Design and Implementation of a Cryogenic Loading Capability on the Spectrometer for Materials Research at Temperature and Stress - SMARTS

T. Woodruff and R. Vaidyanathan

University of Central Florida

B. Clausen, T. Sisernos, D. Brown and M.A.M. Bourke

Los Alamos National Laboratory

4th International Workshop on Sample Environments at Neutron Scattering Facilities

Los Alamos

Motivation for a Cryogenic

Capability

234-238

Los Alamos

- **NASA project at UCF to fabricate low** temperature shape memory alloys for actuator applications 11 .050 A
 - Thermal conduction switch for Mars
 - Seals, valves, fluid-line repair and selfhealing gaskets
 - Deformation involves stress induced transformation and twinning
 - In situ studies during loading of stress induced transformation and twinning in low temperature shape memory alloys
 - **General behavior at low temperatures**
 - phase transformations, e.g., steel
 - twinning, e.g., Zr
 - Cu-Nb conductors

Initial Cryogenic System – CAD and FE Design Investor of Central Forda Initial Cryogenic System – CAD and FE Design Investor of Central Forda Initial Cryogenic Cold Mass Investor of Central Forda <thInvestor of Central Forda Investo

2.6250e

Custom Vacuum Chamber

- Four aluminum windows for neutron beam
- One clear glass view port for video sample monitoring
- Two platen feed through flanges for future loading capability

Required 3.5 hours to reach a steady state sample temperature

o(12.00)

rate of 27 L/hr

- Obtained a steady state sample temperature of 135 K
- Temperature gradient across sample at steady state was 8 K

Initial Cryogenic Loading Capability – CAD and FE Design

CAD Modeling with SolidWorks

- Geometric models were constructed to check fits and clearances
- Model was designed to fit the existing load frame on the SMARTS spectrometer
- Convective cooling coils were developed to fit existing SMARTS compression platen
 - design

Los Alamos

, ENDIE ASSEMBLY MUST BE LEAK TREN, MARMUM BLOWRALE HELKIM LEAK RATE = 1.0 K 10⁻³ AUM/DD2/S60.

Finite Element Analysis

- Numerical codes used to predict and analyze the thermal response of various design
- Stress analysis codes used to analyze the thermo mechanical effects of transient and steady state thermal loads

Initial Cryogenic Loading Capability - Implementation

Los Alamos

Data Acquisition and Control System

- Used to monitor thermocouple readings both inside of and outside of the vacuum chamber
- Used to control a series of sample heaters that maintain a specified sample temperature and minimized temperature gradient

Initial Cryogenic Loading

Capability - Issues

Large volumetric flow rate of LN2 was required (27L/hr)
High steady state temperature was obtained (216K)

234238

- Poor insulation from large heat leak generated by load frame hydraulic cylinder
- Poor contact between convective cooling coils and compression platens

14.138

- Convective heat leak was introduced by a poor vacuum level due to small nitrogen leaks at hard to seal plumbing connections
- Strains had to be estimated using crosshead displacement
 - Chamber design did not allow feed through of wiring for strain gages or extensometer
- R NULLS:
 I. ALL DIMENSIONS AND TOLERANDES
 APPE IN INCHES.
 S. DIMENSIONS AND TOLERANDES
 APPLM AFTER VELONS AND ASSEMBLY

 AMANIAN A TAN RWS DR RELIFE
 SUDTACES.
 A ENTIRE ASSEMBLY MUST BE LEAK

Los Alamos

ICHI, MARMIN ALLANALE HELM LEAK BATE - 1,0 × 10⁻³ AIM. CO./ S.I.

Latest Cryogenic Loading

Capability

Vacuum System Modifications

- Same vacuum chamber was utilized
- New vacuum feed throughs were designed to allow wiring of a strain gage

MANIAN A T25 RMS SR PETTER FMSH ON ALL DEFENAL SHAMPER SUPERCES.

Los Alamos

4. ENTIRE ASSENTACY MUST BE LEAK TRAIT, MARMAN ALLOWABLE HELTAN LEAK BATE = 1.0 × 10⁻³ ATM/COL/SCR.

Cooling System Modifications

- New flow-through compression platens were designed to utilize internal convective cooling
- Vascomax push rods were replaced with 17-4PH stainless steel design because of the lower cost and relatively low thermal conductivity
- New platen attachment method was developed to insulate compression platens from the high temperature load frame using Macor© ceramic

Proposed Design Improvements

Vacuum System Improvements

Los Alamos

- Modification of vacuum feed throughs to allow for wiring of additional strain gage or extensometer
- Cooling System Improvements
 - Utilization of composite polymer materials to create more resilient insulated couplings

Control System Improvements

- Implementation of an automated LN2 flow control and a Dewar manifold to maintain more constant system temperatures over longer periods of time
- Utilization of a PID temperature controller to speed temperature changes and eliminate overshoot
- Incorporation of higher wattage cartridge heaters into compression platens to speed temperature changes and reduce warm-up time during sample changes

Data Acquisition Improvements

• Addition of a second strain gage channel to reduce thermal offset and/or addition of a ceramic legged extensometer for low-temperature strain measurements

Summary

University of Central Florida

Cryogenic loading capability successfully implemented on SMARTS

Three design iterations have been built and tested

- Unloaded design for testing a variety of static specimens at low temperatures
- Two load-frame designs have been implemented resulting in test temperatures as low as 89 K
- These systems have provided useful results for materials scientists at UCF and LANL, and NASA engineers
- Cryogenic system improvements are planned
 - Implementation of automated LN2 flow control and a Dewar manifold
 - Utilization of a PID temperature controller and higher wattage cartridge heaters
 - Addition of a second strain gage channel and/or a ceramic legged extensometer

Further cryogenic measurements are planned on shape memory alloys

 MANIAN A 125 5WG DR BELLER SUSSA ON ALL INTERNAL DEAMNED SURFACES.

Los Alamos

 ENTRE ASSEMBLY MUST BE LEAK TOOL, MAKMUM ALLINGULE BELIUM LEAK BATE – 1.0 × 1.0⁻⁹ AUM/DEL^FSCH.

Acknowledgements

University of Central Florida

• NSF Career Program (DMR-0239512)

-8-11 .050 @ A

Los Alamos National Laboratory

2天教

- UCF UF Space Research Initiative
- •Z. Nagy (Sierra Lobo)
- W. Notardonato (NASA Kennedy Space Center)

 R NOTES: ALL DAMINSTONS AND TOLERANGES ARE IN INCRESS.
 COMENSIONS AND TOLERANGES ARE IN INCRESS.
 ALL INCREMENT AND ASSEMBLY
 A. MANIAN, 4 TON EMPS SEX RELIEB TASH ON, ALL INTERNAL SPANNER SUFFACES.
 A. ENTIRE ASSEMBLY MUST BE LEAK TASH, MARKING ALLINANDE HELINA LEAR RAFE = 1.0 × 10⁻⁵

Los Alamos

-8-