Physics Design of Compact Stellarators

PSFC Seminar (MIT)

presented by S. P. Hirshman Oak Ridge National Laboratory November 8, 2000

11/6/00

The Compact Stellarator Design Team

D. Ander son. U. Wis.c A. Grossnan. UCSD R. D. Benson, OR NL J. Hans on, Auburn U. L. A. Berr y OR NL P. Heitzenroeder, PPPL B. Blacwell. Au stral a D. H i **I L**LNL S. P. Hishman, OR NL A. H. Boozer, Columbia .U A. Brooks, P PPL W. Houlberg, OR NL T. G. Brown, P PPL S. Hudson, PP RL M. Cole, OR NL M. Isaev, Kurc hatov W. Cooper, C R P C. E. Kessel, PPPL M. Drev ak, IP PGreifs wald L.-P. Ku, PP R M. Fens erma cher. LLNL H. Kugel, P PPL G. Y. Fu. PPPL E. Lazarus. OR NL P. Garabedian, NYU Z. Lin, PPPL J. Lewandow s k P PPL A. Georgiev s k, i gons utant R. J. Godston, P PPL J. F. Lyon, OR NL P. Goranson, ORNL R. Majes k, iPP PL

P. Mer kel, IPP-Gre fis wald A. H. Reiman, PPPL M. Mi khai ov, Kur chatov G. Rewold, PPPL D. Mik klosen. PPPL R. Sanche z Spain W. Miner, U. Texas J. A. Schmidt, PP PL P. Miodu sew sk OR NL J. S chultz, MIT D. A. Monti cel b, PPPL R. T. Simmons, PP PL H. Mynic RP PL D. A. Spong, OR NL N. Nakaj i ma, NIFS P. Strand, OR NL G.H.Neilson, PPPL D. Strickerl. OR NL B. E. Nel son, OR NL A. Subbotin, Kurchato v C. Nührenberg, IP PG. P. Valanju, U. Texas M. Okamoto, NIFS K. Y. Watanabe, NIFS A. Pletzer, P PPL R. B. White, P PPL N. Pomphrey, P PPL D. A. Wililamson. ORN L M.H. Redi, PPPL M. C. Zarnstorff, PPPL W. T. Reiersen, PP PL I. Zatz, P PPL

Auburn U., Columbia U., New York Univ., LLNL, ORNL, PPPL, UC San Diego, U. Texas-Austin, U. Wisconsin Germany, Switzerland, Russia, Japan, Australia, Spain

Introduction and Basic Issues

- * Links to US Stellarator program sites related to this talk
 - www.pppl.gov/ncsx

(NCSX Project Info)

• qos.fed.ornl.gov (QOS Project Info)

Compact Stellarators Combine Best Features of Stellarators and Advanced Tokamaks

- Traditional Stellarators
 - Externally-generated helical fields (rotational transform), low recirculating power, large A
 - typically disruption free
- Advanced tokamaks
 - Good confinement, low A high power density, bootstrap current
- Compact Stellarators
 - Use 3D shaping flexibility + some plasma current to combine best features

Comparison of Worldwide Stellarators

Compact Stellarators - With Some Current -Can Approach A = R/a of Tokamaks

US Compact Stellarator Program

- * Physics of compact (low aspect ratio, low N_p) stellarators
 - establish experimental data base for designing low-A, high(er)- β , potentially attractive stellarator reactor
- * National Compact Stellarator Experiment (NCSX)
 - experimental "Proof-of-Principle" scale experiment
 - based on "quasi-axisymmetry" design + shaping
- * Concept-exploration device
 - explore implications of "quasi-poloidal" symmetry

Challenges for Stellarator Design at Low Aspect Ratio

- * Must Reduce Neoclassical Losses
 - 3D "ripple" (1/ $_{\rm V}$) losses enhanced by helical/toroidal coupling unless configuration design is
 - quasi-symmetric
 - quasi-omnigeneous

* **Preserve Flux Surface Integrity**

 increased toroidal/helical coupling at low A=R/a can lead to flux surface fragility (islands, stochasticity)

Challenges for Stellarator Design at Low Aspect Ratios (cont'd)

- * Coils are challenging to engineer
 - Less room for "inner" legs of coils
 - Fusion power production ~ $(B_{plasma}/B_{coil})^4$
 - B_{coil} limited by SC technology (< 12T)
 - this ratio decreases at low A
 - 1/R effect (same as for tokamaks)
 - stellarator field complexity
 - optimization goal: *maximize* this ratio for reactor relevance (P_{fusion}) while keeping small reactor size

