
High Quality Compatible Triangulations
Vitaly Surazhsky Craig Gotsman

Center for Graphics and Geometric Computing
Dept. of Computer Science, Technion – Israel Institute of Technology, Haifa 32000, Israel

{vitus|gotsman}@cs.technion.ac.il

ABSTRACT

Compatible meshes are isomorphic meshing of the interiors of two polygons having a correspondence between their vertices.
Compatible meshing may be used for constructing sweeps, suitable for finite element analysis, between two base polygons. They
may also be used for meshing a given sequence of polygons forming a sweep. We present a method to compute compatible trian-
gulations of planar polygons with a very small number of Steiner (interior) vertices. Being close to optimal in terms of the num-
ber of Steiner vertices, these compatible triangulations are usually not of high quality, i.e., do not have well-shaped triangles. We
show how to increase the quality of these triangulations by adding Steiner vertices in a compatible manner, using several novel
techniques for remeshing and mesh smoothing. The total scheme results in high-quality compatible meshes with a small number
of triangles. These meshes may then be morphed to obtain the intermediate triangulated sections of a sweep, if needed.

Keywords: mesh generation, compatible triangulations, remeshing

1. INTRODUCTION

In CAE, swept volumes, sometimes called two and one half
dimensional volumes, are frequently constructed between
two base polygons given with a correspondence between
their vertices. To discretize a swept volume for finite ele-
ment analysis, it is necessary to mesh the interiors of the
sequence of polygonal cross-sections forming the sweep,
usually introducing interior (Steiner) vertices, in a manner
such that the mesh is isomorphic, valid and well-formed
within all the polygons. This mesh is said to be compatible
with all the polygons. See Figure 1 for an example. The
result is a set of prisms defining the sweep, whose edges
are the so-called “ribs” of the sweep [15].

In the case where only the two base polygons of the sweep
are given, it is possible to automatically generate the inter-
mediate polygons by a process known as morphing. The
morphing problem, in general, is to smoothly transform one
given polygon, the source, into another, the target, over
time. Constructing the sweep volume may be considered a
morphing problem by thinking of the sweep axis as the
time axis of the morph. Morphing has been the subject of
much research over recent years and has wide practical use
in areas such as computer graphics, animation and model-
ing.

The naive approach to the morphing problem is to decide
that the polygon vertex trajectories are straight lines, where
every feature of the shape travels with a constant velocity
along the line towards the corresponding feature of the
target during the morph. However, this simple approach

1

2

3

4

5 6

7 1

2 3

4

5

6

7 1

2

3

4

5 6

7 1

2 3

4

5

6

7
(a) (b) (c) (d)

(e)
Figure 1: The concept of compatible triangulations of
corresponding polygons. Vertex correspondence is de-
noted by digits. (a),(b) Non-compatible triangulation.
(c),(d) Compatible triangulation. (e) The sweep with
bases (c) and (d).

can lead to undesirable results. The intermediate shapes can
vanish, i.e. degenerate into a single point, or self-intersect
even though the source and target are simple. Even if the
linear morph is free of self-intersections and degeneracies,
its intermediate shapes may have areas or distances be-
tween features far from those of the source and target, re-
sulting in a “misbehaved” morph. See the top row of Figure
2. Most of the research on solving the trajectory problem
for morphing concentrates on trying to eliminate self-
intersections and preserving the geometrical properties of
the intermediate shapes. Numerous existing methods
achieve good results for many inputs, (e.g. [13] and [14]),
yet, only the methods that use compatible triangulations are
able to guarantee any properties of the resulting morph.

In order to perform finite-element analysis on a swept vol-
ume—a sequence of corresponding simple polygonal cross
sections—it is necessary to mesh the polygon interiors in a
compatible manner. In this work we concentrate on com-
patible triangulations. Compatible meshing is not always
possible unless Steiner vertices are introduced into the inte-
rior of the polygons. The main challenge is then to mini-
mize the number of Steiner vertices to the least needed to
achieve compatibility. Unfortunately, this can be as much
as Ω(n2), where n is the number of vertices of the polygons.
In the first work on this problem, Aronov et al. [2] provided
two constructions which result in quite a large number of
Steiner vertices. In their work on polygon morphing,
Surazhsky and Gotsman [17] improved Aronov et al.’s so-
called “spiderweb” method to significantly reduce the
number of Steiner vertices required. Kranakis and Urrutia
 [11] presented a completely different method in which the
number of Steiner vertices introduced depends on the num-
ber of inflection vertices of the two polygons. Gupta and
Wenger [9] described an algorithm which uses minimal-
link polylines in the polygon.

