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ABSTRACT 

Compatible meshes are isomorphic meshing of the interiors of two polygons having a correspondence between their vertices. 
Compatible meshing may be used for constructing sweeps, suitable for finite element analysis, between two base polygons. They 
may also be used for meshing a given sequence of polygons forming a sweep. We present a method to compute compatible trian-
gulations of planar polygons with a very small number of Steiner (interior) vertices. Being close to optimal in terms of the num-
ber of Steiner vertices, these compatible triangulations are usually not of high quality, i.e., do not have well-shaped triangles. We 
show how to increase the quality of these triangulations by adding Steiner vertices in a compatible manner, using several novel 
techniques for remeshing and mesh smoothing. The total scheme results in high-quality compatible meshes with a small number 
of triangles. These meshes may then be morphed to obtain the intermediate triangulated sections of a sweep, if needed.  

Keywords: mesh generation, compatible triangulations, remeshing 

 
1. INTRODUCTION 

In CAE, swept volumes, sometimes called two and one half 
dimensional volumes, are frequently constructed between 
two base polygons given with a correspondence between 
their vertices. To discretize a swept volume for finite ele-
ment analysis, it is necessary to mesh the interiors of the 
sequence of polygonal cross-sections forming the sweep, 
usually introducing interior (Steiner) vertices, in a manner 
such that the mesh is isomorphic, valid and well-formed 
within all the polygons. This mesh is said to be compatible 
with all the polygons. See Figure 1 for an example. The 
result is a set of prisms defining the sweep, whose edges 
are the so-called “ribs” of the sweep  [15]. 

In the case where only the two base polygons of the sweep 
are given, it is possible to automatically generate the inter-
mediate polygons by a process known as morphing. The 
morphing problem, in general, is to smoothly transform one 
given polygon, the source, into another, the target, over 
time. Constructing the sweep volume may be considered a 
morphing problem by thinking of the sweep axis as the 
time axis of the morph. Morphing has been the subject of 
much research over recent years and has wide practical use 
in areas such as computer graphics, animation and model-
ing. 

The naive approach to the morphing problem is to decide 
that the polygon vertex trajectories are straight lines, where 
every feature of the shape travels with a constant velocity 
along the line towards the corresponding feature of the 
target during the morph. However, this simple approach 
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(e)            
Figure 1: The concept of compatible triangulations of 
corresponding polygons. Vertex correspondence is de-
noted by digits. (a),(b) Non-compatible triangulation. 
(c),(d) Compatible triangulation. (e) The sweep with 
bases (c) and (d). 



can lead to undesirable results. The intermediate shapes can 
vanish, i.e. degenerate into a single point, or self-intersect 
even though the source and target are simple. Even if the 
linear morph is free of self-intersections and degeneracies, 
its intermediate shapes may have areas or distances be-
tween features far from those of the source and target, re-
sulting in a “misbehaved” morph. See the top row of Figure 
2. Most of the research on solving the trajectory problem 
for morphing concentrates on trying to eliminate self-
intersections and preserving the geometrical properties of 
the intermediate shapes. Numerous existing methods 
achieve good results for many inputs, (e.g.  [13] and  [14]), 
yet, only the methods that use compatible triangulations are 
able to guarantee any properties of the resulting morph. 

In order to perform finite-element analysis on a swept vol-
ume—a sequence of corresponding simple polygonal cross 
sections—it is necessary to mesh the polygon interiors in a 
compatible manner. In this work we concentrate on com-
patible triangulations. Compatible meshing is not always 
possible unless Steiner vertices are introduced into the inte-
rior of the polygons. The main challenge is then to mini-
mize the number of Steiner vertices to the least needed to 
achieve compatibility. Unfortunately, this can be as much 
as Ω(n2), where n is the number of vertices of the polygons. 
In the first work on this problem, Aronov et al.  [2] provided 
two constructions which result in quite a large number of 
Steiner vertices. In their work on polygon morphing, 
Surazhsky and Gotsman  [17] improved Aronov et al.’s  so-
called “spiderweb” method to significantly reduce the 
number of Steiner vertices required. Kranakis and Urrutia 
 [11] presented a completely different method in which the 
number of Steiner vertices introduced depends on the num-
ber of inflection vertices of the two polygons. Gupta and 
Wenger  [9] described an algorithm which uses minimal-
link polylines in the polygon. 