Size (~Cost) of Compact Stellarators

- * Minimum stellarator reactor size determined by maximum plasma-coil separation (Δ) for given R, or minimum $A_{\Delta} = R/\Delta$
 - $\mathbf{R}_{\min} = \mathbf{A}_{\Delta} \mathbf{t}$ (t = blanket+shield thickness, fixed)
- * High-N_p stellarators (W7X, LHD, etc) have large $A_{\Delta} > 12$
 - coils must be VERY close to plasma (Laplace's equation)
- * Compact stellarators achieve $A_{\Delta} < 7$: fundamentally different
 - low $N_p \sim 2-3$, hybrids with net current producing transform
 - potential for smaller ("lower cost") reactors

 assuming confinement can be retained

Overview of Design Methodology

Advances in Theory and Numerics Contribute to Design of Compact Stellarators

- * **3D Shaping**
 - passively stabilize external kink, vertical displacement, ballooning modes for β ~ 4% with no walls or feedback
 - exceeds tokamak AT limit (~2.5%)
 - ARIES-RS β ~ 5% : reactor relevant
- * Specify iota profile
 - prevent (control?) disruptions
 - neoclassical tearing stabilization: j_{bs} (d In 1)/d φ > 0
- * Quasi-symmetry (design Boozer |B|-spectrum)
 - Good confinement -> closed drift-orbits, allow plasma flow for flow shear stabilization

Optimization of Physics and Engineering Properties for Compact Stellarators

- Generalization of numerical method pioneering by J.
 Nuchrenberg and R. Zille for large A stellarators (originally applied to design Helias W7X and HSX (QHS))
 - plasma physics properties completely determined by ideal MHD equilibrium, which includes
 - Fourier description of plasma boundary
 - "free functions" $\iota(\Phi)$ (= 1/q) and $p(\Phi)$
 - variation of boundary (and 1, p) rather than coil topology - to optimize plasma transport, stability, coil "complexity", beta, etc.

Stellarator Coils Are "Reverse-Engineered"

- * **Optimized Plasma State**
 - Fixed boundary optimization more robust (stable) than "free-boundary"
- * **Conceptually separates physics from coil optimization**
 - Engineering feasible of coils NOT guaranteed by method
 - Innovative methods needed to find coils at low A
 - Singular value decomposition (SVD) of current potentials obtained using NESCOIL (P. Merkel)
 - Genetic Algorithms

Compact Stellarator Optimization Procedure

Optimization Targets (Physics/Engineering)	<u>Example</u>
Aspect ratio	R ₀ /a - 2.5 to 3.5
Limit outer surface curvature	avoid strong elongation/cusps
Target quasi-symmetries	Minimize B _{mn} if n ≠ 0 (QA); B _{mn} if m ≠ 0 (QP); or if m/n≠1 (QH)
Bounce-average omnigeneity (drift surfaces and flux surfaces aligned)	$B_{min} = B_{min} (\psi)$ $B_{max} = B_{max} (\psi)$ $J = J(\psi)$
Local diffusive transport	D, χ from DKES
Current profile	self-consistent I _{BS} , I(ψ) goes to 0 at edge
lota profile	Limit low order resonances
Magnetic Well, Mercier (resistive interchange)	V" < 0, D _M > 0 over cross section
Ballooning, Kink, and Vertical stability	$<\beta>>2\%$ COBRA and TERPSICHORE

National Compact Stellarator Experiment (NCSX)

NCSX: An Experiment Based on QA to Develop Compact Stellarators

- Study conditions for high-beta disruption-free operation.
- Determine beta limits (modes) with bootstrap alignment.
- Neoclassical transport reduction by quasi-axisymmetry.
- Anomalous transport reduction by flow-shear control.
- Neoclassical tearing mode stabilization by externally-controlled magnetic shear.