While compatible triangulations of polygons with a very
small number of Steiner vertices are definitely an advan-
tage from a complexity point-of-view, it appears that these
triangulations are naturally not well-formed. They tend to
contain long skinny triangles which cannot be adjusted to

improve the triangle shape significantly. Hence a major
challenge in our application is to introduce as small a num-
ber of Steiner vertices as possible, yet obtain two triangula-
tions with decent quality, and maintain compatibility of the
triangulations throughout the process. We call this process
compatible remeshing. This was attempted in the work of
Alexa et al. [1], who start off with compatible triangula-
tions of polygons, and introduce Steiner vertices in order to
improve the quality of the triangulation. They, however,
start from a large number of Steiner vertices, and thereafter
increase this number significantly, in order to achieve tri-
angulation of good quality. This results in compatible tri-
angulations that are overly complex.

Our main contribution in this paper is a new method to
compatibly triangulate two planar polygons with a very
small number of Steiner vertices, and a new remeshing
technique, including a novel smoothing component. This
introduces a small number of extra Steiner vertices, yet
achieves a high-quality triangulation while maintaining the
compatibility of the two triangulations.

Meshing for sweep generation has been attempted before
by a variety of authors in the meshing community (e.g. [5],
 [10], [15]). Their basic approach is to generate a mesh for a
subset of the cross-section polygons, usually just one of the
sweep bases, and then project this mesh somehow onto the
other polygons. Beyond the fact that this certainly does not
guarantee that the result will be a valid triangulation, there
are also no guarantees for the quality of the triangulation
even if it were valid. Our solution, taking into account both
sweep bases (and theoretically all intermediate polygons),
solves all these problems.

If only the base polygons of the sweep are given, the inter-
mediate polygons, with their corresponding compatible
triangulations, may be generated using the morphing meth-
ods of Surazhsky and Gotsman [17]. This is done by reduc-
ing the problem to that of morphing compatible planar
triangulations with a common convex boundary, in which
the polygon is embedded, as described by Floater and
Gotsman [8] and Surazhsky and Gotsman [16]. Two corre-

1

2

3

4

5 6

7 1

2

3

4 5

6

7 1

2

3

4

6

7 1

2

3 4

5

6

7 1

2 3

4

5

6

7

source target

1

2

3

4

5 6

7

1

2
3

4 5

6

7 1

2

3

4

5

6

7 1

2

3 4

5
6

7
1

2 3

4

5

6

7

Figure 2: Morphing of two corresponding polygons. The correspondence is denoted by digits. Leftmost polygon is
source and rightmost is target. Note that the correspondence implies some rotation during the morph. Top row: The
linear morph resulting in self-intersecting intermediate polygons. Bottom row: The morph of the polygons generated by
embedding the source and target into compatible triangulations and applying the method of [8] or [16] guarantees that
the intermediate polygons are also simple.

sponding point sets admit a compatible triangulation if
there exists a triangulation of one point set which, when
induced on the second point set by the correspondence, is a
legal triangulation there too. The morphing method of
Floater and Gotsman [8] is based on the convex representa-
tion of triangulations using barycentric coordinates, first
introduced by Tutte [20] for graph drawing purposes, and
later generalized by Floater [7] for parameterization of 3D
meshes. This avoids many of the problems associated with
morphing, and basically guarantees that the triangulation
remains valid (i.e. compatible with the source and target)
throughout the morph.

To embed the two polygons in a triangulation, first com-
patibly triangulate the polygon interiors. Then circumscribe
the two polygons in a common convex enclosure and com-
patibly triangulate the two resulting annuli between the
polygons and the enclosure (possibly requiring Steiner
vertices) [3]. This results in two compatible triangulations
with a common convex boundary, in which the polygons
are embedded. Morphing these triangulations using the
methods of [8] or [16] will then result in a valid (compati-
ble) morph of the two polygons. See the bottom row of
Figure 2.

