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Density Dependence and 
Competition with NZMS
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NZMS BRS
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1985 2006

Page 58

BRS and NZMS Density 
Dependence

Growth rates log (Nt+1/Nt) plotted at 
densities at t, log Nt from Banbury Springs 
data

A negative linear fit strongly suggests 
density dependence (Akcakaya 1999, Baguette and 

Schitickzelle 2006,Gotellie 1998)
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Simple L-V predicts competitive 
exclusion
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However……
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D-D/Competition Conclusion….

Both BRS and NZMS appear to be D-D
NZMS may compete strongly with BRS 
under certain conditions (i.e. food limited)
BRS and NZMS are coexisting at outlet of 
Banbury Springs
NZMS doesn’t compete with BRS in 
headwater spring locations

Putting probabilities on 
‘threatened and ‘foreseeable 

future’

Page 105
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What does the federal listing 
‘threatened’

under the 
Endangered Species Act 

(ESA 1973) mean?

“any species that was 
likely to become an 

‘endangered species’
within the ‘foreseeable 

future’ throughout all or a 
significant portion of its 

range”
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Endangered species

any species which is “in 
danger of extinction 
throughout all or a 

significant portion of its 
range" 

What does ‘threatened’ and 
‘foreseeable future’ mean?

Congress in all of its wisdom probably 
intentionally left these definitions vague to 
give the Judicial Branch something to do 

(and cause headaches for USFWS).
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IUCN Section E in the Redbook
The IUCN specifically sets extinction probabilities 

and time frames for three classes of species 
viability:

Critically endangered = probability of extinction > 
50% within 10 years

Endangered = probability of extinction is 20% 
within 20 years

Vulnerable = probability of extinction is 10% 
within 100 years

Page 142

The USFWS (2003, 2006) recently decided not to list 
several subspecies as “threatened” in part based on 
their interpretation that the “foreseeable future” was 20 
to 30 years

YCT

WSCT

Unfortunately, USFWS did not attach a probability 
to their 20 to 30 year “foreseeable future” criteria

which doesn’t help if we want to 
conduct a ‘precise, exact, & true viability analysis’
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USFWS working criteria for “threatened” = 30 
years “foreseeable future”

IUCN definition “endangered” probability of 
extinction = 20 years 

Our working model interpretation:
30 years (USFWS) + 20 years (IUCN) 

= 50 years
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What about probability?

R2 =.99

R2 =.91

50 years; 0.10 - 0.15 probability
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Does ‘threatened’ = ‘vulnerable’?

Structure of IUCN Red List categories

Page 95

Yes, for our 
modeling 
purposes

Population Trends

Page 93
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Methods

Four long-term monitoring sites
Thousand Springs
Banbury Springs
Frank Lloyd Wright
Bancroft Springs

Time series analysis
Non-equivalence tests

Page 93 - 94
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Dixon and Pechmann (2005) ‘non-equivalence’ test suggested that there was 
insufficient evidence to conclude that BRS at Thousand Springs was 
not ‘vulnerable’
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?

I thought Thousand Springs had
lots of BRS?

Answer: this analysis was based on population 
trends not abundances. If we consider 

abundance as a measure of viability, then the 
Thousand Springs population would be more 

viable than the following….
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Dixon and Pechmann (2005) ‘non-equivalence’ test suggested that 
there was significant evidence that BRS at the outlet of Banbury Springs
was not ‘vulnerable’

Banbury Springs
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Bancroft Springs
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Methods

Estimated population growth rates of BRS 
at the outlet of Banbury Springs

Refer to pages 103 and 104 for methods 
and Dennis et al. (1991)

“

λ, the estimated finite rate of increase; eµ+1/2σ2 at the outlet of 
Banbury Springs

λ = 1.07 (0.80, 1.43)
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BRS population at outlet of Banbury Springs in the past 6 + years 
is stable

^

^
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Effect of Environmental 
Stochasticity (σ) on a single 