*

NCSX Configuration Properties

- * Geometry
 - N_p = 3, A ~ 4.4, <_K> ~ 1.8, <indented>
- * **Stability**
 - ballooning, kink (no wall), vertical, Mercier at $\beta \text{=} \text{4.1\%}$
 - limited by ballooning -> profile optimization possible
- * Transport: Low effective ripple (good QA-ness)
- * **Transform**
 - Iota: 0.4 (axis) -> 0.65 (edge) avoid low order resonance
 - ~65% from external coils (at full beta and bootstrap current~150kA at B=1T)
 - neoclassical-tearing stable profile

Toroidal Cross Sections of NCSX Plasma

Quasi-Axisymmetry: Low Effective Ripple

- * In 1/ ν regime, ripple transport scales as $\epsilon_{eff}^{3/2}/\nu$
- * Compute ϵ_{eff} from NEO (Nemov-Kernbichler) code
 - benchmark against DKES, Monte Carlo, Shaing-Houlberg
- * Edge (maximum) ϵ_{eff} ~ 3.5% (drops exponentially into core)
 - low enough for both co, counter-nbi
 - Helical (ripple) transport sub-dominant to axisymmetric
 - Allows access to high β ~4%, ν_{*} ~0.25, B = 1T, P~5MW

Small Ripple => Low Helical Transport

NCSX Kink and Vertical Stability

* Finite Currents

- concerned with external (low n) kinks
- 3D shaping: enhanced field bending, stable up to $\beta \text{~-}4\%$
- * Large Axisymmetric Elongation and Triangularity (indent)
 - improves ballooning stability
 - in tokamaks, destabilizes vertical modes for κ > 1
 - in stellarator, external transform provides robust vertical stability

-PPPL

• Assume R/a >> 1, $\beta = 0$, j(r) = constant, $\iota(r) = \text{constant}$. (Stellarator expansion)

$$\delta W_p + \delta W_{vac} = \frac{1}{2} \int d^3x \quad [\delta \mathbf{B}^2 + \mathbf{j}_{\parallel} \cdot \boldsymbol{\xi} \times \delta \mathbf{B}]$$

$$\propto \quad [\kappa + 1 - (1 - f_i)(\kappa^2 + 1)]$$

Fu, G. Y. et al., Phys. Plasmas 7, (2000) 1079.

Coil Design for NCSX

- "Infinite" Number of Coil Topologies for Given Stellarator Configurations (opportunity for greater flexibility)
 - Helical coils, modular coils, saddle coils, wavy PF's
- * NCSX has focused on two candidates coils
 - Saddle Coils (no net toroidal, poloidal current) + TF – use Genetic Algorithm to find optimal set
 - Modular Coils (+small TF for flexibility)
 - COILOPT code moves filaments directly
- Which is better? More flexible? Better engineering? Physics properties? Surfaces?

Using Genetic Algorithm to Select NCSX Saddles

v

Saddle Coil Option

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

- * Demountable TF coil
- * Internal PF coil
- Helical field produced by saddle coils: LNcooled cable in grooves on conformal support shell.
- * Conformal vacuum vessel
- * Three large openings.

Assessment

- * Good access
- * Low power requirements
- * Good constructability

Coil modifications to improve physics properties being developed.

Modular Coil Option

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

- * LN-cooled cable wound on contoured coil support.
- * External PF and supplementary TF.
- * Conformal vacuum vessel.

Assessment

* May provide best physics properties.

Access-compatible structure concept being developed.

Using External Coils To Reconstruct the Physics Properties of NCSX

* Free-boundary (VMEC) calculations

- determine how close free-bdy plasma shape is to that required for physics preservation
- re-evaluate physics "targets" (stability, transport, etc.)
- generally "acceptable" for modulars. Saddles (?)
- Evaluate (and suppress) effects due to possible "resonant" field perturbations
 - use free-bdy PIES code (equilibrium with islands)
 - develop trim coils to cancel islands as ι varies

Range of ι Available with Modular Coils

PIES Free-Boundary Reconstruction of NCSX (full β , current, modular coils only)

	htssistestersiste
1.32	
.9	
. ©	
.7	
.6	
r .5	
. 4	
.3	
.2	Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>
. 1	
Ø	
	-5.8 -2.5 -2.8 -1.5 -1.6 -1.5 8 .5 1.6 1.5 2.8 2.5 3.8 theta

Island Removal Method (Generalize Cary-Hanson to finite β , I_{plasma})

- * Compute coupling matrix relating plasma boundary shape to internal island widths
 - use PIES rather than vacuum field line tracings
- * Invert matrix
 - boundary modifications to eliminate resonant islands
- * **Resultant boundary changes are small (~0.01<a>)**
 - do not adversely effect stability or transport

PIES Free-Boundary Reconstruction of NCSX (modular coils + helical m=5,n=N_n trim coils)

			<u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>
	1	679	
	1.1	100	F 7
		12	- And the second -
	-		
		B .	
		Ζ.	
		ю.	
1994 - C			
÷		1000	
		- 1	
		-4	
		3	The property of the state wave balance with the state of
		22	
		-	bin the second sec
		1	
		- 19	
		12	
			theta
			10-24-25 Te - 52-