While compatible triangulations of polygons with a very 
small number of Steiner vertices are definitely an advan-
tage from a complexity point-of-view, it appears that these 
triangulations are naturally not well-formed. They tend to 
contain long skinny triangles which cannot be adjusted to 

improve the triangle shape significantly. Hence a major 
challenge in our application is to introduce as small a num-
ber of Steiner vertices as possible, yet obtain two triangula-
tions with decent quality, and maintain compatibility of the 
triangulations throughout the process. We call this process 
compatible remeshing. This was attempted in the work of 
Alexa et al.  [1], who start off with compatible triangula-
tions of polygons, and introduce Steiner vertices in order to 
improve the quality of the triangulation. They, however, 
start from a large number of Steiner vertices, and thereafter 
increase this number significantly, in order to achieve tri-
angulation of good quality. This results in compatible tri-
angulations that are overly complex. 

Our main contribution in this paper is a new method to 
compatibly triangulate two planar polygons with a very 
small number of Steiner vertices, and a new remeshing 
technique, including a novel smoothing component. This 
introduces a small number of extra Steiner vertices, yet 
achieves a high-quality triangulation while maintaining the 
compatibility of the two triangulations. 

Meshing for sweep generation has been attempted before 
by a variety of authors in the meshing community (e.g.  [5], 
 [10],  [15]). Their basic approach is to generate a mesh for a 
subset of the cross-section polygons, usually just one of the 
sweep bases, and then project this mesh somehow onto the 
other polygons. Beyond the fact that this certainly does not 
guarantee that the result will be a valid triangulation, there 
are also no guarantees for the quality of the triangulation 
even if it were valid. Our solution, taking into account both 
sweep bases (and theoretically all intermediate polygons),  
solves all these problems. 

If only the base polygons of the sweep are given, the inter-
mediate polygons, with their corresponding compatible 
triangulations, may be generated using the morphing meth-
ods of Surazhsky and Gotsman  [17]. This is done by reduc-
ing the problem to that of morphing compatible planar 
triangulations with a common convex boundary, in which 
the polygon is embedded, as described by Floater and 
Gotsman  [8] and Surazhsky and Gotsman  [16]. Two corre-
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Figure 2: Morphing of two corresponding polygons. The correspondence is denoted by digits. Leftmost polygon is 
source and rightmost is target. Note that the correspondence implies some rotation during the morph. Top row: The 
linear morph resulting in self-intersecting intermediate polygons. Bottom row: The morph of the polygons generated by 
embedding the source and target into compatible triangulations and applying the method of  [8] or  [16] guarantees that 
the intermediate polygons are also simple. 



sponding point sets admit a compatible triangulation if 
there exists a triangulation of one point set which, when 
induced on the second point set by the correspondence, is a 
legal triangulation there too. The morphing method of 
Floater and Gotsman  [8] is based on the convex representa-
tion of triangulations using barycentric coordinates, first 
introduced by Tutte  [20] for graph drawing purposes, and 
later generalized by Floater  [7] for parameterization of 3D 
meshes. This avoids many of the problems associated with 
morphing, and basically guarantees that the triangulation 
remains valid (i.e. compatible with the source and target) 
throughout the morph.  

To embed the two polygons in a triangulation, first com-
patibly triangulate the polygon interiors. Then circumscribe 
the two polygons in a common convex enclosure and com-
patibly triangulate the two resulting annuli between the 
polygons and the enclosure (possibly requiring Steiner 
vertices)  [3]. This results in two compatible triangulations 
with a common convex boundary, in which the polygons 
are embedded. Morphing these triangulations using the 
methods of  [8] or  [16] will then result in a valid (compati-
ble) morph of the two polygons. See the bottom row of 
Figure 2. 

2. NEAR-OPTIMAL COMPATIBLE 
TRIANGULATIONS 

2.1 Previous work 

As already stated, Kranakis and Urrutia  [11] presented two 
different methods to compatibly triangulate two polygons 
in which the number of Steiner vertices introduced depends 
on the number of the polygons’ inflection vertices. The first 
algorithm produces a rather large number, O((k+l)2), of 
Steiner vertices, where k and l are the number of the two 
polygons’ reflex vertices respectively. The second algo-
rithm introduces, at most, O(kl) Steiner vertices, but its 
drawback is that it may add Steiner vertices on the polygon 
boundaries, which some applications do not allow. Fur-
thermore, enlarging the boundary might prevent this algo-
rithm from being used as a black-box in a recursive man-
ner, as the algorithm might not terminate. 

