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Abstract

Along with increases in the level of research activity surrounding sensor placement
and event detection algorithms come greater needs for realistic datasets. In particular,
realistic water network models are hard to obtain. Utilities are justifiably reluctant
to release their models because of security concerns. The result is that all too many
papers have presented algorithmic work evaluated only on networks with fewer than
100 nodes.

In this paper, we explore the idea of “morphing” a water distribution network in
order to defeat state-of-the-art layout reconstruction methods. Specifically, we solve
the problem of finding new lengths and diameters for the pipes that are maximally dif-
ferent from the original parameters, subject to the constraint that travel times through
the network are approximately preserved. The resulting networks are appropriate for
evaluating sensor placement algorithms, but otherwise have strange characteristics.
For example, some pipes may be extremely long or short, and the pressures and heads
may be quite confusing to an adversary attempting to identify the network. We give
results for small networks and discuss the challenges of scaling our algorithm up to
larger networks.

1 Introduction

Most published research on water distribution system sensor placement and source in-
version problems has focused on small networks such as the EPANET example datasets.
It is hard to judge the applicability of such work to real networks. It would be beneficial
to the water security community if large, realistic datasets were in the public domain
and available for experimentation. However, such datasets are proprietary information
of water utilities, and releasing them could have national security consequences.

In this paper we present what is, to our knowledge, the first attempt to produce
morphed water distribution networks. These networks are based on real networks,
but are “morphed” in such a way to hide the identity of the original, while approx-
imately maintaining properties useful to researchers studying sensor placement and
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event detection. Our morphing model changes the lengths and diameters of pipes,
while approximately preserving the travel time of water packets along the pipes. The
resulting network confounds the state of the art multidimensional scaling algorithms
that an adversary might use in an attempt to lay out the nodes and identify the original
network.

This work does not change the topology of the original network, and thus is probably
not yet sufficient to produce safely sharable networks with no security risk. Rather, it
represents a first step in this direction.

2 Background

The “coordinates” section in an EPANET [7] input file is not used in hydraulic or water
quality computations. In many cases, these original coordinates clearly identify the
city, as node locations are constrained by geography. For example, the course of a river
flowing through a city is traced out by the nearby water disribution system nodes, and
often the shape of the city itself is clear. Any secure network data derived from a water
distribution model clearly would not contain the original coordinates. Furthermore,
simply removing the “coordinates” section or including obfuscated coordinates is not
sufficient. There is free software based on a technique called multi-dimensional scaling
that uses optimization to compute coordinates for the nodes of a network, given a set
of lengths of the edges in the network. For example, XGvis [2] is a multi-dimensional
scaling package that is accessible from the “GGobi” visualization software. of Swayne,
Cook, and Buja [8].

As we will see in Section 4, XGvis does a credible job of reproducing the network
layouts of some small networks, even using its default settings. There are many XGvis
parameters that can be varied, and we assume that a knowledgeable adversary would
be able to use tools like this to identify the city of any water distribution network that
leaked into the public domain with the original pipe lengths intact.

3 A Morphing Model

Sensor placement researchers use both hydraulic and water quality simulations to gen-
erate data for their optimization models. The hydraulic characteristics of a network
determine flows and velocities of water throughout the network during several dis-
crete flow patterns, then water quality simulations use this information to simulate the
propagation of water. Given a source of contamination, these simulations track the
concentration of contaminant as it travels.

3.1 Modeling Assumptions

Sensor placement optimization models require data concerning the impact of contam-
ination in a network over large sets of contamination scenarios, or events. These data
are gathered by running many water quality simulations, each of which as a defined
source (or sources) of contamination, an injection strength, and an injection duration.
For this paper, we assume that the travel times of contaminated water packets through
pipes determine, for each water quality time step, what concentration of contamination
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arrives at a node. For a given path between a contamination source and a node, we
assume that if travel times can be preserved during the morphing process, then the
amount of contaminant reaching that node from the source at each time step will be
preserved as well.

Thus, our goal is to preserve travel times through the network during the morphing
process. Furthermore, since we are interested only in contaminant transport during
water quality simulations, we are willing to sacrifice hydraulic intuition in achieving this
goal. For example, it is acceptable for the morphed network to have negative pressures
or heads. In order to obfuscate the network, it is acceptable, and even desirable to
have pipe dimensions that are quite unusual.

3.2 The Formulation

The Darcy-Weisbach formula relates head loss along a pipe (he) to flow along that edge
(qe) as follows:

he = pe

le

d5
e

q2
e .

Our strategy is to simultaneously vary the lengths and diameters of all pipes in order
to maintain this relationship between head loss and flow at each. Assuming that the
hydraulic simulation of a network model is based upon the Darcy-Weisbach formula,
our morphing procedure is:

• Find a spanning tree of the water network. This is a set of connections (pipes,
valves, pumps) such that there is exactly one path from any vertex (junction,
reservoir, tank) to any other vertex.

