 112: 8195-8197
- Carmeli S, Moore RE, Patterson GML (1991) Mirabazoles, minor tantazolerelated cytotoxins from the terrestrial blue-green alga Scytonema mirabile. Tetrahedron Letters 23: 2593-2596
- Carmichael WW (1994) The toxins of cyanobacteria. Sci Am 270: 78-86
- Carmichael WW, Gorham PR (1978) Anatoxins from clones of Anabaena flosaquae isolated from lakes in western Canada. Mitteilungen - Internationale Vereinigung fur Theoretische und Angewandte Limnologie 21: 285-295
- Carmichael WW, Biggs DF, Gorham PR (1975) Toxicology and pharmacological action of Anabaena flos-aquae toxin. Science 187: 542-544
- Carmichael WW, Biggs DF, Peterson MA (1979) Pharmacology of anatoxin-a produced by the freshwater cyanophyte Anabaena flos-aquae NRC-44-1. Toxicon 17: 229-236

- Carmichael WW, Evans WR, Yin QQ, Bell P, Moczydlowski E (1997) Evidence for paralytic shellfish poisons in the freshwater cyanobacterium Lyngbya wollei (Farlow ex Gomont) comb. nov. Appl Environ Microbiol 63: 3104-3110
- Carmichael WW, Azevedo SM, An JS, Molica RJ, Jochimsen EM, Lau S et al. (2001) Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ Health Perspect 109: 663-668
- Carmichael WW, Yuan M, Friday CF (2004) Human Mortality from Accidental Ingestion of Toxic Cyanobacteria-A Case Re-examined (poster). In 6th Int Conf on Toxic Cyanobacteria Bergen, Norway
- Carter DC, Moore RE, Mynderse JS (1984) Structure of Majusculamide C, a Cyclic Depsipeptide from Lyngbya majuscula. Journal of Organic Chemistry 49: 236-241
- Codd GA, Carmichael WW (1982) Toxicity of a clonal isolate of the cyanobacterium Microcystis aeruginosa from Great Britain. FEMS Microbiology Letters 13: 409-411
- Codd GA, Edwards C, Beattie KA, Barr WM, Gunn GJ (1992) Fatal attraction to cyanobacteria? Nature 359: 110-111
- Cox PA, Sacks OW (2002) Cycad neurotoxins, consumption of flying foxes, and ALS-PDC disease in Guam. Neurology 58: 956-959
- Cox PA, Banack SA, Murch SJ (2003) Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proceedings of the National Academy of Sciences of the United States of America 100: 13380-13383
- Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR et al. (2005) Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid. Proceedings of the National Academy of Sciences of the United States of America 102: 5074-5078
- Craig M, Luu HA, McCready TL, Williams D, Andersen RJ, Holmes CFB (1996) Molecular mechanisms underlying the interaction of motuporin and microycystins with type-1 and type-2a protein phosphatases. Biochemistry & Cell Biology 74: 569-578
- De Mule MCZ, De Caire GZ, De Cano MS, De Halperin DR (1991) Bioactive compounds from Nostoc muscorum (cyanobacteria). Cytobios 66: 169-172
- de Silva ED, Williams DE, Andersen RJ, Klix H, Holmes CFB, Allen TM (1992) Motuporin, a potent protein phosphatase inhibitor isolated from the Papua New Guinea sponge Theonella swinhoei Gray. Tetrahedron Letters 33: 1561-1564
- Ding WX, Shen HM, Ong CN (2000) Critical role of reactive oxygen species and mitochondrial permeability transition in microcystin-induced rapid apoptosis in rat hepatocytes. Hepatology 32: 547-555
- Duncan MW, Steele JC, Kopin IJ, Markey SP (1990) 2-Amino-3-(methylamino)-propanoic acid (BMAA) in cycad flour: an unlikely cause of amyotrophic lateral sclerosis and parkinsonism-dementia of Guam. Neurology 40: 767-772

- Duncan MW, Markey SP, Weick BG, Pearson PG, Ziffer H, Hu Y, Kopin IJ (1992) 2-Amino-3-(methylamino)propanoic acid (BMAA) bioavailability in the primate. Neurobiol Aging 13: 333-337
- Duncan MW, Villacreses NE, Pearson PG, Wyatt L, Rapoport SI, Kopin IJ et al. (1991) 2-amino-3-(methylamino)-propanoic acid (BMAA) pharmacokinetics and blood-brain barrier permeability in the rat. J Pharmacol Exp Ther 258: 27-35
- Edwards C, Beattie KA, Scrimgeour CM, Codd GA (1992) Identification of anatoxin-a in benthic cyanobacteria (blue-green algae) and in associated dog poisonings at Loch Insh, Scotland. Toxicon 30: 1165-1175
- Eriksson J, Meriluoto J, Toivola D, Karaki H, Han YG, Hartshorne D (1990) Hepatocyte deformation induced by cyanobacterial toxins reflects inhibitions of protein phosphatases. Biochem-Biophys-Res-Commun 173: 1347-1353
- Falconer I, Humpage A (2005a) Cyanobacterial (blue-green algal) toxins in water supplies: cylindrospermopsins. In 12th International Symposium on Toxicity Assessment (ISTA-12). Skiathos, Greece
- Falconer IR, Buckley TH (1989) Tumour promotion by Microcystis sp. a bluegreen alga occurring in water supplies. Medical Journal of Australia 150: 351
- Falconer IR, Yeung DSK (1992) Cytoskeletal changes in hepatocytes induced by Microcystis toxins and their relation to hyperphosphorylation of cell proteins. Chem-Biol-Interact 81: 181-196
- Falconer IR, Humpage AR (2001) Preliminary evidence for in vivo tumour initiation by oral administration of extracts of the blue-green alga Cylindrospermopsis raciborskii containing the toxin cylindrospermopsin. Environ Toxicol 16: 192-195
- Falconer IR, Humpage AR (2005b) Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water. International Journal of Environmental Research and Public Health 2: 43-50
- Falconer IR, Beresford AM, Runnegar MT (1983) Evidence of liver damage by toxin from a bloom of the blue-green alga, Microcystis aeruginosa. Med-J-Aust 1: 511-514
- Falconer IR, Buckley T, Runnegar MT (1986) Biological half-life, organ distribution and excretion of 125-I-labelled toxic peptide from the blue-green alga Microcystis aeruginosa. Aust-J-Biol-Sci 39: 17-21
- Falconer IR, Dornbusch M, Moran G, Yeung SK (1992) Effect of the cyanobacterial (blue-green algal) toxins from the Microcystis aeruginosa on isloated enterocytes from the chicken small intestine. Toxicon 30 7: 790-793
- Falconer IR, Hardy SJ, Humpage AR, Froscio SM, Tozer GJ, Hawkins PR (1999) Hepatic and renal toxicity of the blue-green alga (cyanobacterium) Cylindrospermopsis raciborskii in male Swiss Albino mice. Environmental Toxicology 14: 143-150
- Fastner J, Erhard M, von Dohren H (2001) Determination of oligopeptide diversity within a natural population of Microcystis spp. (Cyanobacteria) by typing single colonies by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Applied and Environmental Microbiology 67: 5069-5076