Gupta and Wenger  [9] described an algorithm, seemingly 
the best so far, which constructs the compatible triangula-

tion based on minimal-link polylines inside the polygons P 
and Q. A minimal-link polyline is a path of straight-line 
segments between two vertices lying entirely in the poly-
gon interior, having a minimal number of segments. The 
idea behind their algorithm is the following: First, compute 
an arbitrary triangulation Tp of P. Using edges of Tp it is 
possible to partition P into sub-polygons such that the 
number of links in minimal-link polylines in those sub-
polygons is no more than a small constant (e.g. 5). Then the 
corresponding partition of Q is constructed using non-
intersecting minimum-link polylines. The vertices of these 
polylines are the Steiner vertices of the triangulations. 
These corresponding sub-polygons are then compatibly 
triangulated, usually requiring a relatively small number of 
Steiner vertices due to the properties of the partition. The 
resulting compatible triangulations have O(Mlogn + nlog2n) 
triangles, where M is the number of triangles in the optimal 
solution. Theoretically, this is good, except that the con-
stant factor is quite large (approximately 40, according to 
the authors), so it is not very practical for smaller inputs. 
Another drawback of this algorithm is that it is not symmet-
ric in P and Q. The choice of the triangulation Tp of P 
strongly influences the resulting compatible triangulations 
and the number of Steiner vertices. Thus, overall, in some 
very simple cases when two triangulations may be com-
patibly triangulated without requiring Steiner vertices, the 
algorithm can, nonetheless, introduce a large number of 
Steiner vertices. From a practical point of view, the algo-
rithm involves implementing many state-of-the-art compu-
tational geometry algorithms developed over the last two 
decades. As a consequence, an implementation of the algo-
rithm is currently not available, and thus, it is impossible to 
compare this algorithm with other algorithms for finding 
compatible triangulations. 

2.2 Our algorithm 

Our algorithm is similar in spirit to that of Gupta and 
Wenger  [9], namely, it is based on the idea of partitioning 
polygons using minimum-link polylines. However, we 
believe our algorithm is much simpler. Given two polygons 
P and Q with a correspondence between their vertices, we 
find a pair of vertices u and v with a minimal-link polyline 
between them in one of the polygons, and a corresponding 
polyline in the second. After the shorter polyline is refined 
to the same number of vertices as the longer one, the two 

8

12

34

5 6

7

 

8

12

34

5 6

7

 

8

12

34

5 6

7

 

8

12

34

5 6

7

 

8

12

34

5 6

7

 

8

12

34

5 6

7

 

8

12

34

5 6

7

 

8

12

34

5 6

7

 

8

12

34

5 6

7

 

8

12

34

5 6

7

 

8

1

2

3

4

5

6 7

 

8

1

2

3

4

5

6 7

 

8

1

2

3

4

5

6 7

 

8

1

2

3

4

5

6 7

 

8

1

2

3

4

5

6 7

 

8

1

2

3

4

5

6 7

 

8

1

2

3

4

5

6 7

 

8

1

2

3

4

5

6 7

 

8

1

2

3

4

5

6 7

 

8

1

2

3

4

5

6 7

 
Figure 3: Compatible triangulations of two polygons (one on each row), whose vertex correspondence is denoted by dig-
its. The light grey region denotes the current polygon during the recursion. The grey regions are regions already trian-
gulated. Thick segments are minimal-link polylines, which recursively partition the polygons. 



polylines compatibly partition both of the input polygons 
into two sub-polygons. The vertices of these polygons are 
the Steiner vertices. We then apply the algorithm recur-
sively on these two sub-polygons. The process terminates 
when the input polygons contain only three vertices, 
namely, the polygons have become triangles. 

Note that if it is possible to compatibly triangulate the two 
polygons without any Steiner vertices, our algorithm will 
do so, as opposed to most of the other algorithms. Since 
this is the case for many inputs, our algorithm has a signifi-
cant advantage. 