2. NEAR-OPTIMAL COMPATIBLE
TRIANGULATIONS

2.1 Previous work

As already stated, Kranakis and Urrutia [11] presented two
different methods to compatibly triangulate two polygons
in which the number of Steiner vertices introduced depends
on the number of the polygons’ inflection vertices. The first
algorithm produces a rather large number, O((k+l)2), of
Steiner vertices, where k and l are the number of the two
polygons’ reflex vertices respectively. The second algo-
rithm introduces, at most, O(kl) Steiner vertices, but its
drawback is that it may add Steiner vertices on the polygon
boundaries, which some applications do not allow. Fur-
thermore, enlarging the boundary might prevent this algo-
rithm from being used as a black-box in a recursive man-
ner, as the algorithm might not terminate.

Gupta and Wenger [9] described an algorithm, seemingly
the best so far, which constructs the compatible triangula-

tion based on minimal-link polylines inside the polygons P
and Q. A minimal-link polyline is a path of straight-line
segments between two vertices lying entirely in the poly-
gon interior, having a minimal number of segments. The
idea behind their algorithm is the following: First, compute
an arbitrary triangulation Tp of P. Using edges of Tp it is
possible to partition P into sub-polygons such that the
number of links in minimal-link polylines in those sub-
polygons is no more than a small constant (e.g. 5). Then the
corresponding partition of Q is constructed using non-
intersecting minimum-link polylines. The vertices of these
polylines are the Steiner vertices of the triangulations.
These corresponding sub-polygons are then compatibly
triangulated, usually requiring a relatively small number of
Steiner vertices due to the properties of the partition. The
resulting compatible triangulations have O(Mlogn + nlog2n)
triangles, where M is the number of triangles in the optimal
solution. Theoretically, this is good, except that the con-
stant factor is quite large (approximately 40, according to
the authors), so it is not very practical for smaller inputs.
Another drawback of this algorithm is that it is not symmet-
ric in P and Q. The choice of the triangulation Tp of P
strongly influences the resulting compatible triangulations
and the number of Steiner vertices. Thus, overall, in some
very simple cases when two triangulations may be com-
patibly triangulated without requiring Steiner vertices, the
algorithm can, nonetheless, introduce a large number of
Steiner vertices. From a practical point of view, the algo-
rithm involves implementing many state-of-the-art compu-
tational geometry algorithms developed over the last two
decades. As a consequence, an implementation of the algo-
rithm is currently not available, and thus, it is impossible to
compare this algorithm with other algorithms for finding
compatible triangulations.

2.2 Our algorithm

Our algorithm is similar in spirit to that of Gupta and
Wenger [9], namely, it is based on the idea of partitioning
polygons using minimum-link polylines. However, we
believe our algorithm is much simpler. Given two polygons
P and Q with a correspondence between their vertices, we
find a pair of vertices u and v with a minimal-link polyline
between them in one of the polygons, and a corresponding
polyline in the second. After the shorter polyline is refined
to the same number of vertices as the longer one, the two

8

12

34

5 6

7

8

12

34

5 6

7

8

12

34

5 6

7

8

12

34

5 6

7

8

12

34

5 6

7

8

12

34

5 6

7

8

12

34

5 6

7

8

12

34

5 6

7

8

12

34

5 6

7

8

12

34

5 6

7

8

1

2

3

4

5

6 7

8

1

2

3

4

5

6 7

8

1

2

3

4

5

6 7

8

1

2

3

4

5

6 7

8

1

2

3

4

5

6 7

8

1

2

3

4

5

6 7

8

1

2

3

4

5

6 7

8

1

2

3

4

5

6 7

8

1

2

3

4

5

6 7

8

1

2

3

4

5

6 7

Figure 3: Compatible triangulations of two polygons (one on each row), whose vertex correspondence is denoted by dig-
its. The light grey region denotes the current polygon during the recursion. The grey regions are regions already trian-
gulated. Thick segments are minimal-link polylines, which recursively partition the polygons.

polylines compatibly partition both of the input polygons
into two sub-polygons. The vertices of these polygons are
the Steiner vertices. We then apply the algorithm recur-
sively on these two sub-polygons. The process terminates
when the input polygons contain only three vertices,
namely, the polygons have become triangles.