- Fastner J, Heinze R, Humpage AR, Mischke U, Eaglesham GK, Chorus I (2003) Cylindrospermopsin occurrence in two German lakes and preliminary assessment of toxicity and toxin production of Cylindrospermopsis raciborskii (Cyanobacteria) isolates. Toxicon 42: 313-321
- Fischer WJ, Altheimer S, Cattori V, Meier PJ, Dietrich DR, Hagenbuch B (2005) Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol-Appl-Pharmacol 205: 257-265
- Fladmark KE, Brustugun OT, Boe R, Vintermyr OK, Howland R, Gjertsen BT et al. (1999) Ultrarapid caspase-3 dependent apoptosis induction by serine/threonine phosphatase inhibitors. Cell Death and Differentiation 6: 1099-1108
- Fleming LE, Rivero C, Burns J, Williams C, Bean JA, Shea KA, Stinn J (2002) Blue-green algal (cyanobacterial) toxins, surface drinking water, and liver cancer in Florida. Harmful Algae 1: 157-168
- Frankmolle WP, Knuble G, Moore RE, Patterson GML (1992) Antifungal Cyclic Peptides from the Terrestrial Blue-Green Alga Anabaene laxa: Structures of Laxapohycin-A Laxaphycin-B, Laxaphycin-D, and Laxaphycin-E. Journal of Antibiotics 45: 1458-1466
- Froscio SM, Humpage AR, Burcham PC, Falconer IR (2001) Cell-free protein synthesis inhibition assay for the cyanobacterial toxin cylindrospermopsin. Environ Toxicol 16: 408-412
- Froscio SM, Humpage AR, Burcham PC, Falconer IR (2003) Cylindrospermopsin-induced protein synthesis inhibition and its dissociation from acute toxicity in mouse hepatocytes. Environmental Toxicology 18: 243-251
- Fujii K, Sivonen K, Kashiwagi T, Hirayama K, Harada K (1999) Nostophycin, a novel cyclic peptide from the toxic cyanobacterium Nostoc sp 152. Journal of Organic Chemistry 64: 5777-5782
- Fujiki H, Sugimura T (1987) New classes of tumor promoters: teleocidin, aplysiatoxin and palytoxin. Advances in Cancer Research 49: 223-264
- Fujiki H, Suganuma M (1993) Tumor promotion by inhibitors of protein phosphatases 1 and 2A: The okadaic acid class of compounds. Advances in Cancer Research 61: 143-194
- Fujiki H, Moore RE, Mori M, Nakayasu M, Terada M, Sugimura T (1981) Indole alkaloids: dihydroteleocidin B, teleocidin, and lyngbyatoxin A as members of a new class of tumor promoters. Proc-Natl-Acad-Sci-U-S-A 78: 3872-3876
- Fujiki H, Ikegami K, Hakii H, Suganuma M, Yamaizuma Z, Yamazato K et al. (1985) A blue-green alga from Okinawa contains aplysiatoxins, the third class of tumor promoters. Jpn-J-Cancer-Res 76: 257-259
- Gerwick WH, Reyes S, Alvarado B (1987) Two malyngamides from the Caribbean cyanobacterium Lyngbya majuscula. Phytochemistry 26, 6: 1701-1704
- Gerwick WH, Mrozek C, Moghaddam MF, Agarwal SK (1989) Novel cytotoxic peptides from the tropical marine cyanobacterium Hormothamnion enteromorphoides. 1. Discovery, isolation and initial chemical and biological characterization of the Hormothamnins from wild and cultured material. Experientia 45, 2: 115-121

- Gerwick WH, Jiang ZD, Agarwal SK, Farmer BT (1992) Total Structure of Homothamin A, a Toxic Cyclic Undecapeptide From the Tropical Marine Cyanobacterium Homothamnion entermorphoides. Tetrahedron Letters 48: 2313-2324
- Gerwick WH, Lopez A, Van Duyne GD, Clary J, Ortiz W, Baez A (1986) Hormothamnione, a Novel Cytotoxin Strylchromone from the Marine Cyanophyte Hormothamnione enterpomorphoides Grunow. Tetrahedron Letters 17: 1979-1982
- Gleason FK (1990) The natural herbicide, cyanobacterin, specifically disrupts thylakoid membrane structure in Euglena gracilis strain Z. FEMS Microbiology Letters 68: 77-82
- Goldberg J, Huang H, Kwon Y, Greengard P, Nairn AC, Kuriyan J (1995) Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature 376: 745-753
- Gromov BV, Vepritskiy AA, Titova NN, Mamkayeva KA, Alexandrova OV (1991) Production of the antibiotic cyanobacterin LU-1 by Nostoc linckia CALU 892 cyanobacterium. Journal of Applied Phycology 3: 55-59
- Gross EM, Wolk CP, Juttner F (1992) Fischerellin, a New Allelochemical from the Freshwater Cyanobacterium Fischerella musicola. Phycologia 27: 686-692
- Gulavita N, Hori A, Shimazu A (1988) Aphanorphine, a Novel Tricyclic Alkaloid from the Blue-Green Alga Aphanizomenon flos-aquae. Tetrahedron Letters 29: 4381-4384
- Harada K, Ohtani I, Iwamoto K, Suzuki M, Watanabe MF, Watanabe M, Terao K (1994) Isolation of cylindrospermopsin from a cyanobacterium Umezakia natans and its screening method. Toxicon 32: 73-84
- Harada K, Fujii K, Shimada T, Suzuki M, Sano H, Adachi K, Carmichael WW (1995) Two cyclic peptides, anabaenopeptins, a third group of bioactive compounds from the cyanobacterium Anabaena flos-aquae NRC 525-17. Tetrahedron Letters 36: 1511-1514
- Harada K, Suomalainen M, Uchida H, Masui H, Ohmura K, Kiviranta J et al. (2000) Insecticidal compounds against mosquito larvae from Oscillatoria agardhii strain 27. Environmental Toxicology 15: 114-119
- Harada K, Ogawa K, Matsuura K, Nagai H, Murata H, Suzuki M et al. (1991) Isolation of two toxic heptapeptide microcystins from an axenic strain of Microcystis aeruginosa, K-139. Toxicon 29, 4/5: 479-489
- Hashmi M, Anders MW (1991) Enzymatic reaction of beta-N-methylaminoalanine with L-amino acid oxidase. Biochim Biophys Acta 1074: 36-39
- Hawkins PR, Runnegar MTC, Jackson ARB, Falconer IR (1985) Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green alga) Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated form a domestic supply reservoir. Applied and Environmental Microbiology 50: 1292-1295
- Hawkins PR, Chandrasena NR, Jones GJ, Humpage AR, Falconer, IR (1997) Isolation and toxicity of Cylindrospermopsis raciborskii from an ornamental lake. Toxicon 35: 341-346