BRS Population

Method 1

Estimated yearly environmental stochasticity (σ) 
needed to cause BRS extinction in 10, 20, and 30 
years
Decreasing population growth rate, λ =.90 and stable 
growth rate λ =1.00
Three initial population densities (N0), 100, 500, and 
1000/m2

Page 107
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0.4810000.4210000.661000

0.475000.415000.65500

0.421000.381000.63100

Stable (λ= 1.00)

0.3810000.3510000.581000

0.365000.335000.57500

0.301000.261000.54100

Decreasing (λ= 0.90)

σNoσNoσNo

30 years320 years210 years1

1 IUCN criteria for ‘critically endangered’ = 50% probability of extinction within 10 years

2 IUCN criteria for ‘endangered’ = 20% probability of extinction within 20 years

3 USFWS proposed criteria of 20-30 years ‘foreseeable future’ (USFWS 2003, USFWS 2006)
Page 110

Results 

Method 2
Initial density = 900/m2, (winter lows at Banbury) λ = 1.00
(method 1)

σ at 0.18, 0.25, 0.30, 0.40, 0.50 (0.18 winter low at Banbury)

Replicated 10,000 X

Reported as Interval Extinction Risk (IER)

IERs calculated for 10, 20, 30, 50, and 100 years (95%CIs for
50 years)

Used RAMAS METAPOP (Applied Biomathematics 1998)

Page 108
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Interval Extinction Risk (IER)

Probability BRS population 
abundance will fall below a 

range of abundances at least 
once during the next ‘X’ years
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σ

IER at 100 years
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What if we modeled using 
abundance 

and not density?

Page 116

Abundance
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steady growth rate of λ =1.0 in 50 years N0 of 100,000
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Years
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σ Conclusion

Amount of environmental stochasticity (σ) affects 
BRS viability

Single BRS population models suggest not 
‘vulnerable’ (threatened)

Modeling density vs. abundance causes different 
results

Abundance more accurate but more difficult to 
estimate, however 

Density is more conservative estimator
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What if we are not dealing with
a single BRS population? 

(which we are not)

Metapopulation Dynamics
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Metapopulation Theory Review

Metapopulation theory is the current paradigm for 
fragmented populations (Hanski and Gilpin 1997, Hanski 1999)

Metapopulations are a network of fragmented
populations with

low migration rates and
extinction rates of individual populations are 
stochastically uncorrelated 

Page 118

Metapopulation Theory 
based on 

Theory of Island 
Biogeography 

(MacArthur and Wilson 1967)
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Equilibrium theory of island biogeography (MacArthur and Wilson 1967)
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Interaction between dispersal (d) and 
habitat correlation (er)

In general:

E ∫ (d,er)

where E = extinction risk
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One large BRS population or many 
small populations in a 

metapopulation?

Historically, thought to be one continuous 
population

Now thought to be discontinuous 
populations or a metapopulation
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What if we modeled BRS as one continuous
population with no:

environmental stochasticity (σ),
local extinction
recolonization 

vs.
metapopulation?

See appendices 3,4, and 5

Decreasing Abundance
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IER in 50 years for BRS, modeled as one single large 
population vs. 27 separate populations in a 

metapopulation
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Decreasing Abundance
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BRS metapopulations as reported in 1992 (n=19) and 2006 

(n=27) 
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River vs. Spring habitats

Set baseline extinction rates = 0.02 (50 
years)
Increased from 0.02, 0.06, 0.10, 0.14, 
0.18, and 0.20 ( 5 years) for river 
populations and held constant for spring 
populations to simulate decreased habitat 
quality
Repeated for spring habitats
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Effects of ‘load following’ on 
metapopulation viability

Harvested (removed) 0, 10, 20, 30% of 
river populations while maintaining spring 
populations

Simulated at 5 river populations vs. 21 
river populations
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Decreased Abundance
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Page 127-128 Decreasing abundance
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The End

Any 
questions?