Note that if it is possible to compatibly triangulate the two
polygons without any Steiner vertices, our algorithm will
do so, as opposed to most of the other algorithms. Since
this is the case for many inputs, our algorithm has a signifi-
cant advantage.

We still need to show how to find a pair of vertices u and v
that minimizes the number of links in the partitioning poly-
lines. To achieve this, we employ the method of Suri [18],
who showed how to find the minimum-link path between
two given vertices in a simple polygon in O(n) time, where
n is the number of polygon vertices. In a subsequent work,
Suri [19] showed how a simple polygon can be preproc-
essed in O(n) time in order to query the number of links of
the minimum-link path between two given vertices of the
polygon in O(log n) time. Thus, we can query all possible
vertex pairs of the polygon in O(n2 log n) time using this
algorithm. Hence, in this manner we may determine which
pair is best to use, and then employ the first algorithm to
actually compute the paths.

Accordingly, in order to find the best path for both poly-
gons we query the two polygons for the minimum-link
distance and choose the pair that has the best (minimal)
value of the maximum between two distances. Namely, we
choose the pair (u,v) which satisfies:

(u, v) = arg min
u,v∈P

max(distP(u, v), distQ(u, v)

In practice, this pair is not unique. Therefore, we choose
the pair that will partition the polygons into sub-polygons
which are as balanced as possible, in order to reduce the
overall algorithm complexity. This can be easily done by
comparing the indices of the polygon vertices. More for-
mally, if the polygon vertices are v1, …, vn and n is the size
of the polygon, we look for:

(vi, vj) = arg max
vi,vj∈P j>i

min(j" i, i" j+n)

We believe that the time complexity for finding the optimal
vertex pair(s) of the polygon(s) can be further improved to
O(nlogn) by exploiting the existing preprocessed data

structure for the queries, instead of using the query proce-
dure for a specific pair as a black box.

We must still show that the algorithm terminates, since
when the polygon P is partitioned into two sub-polygons P1
and P2, theoretically the size of P1 or P2 (or both) can be
identical to that of P, and if this repeats, the algorithm can
run infinitely. In general, to prevent such cases we should
check that the size of the partitioned polygon can be the
same as P only once. If the size stays the same after two
iterations, the algorithm should backtrack and choose an-
other vertex pair for the partition polylines. This, theoreti-
cally, results in the exponential time complexity. However,
in practice (we have tested the algorithm over numerous,
very complex inputs), even the case when the size of the
polygons repeats itself twice does not occur. Thus, although
we cannot prove it at this time, we believe that the average
total time complexity is less than O(n3logn).

See Figure 3 for an illustration of the various stages of the
compatible triangulation algorithm.

3. MESH IMPROVEMENT

Our compatible triangulation algorithm generates a small
number of Steiner vertices, at locations which have not
necessarily been optimized for mesh quality. It is possible
to improve these meshes by smoothing them (moving the
vertices), or remeshing them (changing the connectivity).
In this section we describe methods for these two opera-
tions which we believe are also of independent interest.

3.1 Weighted angle-based smoothing

Zhou and Shimada [21] presented an effective and easy-to-
implement angle-based mesh smoothing scheme. They
show that the quality of the mesh after angle-based smooth-

(a) (b) (c)

Figure 5: Comparison of smoothing methods. (a) Laplacian. (b) Angle-based [21]. (c) Weighted angle-based.

c ci

α i

pi
Figure 4: Weighted angle-based smoothing: ci is ob-
tained by rotation of c around pi to coincide with the
bisector of ! i .

ing is much better than after Laplacian smoothing. More-
over, the chance that the scheme will produce inverted
(invalid) faces is much less than that in Laplacian smooth-
ing. Unfortunately, this is true mostly for meshes whose
vertices have degrees close to the average degree, namely,
the mesh connectivity is very regular. When the mesh has
more irregular connectivity, the scheme may fail. In appli-
cations involving meshes with very distorted (long and
skinny) triangles, a more robust smoothing scheme is criti-
cal. We propose a very simple improvement to the original
angle-smoothing scheme, which significantly reduces the
chances of inverted triangles and improves the quality of
the resulting mesh. Furthermore, it has almost the same
computational cost per iteration and a lower total computa-
tional cost due to better convergence.