- Herfindal L, Oftedal L, Selheim F, Wahlsten M, Sivonen K, Doskeland SO (2005) A high proportion of Baltic Sea benthic cyanobacterial isolates contain apoptogens able to induce rapid death of isolated rat hepatocytes. Toxicon 46: 252-260
- Hilborn ED, Carmichael WW, Yuan M, Azevedo SMFO (2005) A simple colorimetric method to detect biological evidence of human exposure to microcystins. Toxicon 46: 218-221
- Honkanen RE, Dukelow M, Zwiller J, Moore RE, Khatra BS, Boynton AL (1991) Cyanobacterial nodularin is a potent inhibitor of type 1 and type 2a protein phosphatases. Molecular Pharmacology 40: 577-583
- Honkanen RE, Zwiller J, Moore RE, Daily SL, Khatra BS, Dukelow M, Boynton AL (1990) Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2a protein phosphatases. J-Biol-Chem 265: 19401-19404
- Hooser SB (2000) Fulminant hepatocyte apoptosis in vivo following microcystin-LR administration to rats. Toxicol Pathol 28: 726-733.
- Huby NJS, Thompson P, Wonnacott S, Gallagher T (1991) Structural modification of anatoxin-a. Synthesis of model affinity ligands for the nicotinic acetylcholine receptor. Journal of the Chemical Society, Chemical Communications 4: 243-245
- Humpage AR, Falconer IR (1999) Microcystin-LR and liver tumour promotion: Effects on cytokinesis, ploidy and apoptosis in cultured hepatocytes. Environmental Toxicology 14: 61-75
- Humpage AR, Falconer IR (2003) Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss albino mice: Determination of no observed adverse effect level for deriving a drinking water guideline value. Environ Toxicol 18: 94-103
- Humpage AR, Fenech M, Thomas P, Falconer IR (2000a) Micronucleus induction and chromosome loss in transformed human white cells indicate clastogenic and aneugenic action of the cyanobacterial toxin, cylindrospermopsin. Mutat Res 472: 155-161
- Humpage AR, Hardy SJ, Moore EJ, Froscio SM, Falconer IR (2000b) Microcystins (cyanobacterial toxins) in drinking water enhance the growth of aberrant crypt foci in the mouse colon. Journal of Toxicology & Environmental Health Part A 61: 155-165
- Humpage AR, Fontaine F, Froscio S, Burcham P, Falconer IR (2005) Cylindrospermopsin genotoxicity and cytotoxicity: Role of cytochrome P-450 and oxidative stress. Journal of Toxicology and Environmental Health-Part a-Current Issues 68: 739-753
- Humpage AR, Rositano J, Bretag AH, Brown R, Baker PD, Nicholson BC, Steffensen DA (1994) Paralytic shellfish poisons from Australian cyanobacterial blooms. Australian Journal of Marine and Freshwater Research 45: 761-771
- Hyde EG, Carmichael WW (1991) Anatoxin-a(s), a naturally occurring organophosphate, is an irreversible active site-directed inhibitor of acetylcholinesterase (EC 3.1.1.7). Journal of Biochemical Toxicology 6 3: 195-201

- Ikawa M, Wegener K, Foxall TL, Sasner JJ (1982) Comparisons of the toxins of the blue-green alga Aphanizomenon flos-aquae with the Gonyaulax toxins. Toxicon 20 4: 747-752
- Ishibash M, Moore RE, Patterson GML, Xu CF, Clardy J (1986) Scytphycins, Cyto-Toxic and Antimycotic agents from the Cyanophyte Scytonema pseudo-hofmanni. Journal of Organic Chemistry 51: 5300-5306
- Ishida K, Matsuda H, Okita Y, Murakami M (2002) Aeruginoguanidines 98-A-98-C: cytotoxic unusual peptides from the cyanobacterium Microcystis aeruginosa. Tetrahedron 58: 7645-7652
- Ishitsuka MO, Kusumi T, Kakisawa H (1990) Microviridin: a novel tricyclic depsipeptide from the toxic cyanobacterium Microcystis viridis. Journal of the American Chemical Society 112: 8180-8182
- Ito E, Kondo F, Terao K, Harada KI (1997) Neoplastic nodular formation in mouse liver induced by repeated intraperitoneal injections of microcystin-LR. Toxicon 35: 1453-1457
- Jackim E, Gentile J (1968) Toxins of a blue-green alga: similarity to a saxitoxin. Science 162: 915-916
- Jakobi C, Oberer L, Quiquerez C, Konig WA, Weckesser J (1995) Cyanopeptolin S, a sulfate-containing depsipeptide from a water bloom of Microcystis sp. FEMS Microbiology Letters 129: 129-133
- Jalaludin B, Smith W (1992) Blue-green algae (cyanobacteria). Medical Journal of Australia 156: 744
- Kaas H, Henriksen P (2000) Saxitoxins (PSP toxins) in Danish lakes. Water Research 34: 2089-2097
- Kao CY (1993) Paralytic Shellfish Poisoning. In Algal Toxins in Seafood and Drinking Water. Falconer I (ed) London: Academic Press Limited, pp 75-86
- Kaya K, Sano T, Beattie KA, Codd GA (1996) Nostocyclin, a novel 3-amino-6hydroxy-2-piperidone-containing cyclic depsipeptide from the cyanobacterium Nostoc sp. Tetrahedron Letters 37: 6725-6728
- Knubel G, Larsen LK, Moore RE, Levine IA, Patterson GML (1990) Cytotoxic, antiviral indolocarbazoles from a blue-green alga belonging to the Nostocaceae. Journal of Antibiotics 43 10: 1236-1239
- Koehn FE, Longley RE, Reed JK (1992) Microcolins a and b, new immunosuppressive peptides from the blue-green alga Lyngbya majuscula. Journal of Natural Products 55 5: 613-619
- Kondo F, Matsumoto H, Yamada S, Ishikawa N, Ito E, Nagata S et al. (1996) Detection and identification of metabolites of microcystins formed in vivo in mouse and rat livers. Chem-Res-Toxicol 9: 1355-1359
- Krishnamurthy T, Szafraniec L, Hunt DF, Shabanowitz J, Yates RJ, Hauer CR et al. (1989) Structural characterization of toxic cyclic peptides from blue-green algae by tandem mass spectrometry. Proc-Natl-Acad-Sci-U-S-A 86: 770-774
- Kuiper-Goodman, T, Falconer, I, and Fitzgerald, J (1999) Human health aspects. In Toxic Cyanobacteria In Water. A Guide To Their Public Health Consequences, Monitoring and Management. Chorus I, Bartram J (eds) London: E & FN Spon on behalf of WHO, pp 113-153

