PAGE

1

VVSG Tutorial Narration

Core Requirements Part 4*
[Slide 1]
[NARRATOR:] This is Part 4 of the Next Voluntary Voting System Guidelines Core Requirements Training Modules. Parts 1 through 4 are presented by Dr. David Flater of the National Institute of Standards and Technology’s Information Technology Laboratory. These modules present an overview of the material in Part 3 of the Guideline recommendations including questions and answers from the members of the Election Assistance Commission’s Board of Advisors and Standards Boards. [Slide 2]
[MR. FLATER:] Section 6.4 is Workmanship with the subsections: Software engineering practices; Quality assurance and configuration management; General build quality; Durability and maintainability; Temperature and humidity; Equipment transportation and storage.
[Slide 3]

Software engineering practices is where we talk about coding conventions, and it has many subsections. [Slide 4]
And the executive summary of this is that manufacturers are expected to use current best practices for software engineering. There are some words like published and credible, which have definitions following them so that there is not going to be a subjective argument about what is published and credible. In an ideal world, there would be a committee somewhere that, on a yearly basis, would review the state of the art in software engineering and say okay, this is what represents the state of the art, and we would expect new voting systems submitted to be done in this way, but failing that, we do have some specifications as best we can do in the VVSG for what a published and credible set of coding conventions looks like. Now there’s also something in there which I’ll just refer to as the three-year rule. It essentially says for a new voting system being submitted for certification for the first time, they have to show that the software engineering practices they used were current at least within the three years prior to their request for certification.

Having done that, however, if the same system is brought back for recertification with incremental changes later, it’s not going to be a moving target. You conform to the best practices when you built the system, and the state of the art is going to continue to morph over time and evolve. The maintenance task is different from the development task. When you’re in maintenance, your goal is to be consistent with what you did before, so that’s the three-year rule. Three years as of the first certification.
[Slide 5]

[QUESTIONER:] Did this come from the discussion in Denver at the meeting the EAC put together where all of the different elements were involved? Some of the vendor software supervisors, Diebold specifically, were alleging that some of the coding conventions and existing standards have basically tied their hands. So is this addressing that at all in terms of their flexibility?

[MR. FLATER:] The question was: Did this come from/ address concerns raised at a meeting in Denver in which it was asserted that coding standards that were embedded within the 2002 and 2005 VSS were tying the hands of the vendors unnecessarily? I was not at that meeting in Denver, but I can tell you, this does address that concern, or the changes to the section do address that concern, and I’ll be going into more detail to the extent possible. The changes can be summarized as follows: 80 percent of the prescriptive coding rules that had been incorporated in the 2002 and 2005 specifications were best practice at a particular time in history, but from the standpoint of here and now, looking at current best practices, current practices, don’t seem to jive with the state of the art. That 80 percent has been taken out, and now if you look specifically at what the old guidelines said, what the language really said was, vendors are expected to use best practices, but as a sort of fallback position, here’s a coding standard you can use. And what I’m led to understand is that somehow or other, reality on the ground became, this is the coding standard you must use, and that’s unfortunate.

[QUESTIONER:] David, that’s not true. The vendors may be taking that position, but we relaxed those standards years ago. As published, they were taken as a minimal guideline. There has never been a prohibition on using state-of-the-art software engineering practices.

[MR. FLATER:] Okay, Brit’s comment was that, in fact, that section of the guidelines was treated as a recommendation or informative in 1990.

[QUESTIONER:] And that’s basically, as I understand it, what you are saying here. We’ll take a benchmark of three years ago, but we are not going to prohibit you from advances that are considered current state of the art.

[MR. FLATER:] Yes. To try to repeat what Brit said, what we’re saying here is we’re setting a benchmark of three years ago, but we’re not going to prohibit you from updating. That is true. What has changed here is that any ambiguity about the status of what was actually written in the guidelines has been removed. There is not going to be a misunderstanding about, well, one, character variable names, are they banned? Or do X&Y coordinates have to be called X under bar, y under bar coordinates or something? That level of requirement has been removed. What’s been retained and expanded and beefed up is the 20 percent of the rules that were in there having to do with software integrity, so those prescriptive rules that are practices that lead to high-integrity software have been retained and beefed up. This should be consistent with best practices. It’s sort of a specialization of best practices for high-integrity software.
[Slide 6]

In addition, what we might call worst practices, things that just have been maligned for many years as a very bad idea, like self-modifying code, those are still prohibited. Defensive programming is required.
[Slide 7]

And we have a question.