Quasi-Poloidal and Quasi-Omnigenous Stellarators: Concept Exploration Experiment

Symmetries of |B| in Boozer-coordinates Needed for Good Confinement in Stellarators

Quasi-Axisymmetric

Quasi-Poloidal

Example of Quasi-Omnigeneous Orbits: Trapped Particles in LHD - $J \sim J(\Phi)$

R = 3.75 m

R = 3.60 m

QOS Mission

- * Explore physics of quasi-poloidal stellarators to support high- β (10-15%) reactor concept
 - demonstrate neocl'al transport reduction
 - study equilibrium quality at very low A
 - bootstrap current scaling vary $|\mathbf{B}|_{mn}$
 - E-field control => barrier formation

 –low A, QPS (large toroidal viscosity)

QOS Relationship to NCSX

- * Complements NCSX (QA) to broaden knowledge base for compact stellarators
 - Explore new quasi-poloidal magnetic configuration
 - low bootstrap, very low A regime
 - low $\beta {\sim} 2\%$ limit design (no nbi)

– due to low available power and $\beta \sim \mathbf{P^2}$

QOS: N_p=2 Quasi-Poloidal Stellarator Concept Exploration Experiment

* Geometry

- $< R_0 > = 0.86$ m, $< a_p > = 0.34$ m, < A > ~ 2.5
- *** Parameters**
 - <*B*₀> = 1 T for 1 s
 - $P_{\rm ECH} = 0.6 1.2 \,\rm MW$
 - $P_{\rm ICRF} = 1 3 \,\rm MW$

QOS CE, N_p = 2, β = 1.3%

QOS-CE Physics Parameters

- * $\iota \sim 0.3$ to 0.4 in vacuum
- * $I_{\text{plasma}} \sim 25 \text{ kA for B} = 11 \text{ (at } \beta = 1\%)$
 - transform from current *adds* only a small amount (~0.07-0.03) to external transform (neoclassicaltearing stable profile)
 - lower current (3-5) compared to tokamak with same ι
- * $\tau^{nc}/\tau^{ISS95} \sim 2-4$ for B = 1T (further increase possible)
 - nc confinement *sub-*dominant transport mechanism

CE Configuration "Invariance" At Low β

High- β QOS (QPS) Configuration

- * **Closely related to Advanced Tokamak concept**
 - 100% bootstrap current
 - at edge, $\iota_{ext} \sim \iota_{plasma}$; tokamak-like profile
 - bootstrap current alignment (self-consistency)
 - $f_{trap} \neq 0$ on axis (toroidal bumps) no seed needed
 - "high-q" : q(0) ~ 2.5, q(edge) ~ 8
 - small poloidal flux NOT problem as for axisymmetry
 - 2nd Ballooning, Mercier stable for β ~ 15%
 - kink and vertical stability for small boundary change
 - due to reduction in \textbf{j}_{bs} ~ 3, finite edge $\boldsymbol{\iota}_{\text{ext}}$
 - high Tryon factor, β_{N} ~ 20-30

Surfaces for High- β (15%) QOS (N_p = 3, A = 3.5)

$\begin{array}{l} \mbox{Approximate Bootstrap Constancy With } \beta \\ \mbox{(configuration invariance)} \end{array}$

improves with β

U.S. DEPARTMENT OF ENERGY

Edge Becomes 2nd Stability at Low β

Summary

* Reference NCSX plasma configuration has been selected

- passive stability to kink, ballooning, vertical, Mercier, neoclassical tearing to β ~ 4%
 - eliminates need for feedback or conducting walls
- high degree of quasi-axisymmetry achieved
 - good thermal, energetic particle confinement
- two coil designs are under development
 - reproduce targeted physics goals
 - flexible to achieve startup, transitional plasmas
 - resonance suppression capabilities

Summary (cont'd)

- * QOS Concept Exploration Experiment has been designed
 - orthogonal symmetry to QAS
 - good quasi-poloidal symmetry
 - low bootstrap current complements NCSX
 - low parallel flow (high parallel viscosity)
 - complementary scheme for E X B shear control
 - foundation for high- $\beta,$ QPS vision
 - shares many features with Advanced Tokamak, except |B| spectrum has "orthogonal" symmetry

These configurations were made possible by advances in the physics and numerics of low aspect ratio, 3-D systems. They form the basis for exciting experiments to test our understanding of compact stellarator plasmas.