- Kusumi T, Ooi T, Watanabe MM, Takahsh MM, Kakisawa H (1987) Cyanoviridin-RR, a toxin from the cyanobacterium, (blue-green alga) Microcystis aeruginosa. Tetrahedron Letters 28: 4695-4698
- Lagos N, Onodera H, Zagatto PA, Andrinolo D, Azevedo SMFQ, Oshima Y (1999) The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. Toxicon 37: 1359-1373
- Lanaras T, Cook CM, Eriksson J, Meriluoto J, Hotokka M (1991) Computer modelling of the 3-dimensional structures of the cyanobacterial hepatotoxins microcystin-LR and nodularin. Toxicon 29 7: 901-906
- Lefebvre KA (2002) Sublethal effects of saxitoxin on early development and behavioural performance in fish. In Xth International Conference on Harmful Algae. St Pete Beach, Florida, US
- Li R, Carmichael WW, Liu Y, Watanabe MM (2000) Taxonomic re-evaluation of Aphanizomenon flos-aquae NH-5 based on morphology and 16S rRNA sequences. Hydrobiologia 438: 99-105
- Li R, Carmichael WW, Brittain S, Eaglesham G, Shaw G, Liu Y, Watanabe MM (2001a) First report of the cyanotoxins cylindrospermopsin and deoxycylindrospermopsin from Raphidiopsis curvata (Cyanobacteria). Journal of Phycology 37: 1121-1126
- Li R, Carmichael WW, Brittain S, Eaglesham GK, Shaw GR, Mahakhant A et al. (2001b) Isolation and identification of the cyanotoxin cylindrospermopsin and deoxy-cylindrospermopsin from a Thailand strain of Cylindrospermopsis raciborskii (Cyanobacteria). Toxicon 39: 973-980
- Li R, Carmichael WW, Pereira P (2003) Morphological and 16S rRNA gene evidence for reclassification of the paralytic shellfish toxin producing Aphanizomenon flos-aquae LMECYA 31 as Aphanizomenon issatschenkoi (Cyanophyceae). Journal of Phycology 39: 814-818
- Looper RE, Runnegar MTC, Williams RM (2005) Synthesis of the putative structure of 7-deoxycylindrospermopsin: C7 oxygenation is not required for the inhibition of protein synthesis. Angewandte Chemie-International Edition 44: 3879-3881
- MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS-Lett 264: 187-192
- Mahmood NA, Carmichael WW (1986) The pharmacology of anatoxin-a(s), a neurotoxin produced by the freshwater cyanobacterium Anabaena flos-aquae NRC 525-17. Toxicon 24, 5: 425-434
- Mahmood NA, Carmichael WW (1987) Anatoxin-a(s), an anticholinesterase from the cyanobacterium Anabaena flos-aquae NRC-525-17. Toxicon 25: 1221-1227
- Marner FJ, Moore RE (1977) Majusculamides A and B, two Epimeric Lipodipeptides from Lyngbya majuscula Gomont. Journal of Organic Chemistry 42: 2815-2818
- Marsalek B, Blaha L, Hindak F (2000) Review of toxicity of cyanobacteria in Slovakia. Biologia 55: 645-652

- Martin C, Oberer L, Ino T, Konig WA, Busch M, Weckesser J (1993) Cyanopeptolins, new depsipeptides from the cyanobacterium Microcystis sp. PCC 7806. Journal of Antibiotics 46: 1550-1556
- Matern U, Oberer L, Falchetto RA, Erhard M, Konig WA, Herdman M, Weckesser J (2001) Scyptolin A and B, cyclic depsipeptides from axenic cultures of Scytonema hofmanni PCC 7110. Phytochemistry 58: 1087-1095
- Matsunaga S, Moore RE, Niemczura WP, Carmichael WW (1989) Anatoxin-a(s), a potent anticholinesterase from Anabaena flos-aquae. Journal of the American Chemical Society 111: 8021-8023
- Mez K, Beattie K, Codd G, Hanselmann K, Hauser B, Naegeli H, Preisig H (1997) Identification of a microcystin in benthic cyanobacteria linked to cattle deaths on alpine pastures in Switzerland. Eur J Phycol 32: 111-117
- Molica R, Onodera H, Garcia C, Rivas M, Andrinolo D, Nascimento S et al. (2002) Toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii (Cyanophyceae) isolated from Tabocas reservoir in Caruaru, Brazil, including demonstration of a new saxitoxin analogue. Phycologia 41: 606-611
- Moon SS, Chen JL, Moore RE, Patterson GML (1992) Calophycin, a Fungicidal Cyclic Decapeptide from the Terrestrial Blue-Green Alga Calothrix fusca. Journal of Organic Chemistry 57: 1097-1103
- Moore RE, Entzeroth M (1988) Majusculamide D and deoxymajusculamide D, two cytotoxins from Lyngbya majuscula. Phytochemistry 27 10: 3101-3103
- Moore RE, Cheuk C, Patterson GML (1984) Hapalindoles: new alkaloids from the blue-green alga Hapalosiphon fontinalis. Journal of the American Chemical Society 106: 6456-6457
- Moore RE, Yang XQ, Patterson GML (1987) Fontonumide and Anhydrohapaloxindole A, two new Alkaloids from the Blue-Green Alga Haplalosiphon fontinalis. Journal of Organic Chemistry 52: 3733-3777
- Moore RE, Bornemann V, Niemczura WP, Gregson JM, Chen JL, Norton TR et al. (1989) Puwainaphycin c, a cardioactive cyclic peptide from the blue-green alga Anabaena BQ-16-1. Use of two dimensional 13 C-13 C and 13 C-15 N correlation spectroscopy in sequencing the amino acid units. Journal of the American Chemical Society 111: 6128-6132
- Murakami M, Okita Y, Matsuda H, Okino T, Yamaguchi K (1994) Aeruginosin 298-A, a thrombin and trypsin inhibitor from the blue-green alga Microcystis aeruginosa (NIES-298). Tetrahedron Letters 35: 3129-3132
- Murch SJ, Cox PA, Banack SA (2004a) A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam. Proceedings of the National Academy of Sciences of the United States of America 101: 12228-12231
- Murch SJ, Cox PA, Banack SA, Steele JC, Sacks OW (2004b) Occurrence of beta-methylamino-L-alanine (BMAA) in ALS/PDC patients from Guam. Acta Neurologica Scandinavica 110: 267-269
- Myers TG, Nelson SD (1990) Neuroactive carbamate adducts of beta-N-methylamino-L-alanine and ethylenediamine. Detection and quantitation under physiological conditions by 13C NMR. J Biol Chem 265: 10193-10195