[QUESTIONER:] Who defines these? Are they going to be defined in your test criteria? Can you constantly update what is the best practice; what is the worst practice? Who is going to be responsible for identifying those items for the testing labs?
[MR. FLATER:] The question was: Who’s responsible for defining what is ‘best practice’? With the exception of that 20 percent integrity rules that I talked about which are written into the specs still, the best practice in general in terms of software engineering code conventions, what we have are a couple of requirements that say it has to be published, and there’s a definition of what it means to be published in gruesome detail, and it has to be credible, and credible being the tricky one. There was language in the old specification that said published, reviewed, industry-accepted, that was really no better, but credible has a definition that essentially says, you can establish that your coding conventions are credible if you can point to three other organizations that are not voting equipment vendors that have used these same conventions in the past three years. It is a relatively low bar, but it is an objectively evaluatable bar. So, as I described earlier, yes, it would be great if we had some kind of commission that reviewed, on a yearly basis, what the current best practice is, and published a list that said okay, you should use one of the following, but in the absence of a big extra commitment that we don’t have the authority to make, this is the best we can do.

[QUESTIONER:] Okay, and then worst practices? Who defines them? I mean they aren’t always obvious. Suddenly we find out some things that other people consider worst practices that we did not know about.

[MR. FLATER:] The question was: Who gets to define what worst practices are? Most of these are things that have carried down through the history of software engineering as known risk factors for latent software faults and verifiable code. We can argue about the specific cases. There really aren’t that many of them in there, so we can argue about specific cases and discuss in the public comment period.

[QUESTIONER:] So it’s going to be up to the testing lab to determine them?

[MR. FLATER:] Oh, no, no. The question was: Is it up to the testing lab then? No, there’s a list in the document that says self-modifying code is prohibited and a few others.

[QUESTIONER:] On this “best and worst practices,” I would foresee that this would continue kind of the way it has in the past. The EAC has technical reviewers as part of their certification process. And if a lab questions whether or not what a vendor is doing is best practice or worst practice, you submit it to the technical reviewers, and they make the judgment on it. And that’s the end of it. That is kind of the way it worked in the past. You came to the NASED Voting Systems Board. We looked at the situation and made a ruling on it. If it was of general interest, we published a paper on it; otherwise, if it was a specific issue, we would say if you need this, go ahead with it.
[MR. FLATER:] Comment from Brit was, under the NASED process, that manufacturers essentially would submit requests for interpretation about specific practices, and then a ruling would be made by NASED, and I mean the question here: Would these rulings possibly relax and change the things that are written in the guidelines? And the answer is no. We are talking specifically about best practices for software engineering.

[QUESTIONER:] And we let people operate above that base if they wanted to. If there was a question as to were they too far above or not above it at all? We had a mechanism to resolve those kinds of issues. I would think, Brian, that in your certification process, you will have a similar type of situation where you have technical reviewers that when these questions come up, they come in to the EAC, and those technical reviewers make a recommendation, and then the EAC rules on it.
[MR.HANCOCK:] Well, we can certainly do that. But I am hoping that, and I think that there are some better definitions in here now than there were before. So there shouldn’t be the need for as much of that.

[QUESTIONER:] Yeah, we did not have the Software Engineering Institute at Carnegie Mellon back in the good old days. In the guidelines, you don’t have to try to describe exactly what are the best practices or worst practices. You have got certain things that are prohibited. Those are absolute no-nos. But you put in place a mechanism for resolving questions as they come up.

[MR. FLATER:] Okay, Brit made a good point just now that the things I’ve been referring to as worst practices are, in fact, not a moving target. These are things that are simply prohibited and don’t require yearly review. But to try to put the previous conversation on the record, Brit was discussing the NASED process in which questions about software engineering practices would be addressed as they came up with respect to current best practices.