We still need to show how to find a pair of vertices u and v 
that minimizes the number of links in the partitioning poly-
lines. To achieve this, we employ the method of Suri  [18], 
who showed how to find the minimum-link path between 
two given vertices in a simple polygon in O(n) time, where 
n is the number of polygon vertices. In a subsequent work, 
Suri  [19] showed how a simple polygon can be preproc-
essed in O(n) time in order to query the number of links of 
the minimum-link path between two given vertices of the 
polygon in O(log n) time. Thus, we can query all possible 
vertex pairs of the polygon in O(n2 log n) time using this 
algorithm. Hence, in this manner we may determine which 
pair is best to use, and then employ the first algorithm to 
actually compute the paths.  

Accordingly, in order to find the best path for both poly-
gons we query the two polygons for the minimum-link 
distance and choose the pair that has the best (minimal) 
value of the maximum between two distances. Namely, we 
choose the pair (u,v) which satisfies: 

(u, v) = arg min
u,v∈P

max(distP(u, v), distQ(u, v)  

In practice, this pair is not unique. Therefore, we choose 
the pair that will partition the polygons into sub-polygons 
which are as balanced as possible, in order to reduce the 
overall algorithm complexity. This can be easily done by 
comparing the indices of the polygon vertices. More for-
mally, if the polygon vertices are v1, …, vn and n is the size 
of the polygon, we look for: 

(vi, vj) = arg max
vi,vj∈P j>i

min(j" i, i" j+n)  

We believe that the time complexity for finding the optimal 
vertex pair(s) of the polygon(s) can be further improved to 
O(nlogn) by exploiting the existing preprocessed data 

structure for the queries, instead of using the query proce-
dure for a specific pair as a black box. 

We must still show that the algorithm terminates, since 
when the polygon P is partitioned into two sub-polygons P1 
and P2, theoretically the size of P1 or P2 (or both) can be 
identical to that of P, and if this repeats, the algorithm can 
run infinitely. In general, to prevent such cases we should 
check that the size of the partitioned polygon can be the 
same as P only once. If the size stays the same after two 
iterations, the algorithm should backtrack and choose an-
other vertex pair for the partition polylines. This, theoreti-
cally, results in the exponential time complexity. However, 
in practice (we have tested the algorithm over numerous, 
very complex inputs), even the case when the size of the 
polygons repeats itself twice does not occur. Thus, although 
we cannot prove it at this time, we believe that the average 
total time complexity is less than O(n3logn). 

See Figure 3 for an illustration of the various stages of the 
compatible triangulation algorithm. 

3. MESH IMPROVEMENT 

Our compatible triangulation algorithm generates a small 
number of Steiner vertices, at locations which have not 
necessarily been optimized for mesh quality. It is possible 
to improve these meshes by smoothing them (moving the 
vertices), or remeshing them (changing the connectivity). 
In this section we describe methods for these two opera-
tions which we believe are also of independent interest.  

3.1 Weighted angle-based smoothing 

Zhou and Shimada  [21] presented an effective and easy-to-
implement angle-based mesh smoothing scheme. They 
show that the quality of the mesh after angle-based smooth-

   
(a) (b) (c) 

Figure 5: Comparison of smoothing methods. (a) Laplacian. (b) Angle-based  [21]. (c) Weighted angle-based. 

c ci

α i

pi  
Figure 4: Weighted angle-based smoothing: ci  is ob-
tained by rotation of c  around pi  to coincide with the 
bisector of ! i .  



ing is much better than after Laplacian smoothing. More-
over, the chance that the scheme will produce inverted 
(invalid) faces is much less than that in Laplacian smooth-
ing. Unfortunately, this is true mostly for meshes whose 
vertices have degrees close to the average degree, namely, 
the mesh connectivity is very regular. When the mesh has 
more irregular connectivity, the scheme may fail. In appli-
cations involving meshes with very distorted (long and 
skinny) triangles, a more robust smoothing scheme is criti-
cal. We propose a very simple improvement to the original 
angle-smoothing scheme, which significantly reduces the 
chances of inverted triangles and improves the quality of 
the resulting mesh. Furthermore, it has almost the same 
computational cost per iteration and a lower total computa-
tional cost due to better convergence. 