- Mynderse JS, Moore RE (1978) Toxins from Blue-Green Algae: Structures of Oscillatoxin A and three Related Bromine-Containing Toxins. Journal of Organic Chemistry 43: 2301-2303
- Nagatsu A, Kajitani H, Sakakibara J (1995) Muscoride A: A new oxazole peptide alkaloid from freshwater cyanobacterium Nostoc muscorum. Tetrahedron Letters 36: 4097-4100
- Namikoshi M, Rinehart KL (1996) Bioactive compounds produced by cyanobacteria. Journal of Industrial Microbiology & Biotechnology 17: 373-384
- Namikoshi M, Rinehart KL, Sakai Y, Sivonen K, Carmichael WW (1990) Structures of three new cyclic heptapeptide hepatotoxins produced by the cyanobacterium (blue-green alga) Nostoc sp. strain 152. Journal of Organic Chemistry 55: 6135-6139
- Namikoshi M, Choi BW, Sakai R, Sun F, Rinehart KL (1994) New nodularins: A general method for structure assignment. Journal of Organic Chemistry 59: 2349-2357
- Namikoshi M, Sivonen K, Evans WR, Sun F, Carmichael WW, Rinehart KL (1992a) Isolation and structures of microcystins from a cyanobacterial water bloom (Finland). Toxicon 30 11: 1473-1479
- Namikoshi M, Choi BW, Sun F, Rinehart KL, Evans WR, Carmichael WW (1993) Chemical characterization and toxicity of dihydro derivatives of nodularin and microcystin-LR, potent cyanobacterial cyclic peptide hepatotoxins. Chem Res Toxicol 6: 151-158
- Namikoshi M, Sivonen K, Evans WR, Carmichael WW, Rouhainen L, Luukainen R, Rinehart KL (1992b) Structures of three new Homotyrosine Containing Microcystins and a new Homophenylalanine Variant from Anabaena SP. Strain 66. Chem Res Toxicol 5: 661-666
- Namikoshi M, Sun FR, Choi BW, Rinehart KL, Carmichael WW, Evans WR, Beasley VR (1995) Seven more microcystins from homer lake cells application of the general method for structure assignment of peptides containing alpha,beta-dehydroamino acid unit(s). Journal of Organic Chemistry 60: 3671-3679
- Namikoshi M, Sivonen K, Evans WR, Carmichael WW, Sun F, Rouhiainen L et al. (1992c) Two new L-serine variants of microcystins-LR and -RR from Anabaena sp. Strains 202 A1 and 202 A2. Toxicon 30: 1457-1464
- Namikoshi M, Rinehart KL, Sakai R, Stotts RR, Dahlem AM, Beasley VR et al. (1992d) Identification of 12 hepatotoxins from a Homer Lake bloom of the cyanobacteria Microcystis aeruginosa, Microcystis viridis and Microcystis wesenbergii: nine new microcystins. Journal of Organic Chemistry 57: 866-872
- Namikoshi M, Yuan M, Sivonen K, Carmichael WW, Rinehart KL, Rouhiainen L et al. (1998) Seven new microcystins possessing two L-glutamic acid units, isolated from Anabaena sp. strain 186. Chem Res Toxicol 11: 143-149
- Negri A, Stirling D, Quilliam M, Blackburn S, Bolch C, Burton I et al. (2003) Three novel hydroxybenzoate saxitoxin analogues isolated from the dinoflagellate Gymnodinium catenatum. Chem Res Toxicol 16: 1029-1033

- Nicholson BC, Burch MD (2001) Evaluation of Analytical Methods for Detection and Quantification of Cyanotoxins in Relation to Australian Drinking Water Guidelines. National Health and Medical Research Council of Australia, the Water Services Association of Australia, and the Cooperative Research Centre for Water Quality and Treatment, Australia, pp 57 Available from http://nhmrc.gov.au/publications/ files/eh22.pdf
- Norris RL, Seawright AA, Shaw GR, Smith MJ, Chiswell RK, Moore MR (2001) Distribution of 14C cylindrospermopsin in vivo in the mouse. Environ Toxicol 16: 498-505
- Norris RL, Eaglesham GK, Pierens G, Shaw GR, Smith MJ, Chiswell RK et al. (1999) Deoxycylindrospermopsin, an analog of cylindrospermopsin from Cylindrospermopsis raciborskii. Environmental Toxicology 14: 163-165
- Norris RL, Seawright AA, Shaw GR, Senogles P, Eaglesham GK, Smith MJ et al. (2002) Hepatic xenobiotic metabolism of cylindrospermopsin in vivo in the mouse. Toxicon 40: 471-476
- Ohta T, Sueoka E, Iida N, Komori A, Suganuma M, Nishiwaki R et al. (1994) Nodularin, a potent inhibitor of protein phosphatases 1 and 2A, is a new environmental carcinogen in male F344 rat liver. Cancer Res 54: 6402-6406
- Ohtani I, Moore RE, Runnegar MTC (1992) Cylindrospermopsin: A potent hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii. Journal of the American Chemical Society 114: 7941-7942
- Okino T, Matsuda H, Murakami M, Yamaguchi K (1993) Microginin, an angiotensin-converting enzyme inhibitor from the blue-green alga Microcystis aeruginosa. Tetrahedron Letters 34: 501-504
- Onodera H, Oshima Y, Henriksen P, Yasumoto T (1997a) Confirmation of Anatoxin-a(s), in the cyanobacterium Anabaena lemmermannii, as the cause of bird kills in Danish lakes. Toxicon 35: 1645-1648
- Onodera H, Satake M, Oshima Y, Yasumoto T, Carmichael WW (1997b) New saxitoxin analogues from the freshwater filamentous cyanobacterium Lyngbya wollei. Nat Toxins 5: 146-151
- Orjala J, Nagle DG, Hsu VL, Gerwick WH (1995) Antillatoxin: An exceptionally ichthyotoxic cyclic lipopeptide from the tropical cyanobacterium Lyngbya majuscula. Journal of the American Chemical Society 117: 8281-8282
- Oshima Y (1995) Postcolumn derivatization liquid chromatographic method for paralytic shellfish toxins. Journal of AOAC International 78: 528-532
- Park A, Moore RE, Patterson GML (1992) Ischerindole L, a new isonitrile from the terrestrial blue-green alga Fischerella muscicola. Tetrahedron Letters 33 23: 3257-3260
- Patterson GML, Carmeli S (1992) Biological effects of tolytoxin (6-hydroxy-7-o-methyl-scytophycin b), a potent bioactive metabolite from cyanobacteria. Archiv fuer Hydrobiologie 157: 406-410
- Pomati F, Sacchi S, Rossetti C, Giovannardi S, Onodera H, Oshima Y, Neilan BA (2000) The freshwater cyanobacterium Planktothrix sp FP1: molecular identification and detection of paralytic shellfish poisoning toxins. Journal of Phycology 36: 553-562