Comment from Brian Hancock was, yeah, we probably still expect to do some of that, but we hope that by making the guidelines more precise, we’ll reduce that burden, and I believe that burden will be reduced also because of the removal of many of the possibly conflicting style guidelines that were in there.
[Slide 8]

[MR. FLATER:] A question is, please explain defensive programming. I have subsequent slides that go into more detail. In a nutshell, this is saying that garbage in, garbage out is not an excuse, that you should, to the extent possible, detect or prevent improper input, whether it be from the user or from a faulty piece of code elsewhere in the system. You should not make assumptions that everyone else is doing their job. You should do diligence on the input you’re given, and if you find something that’s blatantly wrong, you shouldn’t just go with it, you should throw an exception, and this essentially prohibits masking errors. If in fact there is an integrity problem in the system, then it should not get swept under the rug, we need to know about it.
[Slide 9]
 A questions, yes.

[QUESTIONER 1:] What I heard you say was, if there are certain things that are put in that shouldn’t be there, there is a mechanism that would catch it.

[QUESTIONER 2:] Except those 20 percent undervotes-

[QUESTIONER 1:] But if at the beginning of the system when the election officials are designing the ballot and doing the input for what’s going to go on the ballot, are there- I think you called them “defensive systems”- in place to help make sure that you have the most usable ballot design?
[MR. FLATER:] Okay, the question from Jim was, similar to defensive programming, could there be defensive measures in the system with regard to ballot design so that common ballot design blunders would be detected and prevented by the system? And I’ve simultaneously gotten both Barbara Guttman and Sharon Laskowski, and Sharon Laskowski is going to comment.

[MS. LASKOWSKI:] There are two aspects of ballot design. One is what is inherent in the system of what it allows, for example, the placement of instructions in appropriate places that are more usable than in other places- like instructions at the beginning or instructions in san serif font that is easier to read. However, the details of the ballot design for a specific election are up to the election officials, and that is out of our scope for testing in the lab, because you can’t guess what all the different types of ballots will be across the United States. So we have tried to do as much as we could within the usability section on the structure of the ballot. There was not that much we could do with this particular standard in terms of what details to provide.

[MR. FLATER:] So is it a correct summary to say that we’ve done what we can in terms of providing usability guidance, but we can’t intrude on the prerogative of jurisdictions to do design their way?

[MS. LASKOWSKI:] Correct.

 [MR. FLATER:] Okay.

[QUESTIIONER 1:] Are there some ‘shoulds’ in there?

[QUESTIIONER 2:] I have a question, Mary Herrara, New Mexico. Are you going to give any recommendations as far as what design is good? I think this would help the states with ballot counting-

[MS. LASKOWSKI:] I believe the EAC has a document that Design for Democracy put together on ballot design. [Slide 10]
 [MR. FLATER:] So the last comment on this slide was that vendors that use state-of-the-art programming language and standards will have an easier time meeting the requirements.
[Slide 11]
The impact of changes, we resolved this controversy I discussed earlier. There should be more flexibility for manufacturers. There is some pressure being applied to migrate the state-of-the-art programming languages and standards. There is also, because of the beefing up of the integrity-related requirements, we should get more reliable higher integrity of software. The costs of this are that if we have legacy code that isn’t up to the state of the art, it may need to be cleaned up and reinforced to meet the same requirements, and also because there are less prescriptive rules about variable naming stylistic rules that are in there, what’s left is going to require more experience and judgment from the test labs, because we’re dealing with best practices. [Slide 12]

The term COTS, or the acronym COTS, standing for commercial off-the-shelf, because of the way that the entire software field has moved in recent years, for the purposes of this document, it’s most expedient for us to include widely used open source software under the umbrella of COTS, if you will, even though it’s not necessarily commercial. There are certain guidelines that apply with regards to COTS, and certain ones that apply with other kinds of software in the system, and so we’ve just lumped all of the general-purpose, widely available, widely used stuff under the COTS umbrella. Now to clarify some or to address some borderline cases that have come up over the years with regards to the false dichotomy of COTS versus non-COTS, some additional terms have been added.