The original scheme attempts to make each pair of adjacent 
angles equal. Given a vertex c  and its neighbors p1. . .pk , 
where k  is the vertex degree, we want to move c  in order 
to improve the angles of the triangles incident on c . Let ! i  
be the angle adjacent to pi  in the polygon p1. . .pk . We 
define ci  to be the point lying on the bisector of ! i  such 
that (pi, ci)# # = (pi, c)# # , namely, the edge (pi, c)  is 
rotated around pi  to coincide with the bisector of ! i . See 

Figure 4. The new position of c  is defined as the average of 
all ci  for all neighbors. That is: 

cnew = k
1 !

i=1
k ci. (1) 

We improve this scheme by introducing weights into (1). 
For a small angle ! i  it is difficult to guarantee that cnew  
will be placed relatively close to the bisector of ! i . Since 
! i  is itself small, the large deviation of cnew  from the 
bisector of ! i  will create angles much smaller than !i/2 . 
Thus, the resulting mesh will be of a poor quality. To pre-
vent this, we modify (1) in the following way: 

cnew = !
i=1

k
1/!2

i

1 $ !
i=1

k

!2

i

1 $ ci . (2) 

Namely, the ci  for small angles ! i  will carry more weight 
than for large angles. To demonstrate the robustness of our 
improvement, see Figure 5, Figure 6 and Table 1. 

Despite the superior results of our weighted angle-based 
scheme, it still cannot guarantee that the new vertex posi-
tion forms a valid triangulation. Similarly, the convergence 
of our scheme as well as the original scheme cannot be 
guaranteed in cases when the given mesh has invalid (in-

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 7: Area-based remeshing. (a) Triangle areas of the mesh from Figure 6 are equalized. (b) Discarding the edges of 
(a) reveals a uniform vertex distribution. (c) Mesh obtained by alternation of angle-based smoothing and weighted an-
gle-improving edge-flips. (d) Mesh obtained by alternation of area equalization and edge-flips. (e) A polygon with ran-
dom distribution of interior vertices. (f) Laplacian smoothing of (e). (g) Angle-based smoothing of (e). (h) Area equaliza-
tion of (e). 

(a) (b) (c) (d) 

Figure 6: Comparison between smoothing methods. (a) The original mesh. (b) Laplacian. (c) Angle-based [21]. 
(d) Weighted angle-based. See Table 1 for a quantitative comparison. 



verted) triangles or when the mesh boundary is far from 
convex. In these cases, both schemes should be applied in a 
“smart” manner, namely, verifying that the triangles are 
still valid, or that the minimum angle of the adjacent trian-
gles has been improved, before a vertex is moved. In some 
rare cases, both schemes may fail to improve the minimum 
angle when even Laplacian smoothing may improve it. A 
“combined” scheme that applies Laplacian smoothing when 
the angle-based method fails has extremely fast conver-
gence and achieves the best of both worlds.   

3.2 Area-based remeshing 

The idea to use triangle areas as one of the criteria for tri-
angulation optimization is not new. This usually means 
trying to form triangles with as uniform an area as possible. 
However, triangle areas alone cannot be used to obtain 
meshes of reasonable quality. The reason is that when only 
the areas are optimized, without taking into account the 
angles, the resulting mesh can (and in most cases will) have 
many long and skinny triangles. Only when a mesh has an 
almost regular connectivity may uniform triangle areas 
imply well-formed triangles. Nevertheless, a mesh contain-
ing triangles with uniform area distribution has one impor-
tant positive property: The spatial distribution of the verti-
ces over the total mesh area is very uniform. If we elimi-
nate the edges of the mesh leaving only the vertices, we 
obtain quite a uniform point distribution, as may be seen in  
Figure 7(b). 

We propose a remeshing scheme that utilizes this. Given a 
mesh, we alternate between the area equalization procedure 
and a series of angle-improving edge-flips. Edge-flips are 
performed until improvement is no longer possible. This 
process results in a mesh that is as close to regular as the 
ratio between the number of the boundary and interior ver-
tices, together with the geometry of the boundary, allows. It 
is far superior to the results from an analogous scheme 
involving angle-based smoothing instead of area equaliza-
tion. Figure 7(c) and (d) compare the two schemes. 