- Prinsep MR, Moore RE, Levine IA, Patterson GML (1992a) Westiellamide, a Bistratamide-Related Cyclic Peptide from the Blue-Green Alga Westiellopsis prolifica. Journal of Natural Products 55: 140-142
- Prinsep MR, Caplan FR, Moore RE, Patterson GML, Honkanen RE, Boynton AL (1992b) Microcystin-LR from a blue-green alga belonging to the stigone-matales. Phytochemistry 31 4: 1247-1248
- Rinehart KL, Namikoshi M (1994) Structure and biosynthesis of toxins from bluegreen algae (cyanobacteria). Journal of Applied Phycology 6: 159-176
- Rinehart KL, Harada K, Namikoshi M, Chen C, Harvis CA (1988) Nodularin, microcystin and the configuration of ADDA. Journal of the American Chemical Society 110: 8557-8558
- Robinson NA, Miura GA, Matson CF, Dinterman RE, Pace JG (1989) Characterization of chemically tritiated microcystin-LR and its distribution in mice. Toxicon 27: 1035-1042
- Robinson NA, Matson CF, Miura GA, Lynch TG, Pace JG (1990) Toxicokinetics of [3 H]microcystin-LR in mice. The FASEB Journal 4: A753,#2823
- Robinson NA, Pace JG, Matson CF, Miura GA, Lawrence WB (1991) Tissue distribution, excretion and hepatic biotransformation of microcystin-LR in mice. Journal of Pharmacology and Experimental Therapeutics 256: 176-182
- Runnegar M, Berndt N, Kaplowitz N (1995a) Microcystin uptake and inhibition of protein phosphatases: effects of chemoprotectants and self-inhibition in relation to known hepatic transporters. Toxicol Appl Pharmacol 134: 264-272
- Runnegar M, Berndt N, Kong SM, Lee EY, Zhang L (1995b) In vivo and in vitro binding of microcystin to protein phosphatases 1 and 2A. Biochem Biophys Res Commun 216: 162-169
- Runnegar MT, Falconer IR (1986) Effect of toxin from the cyanobacterium Microcystis aeruginosa on ultrastructural morphology and actin polymerization in isolated hepatocytes. Toxicon 24: 109-115
- Runnegar MT, Falconer IR, Silver J (1981) Deformation of isolated rat hepatocytes by a peptide hepatotoxin from the blue-green alga Microcystis aeruginosa. Naunyn-Schmiedebergs-Arch-Pharmacol 317: 268-272
- Runnegar MT, Gerdes RG, Falconer IR (1991) The uptake of the cyanobacterial hepatotoxin microcystin by isolated rat hepatocytes. Toxicon 29: 43-51
- Runnegar MT, Kong S, Berndt N (1993) Protein phosphatase inhibition and in vivo hepatotoxicity of microcystins. Am-J-Physiol 265: G224-230
- Runnegar MT, Falconer IR, Buckley T, Jackson AR (1986) Lethal potency and tissue distribution of 125I-labelled toxic peptides from the blue-green alga Microcystis aeruginosa. Toxicon 24: 506-509
- Runnegar MT, Kong SM, Zhong YZ, Lu SC (1995c) Inhibition of reduced glutathione synthesis by cyanobacterial alkaloid cylindrospermopsin in cultured rat hepatocytes. Biochem Pharmacol 49: 219-225
- Runnegar MT, Kong SM, Zhong YZ, Ge JL, Lu SC (1994) The role of glutathione in the toxicity of a novel cyanobacterial alkaloid cylindrospermopsin in cultured rat hepatocytes. Biochem Biophys Res Commun 201: 235-241