The original scheme attempts to make each pair of adjacent
angles equal. Given a vertex c and its neighbors p1. . .pk ,
where k is the vertex degree, we want to move c in order
to improve the angles of the triangles incident on c . Let ! i
be the angle adjacent to pi in the polygon p1. . .pk . We
define ci to be the point lying on the bisector of ! i such
that (pi, ci)# # = (pi, c)# # , namely, the edge (pi, c) is
rotated around pi to coincide with the bisector of ! i . See

Figure 4. The new position of c is defined as the average of
all ci for all neighbors. That is:

cnew = k
1 !

i=1
k ci. (1)

We improve this scheme by introducing weights into (1).
For a small angle ! i it is difficult to guarantee that cnew
will be placed relatively close to the bisector of ! i . Since
! i is itself small, the large deviation of cnew from the
bisector of ! i will create angles much smaller than !i/2 .
Thus, the resulting mesh will be of a poor quality. To pre-
vent this, we modify (1) in the following way:

cnew = !
i=1

k
1/!2

i

1 $!
i=1

k

!2

i

1 $ ci . (2)

Namely, the ci for small angles ! i will carry more weight
than for large angles. To demonstrate the robustness of our
improvement, see Figure 5, Figure 6 and Table 1.

Despite the superior results of our weighted angle-based
scheme, it still cannot guarantee that the new vertex posi-
tion forms a valid triangulation. Similarly, the convergence
of our scheme as well as the original scheme cannot be
guaranteed in cases when the given mesh has invalid (in-

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Area-based remeshing. (a) Triangle areas of the mesh from Figure 6 are equalized. (b) Discarding the edges of
(a) reveals a uniform vertex distribution. (c) Mesh obtained by alternation of angle-based smoothing and weighted an-
gle-improving edge-flips. (d) Mesh obtained by alternation of area equalization and edge-flips. (e) A polygon with ran-
dom distribution of interior vertices. (f) Laplacian smoothing of (e). (g) Angle-based smoothing of (e). (h) Area equaliza-
tion of (e).

(a) (b) (c) (d)

Figure 6: Comparison between smoothing methods. (a) The original mesh. (b) Laplacian. (c) Angle-based [21].
(d) Weighted angle-based. See Table 1 for a quantitative comparison.

verted) triangles or when the mesh boundary is far from
convex. In these cases, both schemes should be applied in a
“smart” manner, namely, verifying that the triangles are
still valid, or that the minimum angle of the adjacent trian-
gles has been improved, before a vertex is moved. In some
rare cases, both schemes may fail to improve the minimum
angle when even Laplacian smoothing may improve it. A
“combined” scheme that applies Laplacian smoothing when
the angle-based method fails has extremely fast conver-
gence and achieves the best of both worlds.

3.2 Area-based remeshing

The idea to use triangle areas as one of the criteria for tri-
angulation optimization is not new. This usually means
trying to form triangles with as uniform an area as possible.
However, triangle areas alone cannot be used to obtain
meshes of reasonable quality. The reason is that when only
the areas are optimized, without taking into account the
angles, the resulting mesh can (and in most cases will) have
many long and skinny triangles. Only when a mesh has an
almost regular connectivity may uniform triangle areas
imply well-formed triangles. Nevertheless, a mesh contain-
ing triangles with uniform area distribution has one impor-
tant positive property: The spatial distribution of the verti-
ces over the total mesh area is very uniform. If we elimi-
nate the edges of the mesh leaving only the vertices, we
obtain quite a uniform point distribution, as may be seen in
Figure 7(b).

We propose a remeshing scheme that utilizes this. Given a
mesh, we alternate between the area equalization procedure
and a series of angle-improving edge-flips. Edge-flips are
performed until improvement is no longer possible. This
process results in a mesh that is as close to regular as the
ratio between the number of the boundary and interior ver-
tices, together with the geometry of the boundary, allows. It
is far superior to the results from an analogous scheme
involving angle-based smoothing instead of area equaliza-
tion. Figure 7(c) and (d) compare the two schemes.