To equalize the areas of the mesh triangles, a number of 
iterations are performed over the mesh. Each iteration 
moves all the mesh interior vertices sequentially to improve 
the areas locally. Let p = (x, y) be an interior mesh vertex 

and p1. . .pk  its neighbors. (xi, yi)  are the coordinates of 
pi . Denote by Si(x, y)  the area of triangle (pi, pi+1, p) . 
Note that i + 1 is modulo k: 

Si(x, y) = 2
1

xi yi 1
xi+1 yi+1 1
x y 1

"""""
""""" . (3) 

Let S be the area of the polygon (pi, . . ., pk)  that is actu-

ally 
!

i=1
k Si(0, 0) . In order to find the position of p that 

equalizes the areas of the adjacent triangles as much as 
possible, we minimize the following function: 

(x, y) = arg min
(x,y)

!
i=1

k

Si(x, y) " k
S

# $2
. (4) 

This reduces to solving a system of two linear equations in 
x and y. The computational cost of this unique solution is 
close to that of traditional Laplacian smoothing. 

It turns out that a valid mesh can be obtained by equalizing 
the areas of the mesh triangles, even in cases such as a 
highly non-convex boundary. This contrasts with other 
methods, including the smart Laplacian  [6] and both angle-
based smoothing methods, which fail. See Figure 7(e)–(h). 

4. COMPATIBLE REMESHING 

We now show how to combine the two methods introduced 
in Section  3, along with a refinement procedure (introduc-
ing new interior Steiner vertices), to produce high-quality 
compatible triangulations of two polygons given with a 
correspondence between their vertices. Compatible triangu-

 Min 
angle 

Triangles 
< 10° 

Triangles 
< 15° 

Triangles 
< 20° 

Laplacian 0.17° 2.57% 5.31% 8.71% 
Angle-based 4.62° 0.58% 1.66% 4.56% 

Weighted 
angle-based 17.2° 0.00% 0.00% 1.82% 

Table 1: Quantitative comparison between quality of 
triangulations in Figure 6. 

      
(a) (b) (c) (d) (e) (f) 

Figure 8: High-quality compatible triangulation of letters U and S. (a)–(b) Optimal compatible triangulations generated 
by the algorithm of Section  2. No Steiner vertices are required, but the minimum angle of U is 10.8°, and of S is 3.4°. (c)–
(d) Compatible triangulations generated by the algorithm of Section  4, without area equalization. The number of Steiner 
vertices is 27, and the minimum angles are 15.4° and 15.7° respectively. (e)-(f) Compatible triangulations generated us-
ing area equalization. The number of Steiner vertices is 7, the minimum angles are 17.1° and 17.6°. The time required to 
generate (c),(d) and (e),(f) was similar. 



lations created using the method introduced in Section  2 
usually have a small number of Steiner vertices, but their 
quality is unlikely to be acceptable. Therefore, remeshing 
techniques must be applied to improve the quality. The 
main difficulty with using existing remeshing techniques is 
that the remeshing criteria which are suitable for a single 
mesh may fail when applied to two triangulations in paral-
lel.  

Our compatible remeshing technique is similar to that of 
Alexa et al.  [1]. We use a series of simultaneous edge-flips, 
mesh smoothing and mesh refinement by edge-splitting. In 
addition, we perform a single iteration of the area equaliza-
tion technique presented in Section 3.2. The outline of the 
algorithm appears in Algorithm 1. The parameter ksplit dic-
tates the rate at which new Steiner vertices are introduced. 

while mesh quality has not been achieved or 
 number of Steiner vertices does not exceed 
  threshold 

Step 1. Alternate between angle-based smooth-
ing and simultaneous angle-improving 
edge-flips. 

Step 2. Refine both meshes by ksplit simulta-
neous edge-splits. 

Step 3. The same as Step 1. 
Step 4. Perform a single iteration of area 

equalization (Section 4). 
Step 5. The same as Step 1. 

Algorithm 1: Compatible remeshing. 

While the criteria for operations in Algorithm 1 are rather 
straightforward for a single mesh, applying them simulta-
neously on two triangulations requires more precise con-

trol. If care is not exercised, the corresponding properties of 
triangles within the two meshes may often contradict each 
other. The following empirical criteria, based on their ana-
log for a single mesh, have produced the best results on 
numerous examples: 

Edge-flips: Similarly to when constructing Delaunay trian-
gulations, the edge is flipped if the minimum angle between 
the angles of both meshes of the triangles adjacent to the 
edge is improved. 

Angle-based smoothing: Both meshes are independently 
smoothed, applying the technique described in Section  3.1 
in the “smart” manner, namely, preserving the validity of 
both meshes. 