- Runnegar MT, Xie CY, Snider BB, Wallace GA, Weinreb SM, Kuhlenkamp J (2002) In vitro hepatotoxicity of the cyanobacterial alkaloid cylindrospermopsin and related synthetic analogues. Toxicological Sciences 67: 81-87
- Saker ML, Nogueira ICG, Vasconcelos VM, Neilan BA, Eaglesham GK, Pereira P (2003) First report and toxicological assessment of the cyanobacterium Cylindrospermopsis raciborskii from Portuguese freshwaters. Ecotoxicology and Environmental Safety 55: 243-250
- Sano T, Kaya K (1995) Oscillamide Y, A chymotrypsin inhibitor from toxic Oscillatoria agardhii. Tetrahedron Letters 36: 5933-5936
- Schembri MA, Neilan BA, Saint CP (2001) Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. Environ Toxicol 16: 413-421
- Seawright AA, Brown AW, Nolan CC, Cavanagh JB (1990) Selective degeneration of cerebellar cortical neurons caused by cycad neurotoxin, L-beta-methylaminoalanine (L-BMAA), in rats. Neuropathol Appl Neurobiol 16: 153-169
- Seawright AA, Nolan CC, Shaw GR, Chiswell RK, Norris RL, Moore MR, Smith MJ (1999) The oral toxicity for mice of the tropical cyanobacterium Cylindrospermopsis raciborskii (Woloszynska). Environmental Toxicology 14: 135-142
- Shaw GR, Sukenik A, Livne A, Chiswell RK, Smith MJ, Seawright AA et al. (1999) Blooms of the cylindrospermopsin containing cyanobacterium, Aphanizomenon ovalisporum (Forti), in newly constructed lakes, Queensland, Australia. Environmental Toxicology 14: 167-177
- Shen XY, Lam PKS, Shaw GR, Wickramasinghe W (2002) Genotoxicity investigation of a cyanobacterial toxin, cylindrospermopsin. Toxicon 40: 1499-1501
- Shimizu Y (2000) Paralytic Shellfish Poisons: Chemistry and mechanism of action. In Seafood and Freshwater Toxins: Pharmacology, Physiology, and Detection. Botana LM (ed) New York: Marcel Dekker Inc, pp 151-172
- Shin HJ, Murakami M, Matsuda H, Ishida K, Yamaguchi K (1995) Oscillapeptin, an elastase and chymotrypsin inhibitor from the cyanobacterium Oscillatoria agardhii (NIES-204). Tetrahedron Letters 36: 5235-5238
- Sivonen K, Jones G (1999) Cyanobacterial Toxins. In Toxic Cyanobacteria In Water. A Guide To Their Public Health Consequences, Monitoring and Management. Chorus I, Bartram J (eds) London: E & FN Spon on behalf of WHO, pp 41-111
- Sivonen K, Himberg K, Luukkainen R, Niemela SI, Poon GK, Codd GA (1989) Preliminary characterization of neurotoxic cyanobacteria blooms and strains from Finland. Toxicity Assessment 4: 339-352
- Sivonen K, Niemela SI, Niemi RM, Lepisto L, Luoma TH, Rasanen LA (1990) Toxic cyanobacteria (blue-green algae) in Finnish fresh and coastal waters. Hydrobiologia 190: 267-275
- Sivonen K, Namikoshi M, Evans WR, Gromov BV, Carmichael WW, Rinehart KL (1992) Isolation and structures of five microcystins from a Russian Microcystis aeruginosa strain calu 972. Toxicon 30 11: 1481-1485

- Skulberg OM (2000) Microalgae as a source of bioactive molecules experience from cyanophyte research. Journal of Applied Phycology 12: 341-348
- Skulberg OM, Carmichael WW, Andersen RA, Matsunaga S, Moore RE, Skulberg R (1992) Investigations of a neurotoxic oscillatorian strain (cyanophyceae) and its toxin. Isolation and characterization of homoanatoxin-a. Environmental Toxicology and Chemistry 11: 321-329
- Spencer P, Nunn PB, Hugon J, Ludolph, A, Ross SM, Roy DN, Robertson RC (1987) Guam amyotropic lateral sclerosis-Parkinsonism-dementia linked to a plant excitant neurotoxin. Science 237: 517-522
- Stirling DJ, Quilliam MA (2001) First report of the cyanobacterial toxin cylindrospermopsin in New Zealand. Toxicon 39: 1219-1222
- Swanson KL, Rapoport H, Albuquerque EX, Aronstam RS (1990) Nicotinic acetylcholine receptor function studied with synthetic (+)-anatoxin-a and derivatives. In Marine toxins. Origin, structure, and molecular pharmacology. Hall S, Strichartz G (eds) Washington, DC: American Chemical Society, pp 107-118
- Swanson KL, Aronstam RS, Wonnacott S, Rapoport H, Albuquerque EX (1991) Nicotinic pharmacology of anatoxin analogs. I. Side chain structure-activity relationships at peripheral agonist and noncompetitive antagonist sites. J Pharmacol Exp Ther 259: 377-386
- Terao K, Ohmori S, Igarashi K, Ohtani I, Watanabe MF, Harada KI et al. (1994) Electron microscopic studies on experimental poisoning in mice induced by cylindrospermopsin isolated from blue-green alga Umezakia natans. Toxicon 32: 833-843
- Thompson WL, Pace JG (1992) Substances that protect cultured hepatocytes from the toxic effects of microcystin-LR. Toxicology in Vitro 6: 579-587
- Thompson WL, Bostian KA, Robinson NA, Pace JG (1988) Protective effects of bile acids on cultured hepatocytes exposed to the hepatotoxin, microcystin. The FASEB Journal 3 3: A372 #846
- Tsukamoto S, Painuly P, Young KA, Yang X, Shimizu Y (1993) Microcystilide A: A novel cell-differentiation-promoting depsipeptide from Microcystis aeruginosa NO-15-1840. Journal of the American Chemical Society 115: 11046-11047
- Ueno Y, Nagata S, Tsutsumi T, Hasegawa A, Yoshida F, Suttajit M et al. (1996) Survey of Microcystins in Environmental Water by a Highly Sensitive Immunoassay Based on Monoclonal Antibody. Nat-Toxins 4: 271-276
- Vega A, Bell EA (1967) α-Amino-β-methyl aminopropionic acid, a new amino acid from seeds of Cycas circinalis. Phytochemistry 6: 759-762
- Verpritskii AA, Gromov BV, Titova NN, Mamkaeva KA (1991) Production of the Antibiotic-Algicide Cyanobacterin LU-2 by the Filamentous Cyanobacterium Nostoc SP. Microbiology English Translation 60: 675-679
- Vezie C, Brient L, Sivonen K, Bertru G, Lefeuvre JC, Salkinojasalonen M (1998) Variation of microcystin content of cyanobacterial blooms and isolated strains in lake Gand-lieu (France). Microbial Ecology 35: 126-135

- Watanabe MF, Watanabe M, Kato T, Harada KI, Suzuki M (1991) Composition of cyclic peptide toxins among strains of Microcystis aeruginosa (blue-green algae, cyanobacteria). Botanical Magazine, Tokyo 104: 49-57
- Weiss JH, Christine CW, Choi DW (1989a) Bicarbonate dependence of glutamate receptor activation by beta-N-methylamino-L-alanine: channel recording and study with related compounds. Neuron 3: 321-326
- Weiss JH, Koh JY, Choi DW (1989b) Neurotoxicity of beta-N-methylamino-Lalanine (BMAA) and beta-N-oxalylamino-L-alanine (BOAA) on cultured cortical neurons. Brain Res 497: 64-71
- Wonnacott S, Jackman S, Swanson KL, Rapoport H, Albuquerque EX (1991) Nicotinic pharmacology of anatoxin analogs. II. Side chain structure-activity relationships at neuronal nicotinic ligand binding sites. J Pharmacol Exp Ther 259: 387-391
- Yu SZ (1995) Primary prevention of hepatocellular carcinoma. Journal of Gastroenterology and Hepatology 10: 674-682
- Zhou L, Yu H, Chen K (2002) Relationship between microcystin in drinking water and colorectal cancer. Biomed Environ Sci 15: 166-171