To equalize the areas of the mesh triangles, a number of
iterations are performed over the mesh. Each iteration
moves all the mesh interior vertices sequentially to improve
the areas locally. Let p = (x, y) be an interior mesh vertex

and p1. . .pk its neighbors. (xi, yi) are the coordinates of
pi . Denote by Si(x, y) the area of triangle (pi, pi+1, p) .
Note that i + 1 is modulo k:

Si(x, y) = 2
1

xi yi 1
xi+1 yi+1 1
x y 1

"""""
""""" . (3)

Let S be the area of the polygon (pi, . . ., pk) that is actu-

ally
!

i=1
k Si(0, 0) . In order to find the position of p that

equalizes the areas of the adjacent triangles as much as
possible, we minimize the following function:

(x, y) = arg min
(x,y)

!
i=1

k

Si(x, y) " k
S

$2
. (4)

This reduces to solving a system of two linear equations in
x and y. The computational cost of this unique solution is
close to that of traditional Laplacian smoothing.

It turns out that a valid mesh can be obtained by equalizing
the areas of the mesh triangles, even in cases such as a
highly non-convex boundary. This contrasts with other
methods, including the smart Laplacian [6] and both angle-
based smoothing methods, which fail. See Figure 7(e)–(h).

4. COMPATIBLE REMESHING

We now show how to combine the two methods introduced
in Section 3, along with a refinement procedure (introduc-
ing new interior Steiner vertices), to produce high-quality
compatible triangulations of two polygons given with a
correspondence between their vertices. Compatible triangu-

 Min
angle

Triangles
< 10°

Triangles
< 15°

Triangles
< 20°

Laplacian 0.17° 2.57% 5.31% 8.71%
Angle-based 4.62° 0.58% 1.66% 4.56%

Weighted
angle-based 17.2° 0.00% 0.00% 1.82%

Table 1: Quantitative comparison between quality of
triangulations in Figure 6.

(a) (b) (c) (d) (e) (f)

Figure 8: High-quality compatible triangulation of letters U and S. (a)–(b) Optimal compatible triangulations generated
by the algorithm of Section 2. No Steiner vertices are required, but the minimum angle of U is 10.8°, and of S is 3.4°. (c)–
(d) Compatible triangulations generated by the algorithm of Section 4, without area equalization. The number of Steiner
vertices is 27, and the minimum angles are 15.4° and 15.7° respectively. (e)-(f) Compatible triangulations generated us-
ing area equalization. The number of Steiner vertices is 7, the minimum angles are 17.1° and 17.6°. The time required to
generate (c),(d) and (e),(f) was similar.

lations created using the method introduced in Section 2
usually have a small number of Steiner vertices, but their
quality is unlikely to be acceptable. Therefore, remeshing
techniques must be applied to improve the quality. The
main difficulty with using existing remeshing techniques is
that the remeshing criteria which are suitable for a single
mesh may fail when applied to two triangulations in paral-
lel.

Our compatible remeshing technique is similar to that of
Alexa et al. [1]. We use a series of simultaneous edge-flips,
mesh smoothing and mesh refinement by edge-splitting. In
addition, we perform a single iteration of the area equaliza-
tion technique presented in Section 3.2. The outline of the
algorithm appears in Algorithm 1. The parameter ksplit dic-
tates the rate at which new Steiner vertices are introduced.

while mesh quality has not been achieved or
 number of Steiner vertices does not exceed
 threshold

Step 1. Alternate between angle-based smooth-
ing and simultaneous angle-improving
edge-flips.

Step 2. Refine both meshes by ksplit simulta-
neous edge-splits.

Step 3. The same as Step 1.
Step 4. Perform a single iteration of area

equalization (Section 4).
Step 5. The same as Step 1.

Algorithm 1: Compatible remeshing.

While the criteria for operations in Algorithm 1 are rather
straightforward for a single mesh, applying them simulta-
neously on two triangulations requires more precise con-

trol. If care is not exercised, the corresponding properties of
triangles within the two meshes may often contradict each
other. The following empirical criteria, based on their ana-
log for a single mesh, have produced the best results on
numerous examples:

Edge-flips: Similarly to when constructing Delaunay trian-
gulations, the edge is flipped if the minimum angle between
the angles of both meshes of the triangles adjacent to the
edge is improved.

