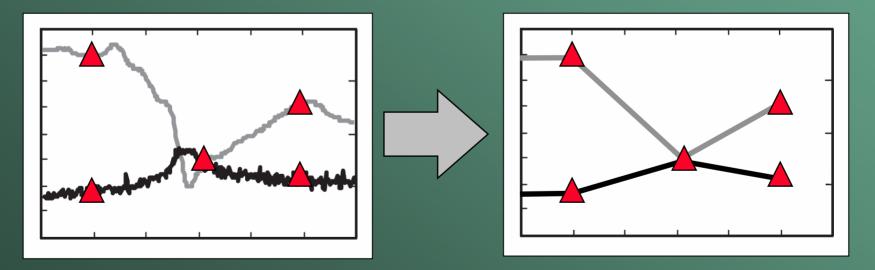


New Sensor Technologies for Real-Time Water Quality Monitoring

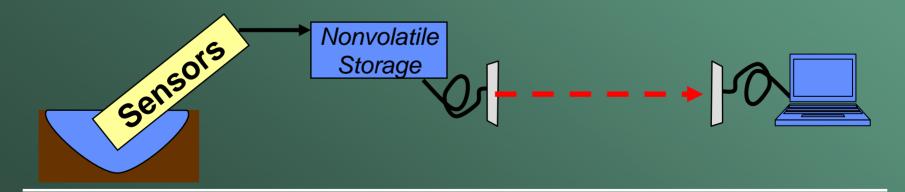
Brad Garner, Hydrologist US Geological Survey, MD-DE-DC Water Science Center May 24, 2007


Outline

- Definition of Real-Time Water Quality
- New Real-Time Sensors for Natural Waters (Luminescent DO, UVAS, TOC, Biomonitor)
- Preventing Data Overload
- Example Application in Maryland
- Use at Remediation Sites

Defined: Real-Time Water Quality

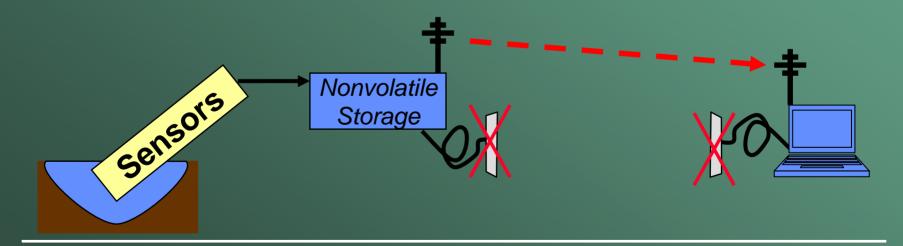
- Traditional Laboratory Analysis
 - Collect one sample in time, send to lab.
 - Delay of hours to weeks for analytical results.
 - Might lose high-frequency information content.



Defined: Real-Time Water Quality

Continuous Water-Quality

- Sampling frequency typically 15 minutes.
- While not truly "continuous", captures most natural variability.
- Store readings onsite, manually download periodically.



Defined: Real-Time Water Quality

Real-Time Water Quality

- Add telemetry to a continuous monitoring system.
- Download data hourly, automatically.
- Improves response time, hours instead of weeks.

• The usual sensors \rightarrow

- Water temperature
- pH
- Specific conductance
- Dissolved oxygen
- Turbidity

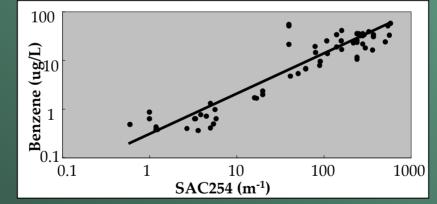
Many new and improved sensors are being used in natural waters for continuous monitoring.

Improved: Dissolved Oxygen

- Clark Cell, the old way
 - Often, hardest sensor to maintain good data quality with.
 - Often the limiting factor for site servicing interval.

• Luminescent D.O., the new way \rightarrow

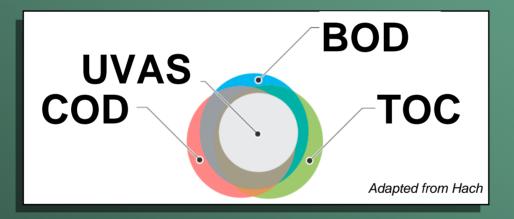
- O₂ concentration inversely proportional to red-light emission from luminescent material.
- Less calibration drift, and doesn't consume O₂.


- Ultraviolet Absorption (UVAS)
 - Emits 254 nm UV light, measures amount absorbed
 - Particularly, compounds with benzene rings.
 - Compensates for suspended solids using a 500 nm light measurement.
 - SAC254 is an <u>indirect</u> measurement of dissolved organic matter.

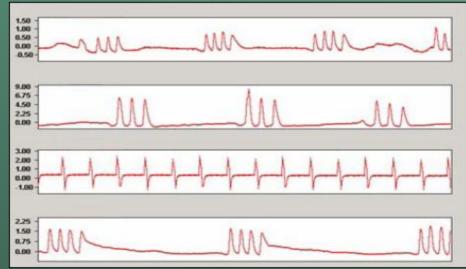
Ultraviolet Absorption (UVAS)

- With traditional lab analyses, a site-specific regression model relating SAC254 to a particular compound might be possible.
- For example:

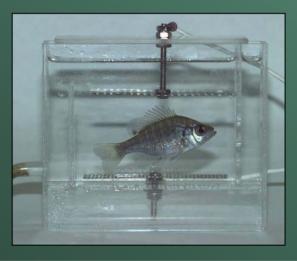
 $\log_{10}(\mathbf{BENZENE}) = \mathbf{m} \log_{10}(\mathbf{SAC254}) + \mathbf{b} + Error$