Application logic is logic from any source that is specific to the voting system, with the exception of border logic. Border logic is what in programming jargon is known as glue code. This is stuff that is produced by programmers to attach the application logic that is developed by the voting system vendor for the voting system to all the code that is going to be reused. And finally, there is another borderline category called third-party logic, which is none of the above. Anytime you hear the phrase modified COTS, it’s not COTS, what it is, is third-party logic. This also includes source code generated by the COTS package.
[Slide 13]

The last thing I’m going to say about this, is that there is no blanket testing exemption for COTS software, okay. I hear this phrase COTS exemption used a good bit. All software in the voting system is subject to black box testing, period.
[Slide 14]
 There is a question, yes.

[QUESTIONER:] On that issue of COTS, does that mean if a vendor comes in using WINDOWS 6.0, that the system is certified to that version of COTS? If they want to use another version of that COTS later, does that require them to put back in for-

[MR. FLATER:] The question was about certification with respect to a particular version of a COTS package. This is, in fact, a configuration management concern. The certification is specific to the software configuration that was tested. If someone wants to use a newer version of a COTS package, this falls under the category of recertification. In this case, you’re not necessarily going to need to perform a complete top-to-bottom retesting of everything. What you’re going to do is a kind of regression testing that has to do with what the impact at that particular change would be. So the cost of recertifying with a newer version of the COTS package would be expected to be considerably lower, but it is a recertification, it gets a new number. Yes.

[QUESTIONER:] Does this also include small devices such as a mouse or keyboard or those types of commercial hardware?

[MR. FLATER:] The question again, about certification of COTS, in this case COTS hardware like a mouse keyword, etc. Again, this is all part of the configuration that is specified by the manufacturer and is certified. This, again, is in the category of what you might call fidley little changes that we might want to make to the system. If you change out any device from the certified configuration, you are technically breaking the configuration or breaking the EAC certification.

Now states, as a matter of practicality, I mean, states are sovereign here. If you want to make a rule that says, well, for our purposes, we’re going to consider all Microsoft-compatible mice to be equivalent, you can do that, but of course, there’s no way someone can certify a configuration they haven’t tested. Incompatibilities can happen. So this again would be a case where ideally you’d have a very quick inexpensive recertification. Okay, here’s another mouse, bing, bang boom, no problems, that mouse works fine, and we issue a new number for it. Yes.

[QUESTIONER:] Well, particularly in the case of say, Microsoft, which is doing service packs- we are now at service pack 3 in XP- is it specific to a service pack or is it that all service packs that come after that are okay if it is still the Microsoft XP?

[MR. FLATER:] Question from Doug Lewis was: Do service packs count as a change? And if we want to go into lots of gruesome detail about this, it gets to the point when I really ought to let the EAC talk about their practices here. My understanding is that, that is a change. A change is a change is a change, and if you change the system, it gets a new number. That’s good configuration management.
[Slide 15]

Archivalness, some people don’t think archivalness is a word, but it’s a word, this is fairly quick and simple. Records in the voting system shall last at least 22 months in temperatures up 40 degrees Celsius, 104 degrees Fahrenheit, and humidity up to 85 percent. [Slide 16]
This dovetails with some other requirements such as in the operations manual, the manufacturer is expected to specify the care and handling precautions you must follow for your removal of media and records to last that statutory 22-month period. In addition, in the testing standard, there’s a requirement for the test labs to review the specifications, the data sheets, for these media that the vendor has specified to ensure that they are, in fact, supposed to survive this long under the conditions that they’re being used under.
[Slide 17]

This is responsive to complaints about thermal paper going off. You know, anecdotes are anecdotes, but some of them sound pretty bad. So we have specified the ambient conditions, and end users should not have to resort to extreme measures to preserve records for the 22-month period. And we would expect that there should be additional scrutiny now to ensure that the materials and media being used will, in fact, last the 22 months that is required.
[Slide 18]
[NARRATOR:] Additional explanatory presentations on the Voluntary Voting System Guidelines can be accessed from the Web site: vote.nist.gov.

* Certain commercial entities, equipment, or materials may be identified in this presentation in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

Core Requirements Part 4