Edge-split refinement: Our criterion for choosing an edge 
e  to be split is based both on the edge length (denoted by 
|e| ) and the minimal of the four adjacent triangle angles 
(!min(e) ). The edge with the maximal “normalized” 

length in both triangulations (T0 and T1) is refined: 

e = arg max
e∈T0∪T1

(!min(e))2

|e|
 . (5) 

Note that the refinement is performed simultaneously on 
both triangulations in order to preserve the compatibility. 
The criterion defined in (5) produces better experimental 
results than the aspect ratio-based criterion of  [12] or dis-
tortion metrics criteria of  [4] and  [6]. The number of edges 
to be split in each iteration (ksplit) determines the trade-off 
between the number of Steiner vertices and the algorithm 
running time. 

Area equalization: As noted in Section  3.2, area equaliza-
tion improves the spatial vertex distribution. Due to the 

   

 

(a) 

(b)  

Figure 9: 3D sweep generation. (a) Optimal (no Steiner vertices) compatible triangulation of source and target polygons. 
Top row: High-quality compatible triangulation and intermediates generated by morphing procedure. Minimum angles 
of the source and target triangulations are 27.2°°°° and 25.9°°°°, respectively. (b) 3D visualization of sweeps from a number of 
different angles. 



refinement operations, some regions of the mesh may have 
an excess in vertex density. To smooth this out, we apply a 
single iteration of area equalization (Step 4). This area 
equalization can prevent a further increase in the number of 
Steiner vertices at later stages, but at the price of slowing 
down the algorithm. See Figure 8. On the one hand, the 
refinement operations change the meshes locally, and thus, 
Step 1 (or 3) of Algorithm 1 converges quickly. On the 
other hand, the area equalization affects the mesh globally, 
and thus, Step 1 (or 3) takes much longer to improve the 
mesh globally. If a faster algorithm is required, Step 4 can 
be applied only every 4–10 iterations. 

5. EXPERIMENTAL RESULTS 

We have implemented all the algorithms described in this 
paper, and applied them to numerous example inputs. Our 
inputs consist of two planar polygons which serve as the 
source and target (top and bottom) cross-sections of the 
sweep. These two are compatibly triangulated with suffi-
cient mesh quality (using Algorithm 1), and then morphed 
to create intermediate compatibly triangulated polygons. 
Especially challenging inputs are when the source and tar-
get are significantly different. Figures 9–11 show some 
sample input pairs, the (usually low-quality) compatible 
triangulations with a small number of Steiner vertices gen-

erated by the methods of Section  2, the remeshed high 
quality compatible triangulations generated by the methods 
of Section  4, and the intermediate triangulated cross-
sections generated by applying morphing techniques. The 
latter are shown both as a sequence of 2D cross sections, 
and as a sliced 3D sweep. For each example, we specify the 
statistics of the source and target meshes. We found that the 
angles of the intermediate meshes generated using the tech-
niques of Surazhsky and Gotsman  [16],  [17] were always in 
between those two, so the mesh quality is preserved 
throughout the morph. 

In terms of runtimes, all these examples required no more 
than a second or so to run on a Athlon 1.2GHz PC with 
256MB RAM. Larger inputs, which ultimately involved 
hundreds of (interior and exterior) Steiner vertices for the 
mesh and the morph, required no more than 10 seconds on 
the same machine. 

6. DISCUSSION AND CONCLUSION 

We have shown how to generate compatibly triangulated 
sweeps with quality adequate for finite-element analysis. 
Our method is fast, robust, and, as opposed to previously 
published methods, is guaranteed to always produce a valid 
result. 
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Figure 10: 3D sweep generation. (a) Compatible triangulation of source and target polygons with three Steiner verti-
ces. Top row: High-quality compatible triangulation and intermediates generated by morphing procedure. Minimum 
angles of the source and target triangulations are 15.9°°°° and 15.3°°°°, respectively. (b) 3D visualization of sweeps from a 
number of different angles. 



Several components of our algorithm, in particular the 
weighted angle-based smoothing procedure, may be used in 
their own right in other meshing applications. 

The method was designed primarily for parallel planar 
inputs, but can probably be extended easily to the more 
general case. A sequence of source and target polygons, 
forming so-called “multi-sweeps” or “barrels”  [5], may also 
be treated by decomposing the polygons. 

Future work will address the case of hexahedral meshes. 
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