Appendix A

Table A.1. Some of the many bioactive compounds that have been isolated from cyanobacteria

Name	Chemical Class	Activity	Source	Reference
Acutiphycin Aeruginosins	- Linear depsipeptides	Antineoplastic Protease inhibitors	Oscillatoria acutissima (Barchi et al. 198 Microcystis spp., Oscillatoria (Murakami et al.	(Barchi et al. 1984) 1(Murakami et al.
Aeruginoguanidines Anabaenapeptins	Peptide Cyclic peptides	Cytotoxic Vasodilation	SPP. M. aeruginosa Anabaena flos-aquae, other	(1994) (Ishida et al. 2002) (Harada et al. 1995)
Antillatoxin Aphanorphine	Cyclic lipopeptide Alkaloid	Ichthyotoxin -	Jpp. Lyngbya majuscula Aphanizomenon flos-aquae	(Orjala et al. 1995) (Gulavita et al.
Aplysiatoxins	Phenolic bislactone	Tumour promoters	Lyngbya majuscula	(Fujiki et al. 1985; Fujiki and Sugimura
Apoptogens	Unknown	Induction of apoptosis	Induction of apoptosis Various benthic species	1987) (Herfindal et al. 2005)
"Bioactive compounds"	•	1	Nostoc muscorum	(De Mule et al. 1991)
Calophycin Cyanobacterin	Decapeptide -	Antifungal Calothrix fusca Algicide, herbicide, an- Nostoc linckia tibiotic	Calothrix fusca Nostoc linckia	(Moon et al. 1992) (Gleason 1990; Gromov et al. 1991)

Name	Chemical Class	Activity	Source	Reference
Cyanobacterin	1	Antibiotic, algicide	Nostoc spp.	(Verpritskii et al. 1991)
Cyanopeptolins	Depsipeptide	Protease inhibitors	Microcystis spp.	(Martin et al. 1993; Jakobi et al. 1995)
Fisherellin	1	Allelotoxin	Fischerella musicola	(Gross et al. 1992)
Fontomumide	Alkaloid	•	Hapalosiphon fontinalis	(Moore et al. 1987)
Haplaindoles	Alkaloids	ı	Hapalosiphon fontinalis	(Moore et al. 1984)
Hormothamnins	Cyclic undecapeptide	Cytotoxic, antimicro-	Hormothamnione enteromor- (Gerwick et al	· (Gerwick et al.
		bial, antimycotic	phoides	1989; Gerwick et al.
11.			11	(2001
ногтопатпопе		Cytotoxic	normornammone enteromor- (Gerwick et al. phoides	. (Gerwick et al. 1986)
Indolcarbazoles	ı	Cytotoxic, antiviral	Nosctocaceae	(Knubel et al. 1990)
Insecticidal compounds	ı		Oscillatoria agardhii	(Harada et al. 2000)
Ischerindole	Isonitrile		Fischerella musicola	(Park et al. 1992)
Laxaphycin	Cyclic undeca- or do-	Cytotoxic, antimicro-	Anabaena laxa	(Frankmolle et al.
	deca-peptides	bial, antimycotic		1992)
Lyngbyatoxins	Cyclic dipeptides	Tumour promoters	Lyngbya majuscula	(Fujiki et al. 1981)
Majusculamides	Heptacyclo-	Cytotoxic, antifungal	Lyngbya majuscula	(Marner and Moore
	depsipeptides			1977; Carter et al.
				1984; Moore and
				Entzeroth 1988)
Malyngamides	ı	ı	Lyngbya majuscula	(Gerwick et al.
				1987)
Malyngolide	1	Antibiotic	Lyngbya majuscula	(Cardelina et al. 1979)
				(5,5)

Name	Chemical Class	Activity	Source	Reference
Malynic acid	Fatty acid	Cytotoxin	Lyngbya majuscula	(Cardelina and Moore 1980)
Microcolins	Peptide	Immuno-suppressant	Lyngbya majuscula	(Koehn et al. 1992)
Microcystilide	Depsipeptide	Cell differentiation pro- Microcystis aeruginosa moter	Microcystis aeruginosa	(Tsukamoto et al. 1993)
Microginin	Linear pentapeptide	ACE inhibitor	Microcystis aeruginosa	(Okino et al. 1993)
Microviridins	Depsipeptide	Protease inhibitors	M. viridis	(Ishitsuka et al. 1990)
Mirabazoles	Alkaloids	Cytotoxins	Scytonema mirabile	(Carmeli et al. 1991)
Muscoride	Oxazole peptide alka- loid	1	Nostoc muscorum	(Nagatsu et al. 1995)
Nostocyclin	Depsipeptide	ı	Nostoc spp.	(Kaya et al. 1996)
Nostophycin	Cyclic peptide	1	Nostoc spp.	(Fujii et al. 1999)
Oscillamide	Cyclic peptide	Chymotrypsin inhibitor Oscillatoria agardhii	Oscillatoria agardhii	(Sano and Kaya 1995)
Oscillapeptin	r	Chymotrypsin and elastin inhibitor	Oscillatoria agardhii	(Shin et al. 1995)
Oscillatoxin		Toxin	Oscillatoria spp.	(Mynderse and Moore 1978)
Pahayokolide A Polytoxin	1 1	Antibiotic, cytotoxic	Lyngbya spp. (freshwater) Scytonema spp.	(Berry et al. 2004) (Carmeli et al. 1990a)
Puwainaphycin Scyptolins	Cyclic peptide Depsipeptides	Cardioactive -	Anabaena spp. Scytonema hofmanii	(Moore et al. 1989) (Matern et al. 2001)

Name	Chemical Class	Activity	Source	Reference
Scytophycins, tolytoxin		Cytotoxic, antimycotic	Cytotoxic, antimycotic Scytonema pseudohofmanni (Ishibash et al. 1986;	(Ishibash et al. 1986;
				Patterson and Car-
				meli 1992)
Tantazoles	Alkaloids	Cytotoxins	Scytonema mirabile	(Carmeli et al.
				1990b)
Westiallamide	Cyclic hexapeptide	Cytotoxic	Westiellopsis prolifica	(Prinsep et al.
				1992a)