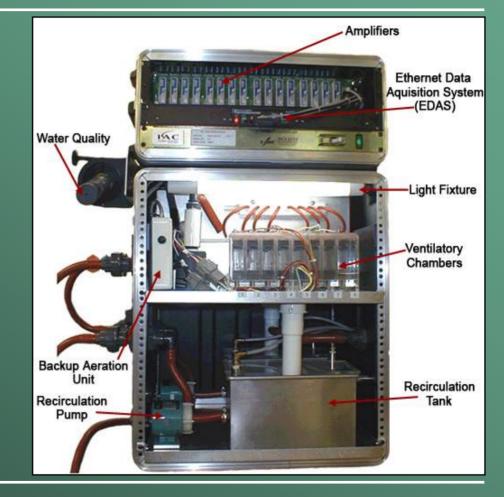

Total Organic Carbon

- Been monitored in industrial processes for years.
- Measures using wet chemistry method.
- Reagents mean high maintenance.
- Must interpret with caremay not be full digestion.

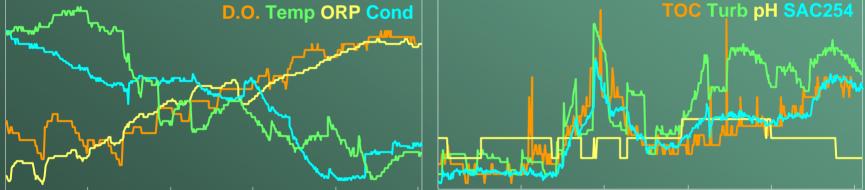

No one organics measurement gets it all.

What if your true goal is measuring toxicity... directly?


- Canary in a coal mine for the 21st century.
- Quantitatively measure life processes of an organism in real-time.
- Measurements →
 - Moving
 - Breathing
 - Sinking / floating
 - "Coughs"



Intelligent Automation Corp.


- Eight bluegill fish in parallel, with 2 parallel systems →
- Replace fish every 2-4 weeks.

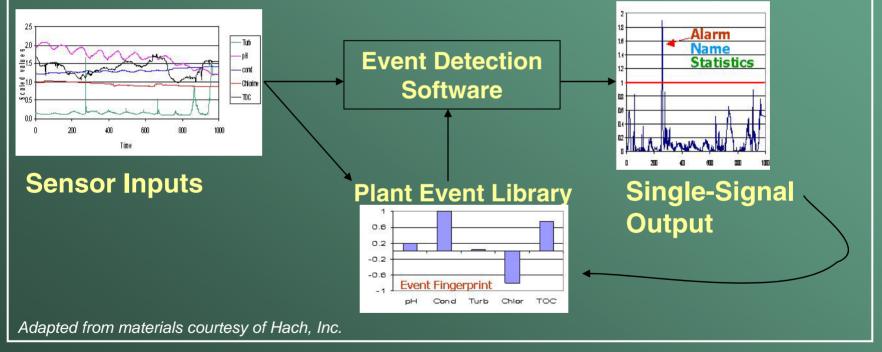
204 Consider a surface-water Stage rainfall event in MD, March 15-20, 2007 → 198 3/17 3/153/16 Variations in 8 other measurements at the same time:

3/18

3/19

3/20

Can you figure out what's going on? Objectively? On a continuous basis?



Start Display - Level 2 System Messages	
Groups Raw Data Group	A
Fish01 Fish02 Fish03 Fish04 Fish05 Fish06 Fish07	Fish08
VR 65.00	10/18 12:21
AD 27.00	Fish03 53.33
7.22 Average Depth	
	10/18 12:21 Fish03 5.36
PM Cough Rate	
	10/18 12:21
0.31	Fish03 0.80
WQ	
99.00	10/18 12:21
20.00	Fish03 0.00
Toxicity Alert	
	10/18 12:21 Fish03 0.71
Water Quality Parameters . Temperature	Fishus 0.71
25.23	10/18 12:21
22,50 10/17 09:28 10/17 15:43 10/17 21:58 10/18 04:13 10/1	Temp. 23.89
	8 10:28
Temp pH Cond Oxygen	
	IIII 75% 100%
BioMonitor Expert Started. Intelligent Automation Corp.	

Can you figure out what's going on? Objectively? On a continuous basis?

- Goal: Reduce many signals down to one.
- This one signal is a "novelty" measurement, or a quantification of departure from normal baseline conditions.

- An example implementation of Event Detection Software:
 - Hach Event Monitor Trigger System
 - Converts all signals to <u>one</u>, by measuring departure from baseline
 - Developed for drinking water systems, viability for natural water still not fully known.

Example in Maryland

- Chemical and biological monitoring with new sensors on large Maryland river system.
- Discharge range about 300 mgd to 300,000 mgd

Example in Maryland

Incorporates all sensors described today, and more →

Equipment needs:

- Water pumped through a flow-through cell.
- Dry, powered, secure, climate-controlled environment.
- More maintenance than traditional real-time sensors.

Example in Maryland

- A challenging environment to install expensive equipment in!
- But it's what the USGS has done for over 125 years.

Possible Uses at Remediation Sites

- Could monitor effluent water from site, or effluent from a treatment process.
- Event detection software could detect potential remediation failure events.
- Software could start an automatic sampler to capture water for further laboratory study.
- Longer-term, could monitor temporal trends in water quality to assess effectiveness of remediation.

Conclusion

- Event Detection Software tries to prevent data overload, while keeping response time low.
- Remediation sites can benefit from real-time monitoring with proven and new sensors.

- Real-Time monitoring is high resolution with a fast response time.
- Real-time sensors are more limited than laboratory analyses, but are continually improving.