Angle-based smoothing: Both meshes are independently
smoothed, applying the technique described in Section 3.1
in the “smart” manner, namely, preserving the validity of
both meshes.

Edge-split refinement: Our criterion for choosing an edge
e to be split is based both on the edge length (denoted by
|e|) and the minimal of the four adjacent triangle angles
(!min(e)). The edge with the maximal “normalized”

length in both triangulations (T0 and T1) is refined:

e = arg max
e∈T0∪T1

(!min(e))2

|e|
 . (5)

Note that the refinement is performed simultaneously on
both triangulations in order to preserve the compatibility.
The criterion defined in (5) produces better experimental
results than the aspect ratio-based criterion of [12] or dis-
tortion metrics criteria of [4] and [6]. The number of edges
to be split in each iteration (ksplit) determines the trade-off
between the number of Steiner vertices and the algorithm
running time.

Area equalization: As noted in Section 3.2, area equaliza-
tion improves the spatial vertex distribution. Due to the

(a)

(b)

Figure 9: 3D sweep generation. (a) Optimal (no Steiner vertices) compatible triangulation of source and target polygons.
Top row: High-quality compatible triangulation and intermediates generated by morphing procedure. Minimum angles
of the source and target triangulations are 27.2°°°° and 25.9°°°°, respectively. (b) 3D visualization of sweeps from a number of
different angles.

refinement operations, some regions of the mesh may have
an excess in vertex density. To smooth this out, we apply a
single iteration of area equalization (Step 4). This area
equalization can prevent a further increase in the number of
Steiner vertices at later stages, but at the price of slowing
down the algorithm. See Figure 8. On the one hand, the
refinement operations change the meshes locally, and thus,
Step 1 (or 3) of Algorithm 1 converges quickly. On the
other hand, the area equalization affects the mesh globally,
and thus, Step 1 (or 3) takes much longer to improve the
mesh globally. If a faster algorithm is required, Step 4 can
be applied only every 4–10 iterations.

5. EXPERIMENTAL RESULTS

We have implemented all the algorithms described in this
paper, and applied them to numerous example inputs. Our
inputs consist of two planar polygons which serve as the
source and target (top and bottom) cross-sections of the
sweep. These two are compatibly triangulated with suffi-
cient mesh quality (using Algorithm 1), and then morphed
to create intermediate compatibly triangulated polygons.
Especially challenging inputs are when the source and tar-
get are significantly different. Figures 9–11 show some
sample input pairs, the (usually low-quality) compatible
triangulations with a small number of Steiner vertices gen-

erated by the methods of Section 2, the remeshed high
quality compatible triangulations generated by the methods
of Section 4, and the intermediate triangulated cross-
sections generated by applying morphing techniques. The
latter are shown both as a sequence of 2D cross sections,
and as a sliced 3D sweep. For each example, we specify the
statistics of the source and target meshes. We found that the
angles of the intermediate meshes generated using the tech-
niques of Surazhsky and Gotsman [16], [17] were always in
between those two, so the mesh quality is preserved
throughout the morph.

In terms of runtimes, all these examples required no more
than a second or so to run on a Athlon 1.2GHz PC with
256MB RAM. Larger inputs, which ultimately involved
hundreds of (interior and exterior) Steiner vertices for the
mesh and the morph, required no more than 10 seconds on
the same machine.

6. DISCUSSION AND CONCLUSION

We have shown how to generate compatibly triangulated
sweeps with quality adequate for finite-element analysis.
Our method is fast, robust, and, as opposed to previously
published methods, is guaranteed to always produce a valid
result.

(a)

(b)

Figure 10: 3D sweep generation. (a) Compatible triangulation of source and target polygons with three Steiner verti-
ces. Top row: High-quality compatible triangulation and intermediates generated by morphing procedure. Minimum
angles of the source and target triangulations are 15.9°°°° and 15.3°°°°, respectively. (b) 3D visualization of sweeps from a
number of different angles.

Several components of our algorithm, in particular the
weighted angle-based smoothing procedure, may be used in
their own right in other meshing applications.

The method was designed primarily for parallel planar
inputs, but can probably be extended easily to the more
general case. A sequence of source and target polygons,
forming so-called “multi-sweeps” or “barrels” [5], may also
be treated by decomposing the polygons.

Future work will address the case of hexahedral meshes.

ACKNOWLEDGEMENTS

Thanks to Tatiana Surazhsky and Michael Floater for their
contribution to the area-based remeshing method, to Alla
Sheffer for helpful discussions on sweeps, and to Gill Bare-
quet for helpful discussions on the implementation of mini-
mum-link path algorithms.

REFERENCES

[1] M. Alexa, D. Cohen-Or and D. Levin, As-rigid-as-
possible shape interpolation. Proceedings of SIG-
GRAPH 2000, pp. 157–164.

[2] B. Aronov, R. Seidel, and D. L. Souvaine, On com-
patible triangulations of simple polygons, Computa-
tional Geometry: Theory and Applications, 3:27–35,
1993.

[3] M. Babikov, D. L. Souvaine, and R. Wenger, Con-
structing piecewise linear homeomorphisms of poly-
gons with holes, Proceedings of 9th Canadian Confer-
ence on Computational Geometry, 1997.

[4] M. Berzins, Mesh quality: A function of geometry,
error estimates or both?, 7th International Meshing
Roundtable, pp. 229–238, 1998.

[5] T. Blacker. The Cooper tool. 5th International Meshing
Roundtable, pp. 13–29, 1996.

[6] S. A. Canann, J. R. Tristano, and M. L. Staten, An
approach to combined Laplacian and optimization-
based smoothing for triangular, quadrilateral, and

quad-dominant meshes, 7th International Meshing
Rountable, pp. 479–496, 1998.

[7] M. S. Floater. Parameterization and smooth
approximation of surface triangulation. Computer
Aided Geometric Design, 14:231–250, 1997.

[8] M. S. Floater and C. Gotsman, How to morph tilings
injectively, Journal of Computational and Applied
Mathematics, 101:117–129, 1999.

[9] H. Gupta and R. Wenger, Constructing piecewise
linear homeomorphisms of simple polygons, J. Algo-
rithms, 22(1):142–157, 1997.

[10] P.M. Knupp, Next Generation sweep tool: A method
for generating all-hex meshes and two and one-half
dimensional geometries, 7th International Meshing
Roundtable, pp. 505–514, 1998.

[11] E. Kranakis and J. Urrutia, Isomorphic triangulations
with small number of Steiner points, International
Journal of Computational Geometry and Applications,
9(2):171–180, 1999.

[12] V. Parthasarathy and S. Kodiyalam, A constrained
optimization approach to finite element mesh smooth-
ing, Finite Elements in Analysis and Design, 9:309–
320, 1991.

[13] T. W. Sederberg, P. Gao, G. Wang, and H. Mu, 2D
shape blending: An intrinsic solution to the vertex
path problem, Computer Graphics (SIGGRAPH '93),
27:15–18, 1993.

[14] M. Shapira and A. Rappoport, Shape blending using
the star-skeleton representation, IEEE Trans. on
Computer Graphics and Applications, 15:44–51, 1995.

[15] M. L. Staten, S. A. Canann and S. J. Owen, BMSweep:
Locating interior nodes during sweeping, 7th Interna-
tional Meshing Roundtable, pp. 7–18, 1998.

[16] V. Surazhsky and C. Gotsman, Controllable morphing
of compatible planar triangulations, ACM Transac-
tions on Graphics, 20(4):203–231, 2001.

Figure 11: 3D visualizations of sweeps between letters U and S using compatible triangulations from Figure 8(e)-(f).
The optimal compatible triangulations of U and S appear in Figure 8(a)-(b).

[17] V. Surazhsky and C. Gotsman, Guaranteed intersec-
tion-free polygon morphing. Computers and Graphics,
25(1):67–75, 2001.

[18] S. Suri, A linear time algorithm for minimum link
paths inside a simple polygon. Comput. Vision Graph.
Image Process., 35:99–110, 1986.

[19] S. Suri, On some link distance problems in a simple
polygon, IEEE Journal of Robotics and Automation,
6(1):108–113, 1990.

[20] W. T. Tutte, How to draw a graph, Proc. London
Math. Soc., 13:743–768, 1963.

[21] T. Zhou and K. Shimada, An angle-based approach to
two-dimensional mesh smoothing, 9th International
Meshing Roundtable, pp. 373–384, 2000.