• Find the fundamental cycles of that spanning tree. Each non-tree connection
forms a fundamental cycle with the unique path in the spanning tree that connects
its endpoints.

• Change the lengths and diameters of the pipes in order to make all of the funda-
mental cycles as nearly equal in length as possible, while enforcing flow and head
loss conservation, and while approximately maintaining the travel times along
pipes during water quality simulations.

The intuition behind our model is that some fundamental cycles are naturally quite
long, while others are very localized. Our model upsets this natural situation by forcing
all cycles to be approximately the same length. The result is a new set of pipe lengths
and diameters that are radically different from the originals, yet the preserved Darcy-
Weisbach relationships between head loss and flow approximately preserves water travel
times.

This process is implemented by a nonlinear optimization model, which uses the
following notation:

• edge: a connection (a pipe, valve, or pump)

• V: the set of all nodes in the network

• R: the set of tanks and reservoirs in the network

• P: the set of pipes in the network

• l′e: the original length of edge e.
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• d′e: the original diameter of edge e.

• q′e: the original flow along edge e.

• h′

e: the original head loss along edge e.

• h′

v : the original head at node v.

• τ ′

e: the original travel time along edge e.

• le: the length of edge e.

• de: the diameter of edge e.

• qe: the flow along edge e.

• he: the head loss along edge e.

• hv : the head at node v.

• τe: the travel time along edge e.

• B: the set of edges not in the spanning tree

• Cb: the set of edge in the fundamental cycle formed by b ∈ B.

• N(v): the neighbors of node v

• dv : the demand at node v.

• pe: the Darcy-Weisbach proportionality constant for pipe e.

• MC : the maximum length of a fundamental cycle: maxb∈B{l(Cb)}

• Ps,t: the path from s to t in the spanning tree.

• a: π
4

Given these definitions, the model is as follows:

(MORPH) minimize
∑

b∈B

(MC − l(Cb))
2
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dv +
∑

e∈N(v) qe = 0 ∀v ∈ V
∑

e∈Cb
he = 0 ∀b ∈ B

∑

e∈Cb
he = 0 ∀b ∈ B

he = pe
le
d5

e
q2
e ∀e ∈ P

q(i,j)
∑

(x,j)∈P
q(x,j)

=
q′
(i,j)

∑

(x,j)∈P
q′
(x,j)

∀e = (i, j) ∈ P

τe = aled2
e

qe
∀e ∈ P

τe = τ ′

e ∀e ∈ P
∑

e∈Ps,t
he = hs − ht ∀s, t ∈ R

The first set of constraints enforces flow conservation; the second set enforces energy
conservation (head loss around each cycle is zero); the third set enforces the Darcy-
Weisbach formula; the fourth conserves the flow ratio (flow of pipe e with respect to
total flow into e’s destination). The fifth set of constraints defines travel time along edge
e, and the sixth preserves travel times. Finally, the seventh set of constraints preserves
head loss between water sources (tanks and reservoirs). Note that the equalities in this
model are implemented as near-equalities, with tolerances.

The actual implementation was slightly more complicated than the MORPH model
above. For example, pump curves coefficients were modeled, the flows and head losses
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of valves were held invariant, the flows along each connection were broken down into
direction and magnitude, and there were bounds on the extent to which lengths, di-
ameters, and flows could change. We also included a constraint that maintained the
original head loss along paths connecting water sources such as reservoirs.

The model was tested on small EPANET example networks and a suite of simple
rectangular grid networks. We used AMPL [4] to compute the spanning tree and funda-
mental cycles of the input network, and to construct the optimization problem. AMPL
invoked the IPOPT [9] nonlinear solver to compute new pipe lengths and diameters.

Since the Darcy-Weisbach formula is highly non-linear, the optimization problem
is difficult to solve, and IPOPT often would not converge to a solution for inputs with
thousands of nodes. However, we have a reformulation of MORPH on which IPOPT
may perform better. That reformulation is not reported in this paper, though. In
Section 4, we report our preliminary results on networks of roughly 100 nodes.

3.3 Datasets

We present results for two different datasets: a 10× 10 grid network, and the 97 node
“EPANET example 3.” The former consists of 101 nodes: a single reservoir at an
elevation of 1500 feet, and 100 junctions. The latter are numbered in row-major order
(English reading order) and have monotonically decreasing elevations. These start from
1000 feet, and decreasing by half a foot per vertex. The reservoir is the single source
of injection, and demands are randomly distributed among the 100 grid vertices.

Our second dataset is the 97 node “EPANET example 3.” This network has 92
nodes, two reservoirs, three tanks, 117 pipes, 2 pumps, and no valves. There are 59
nodes with non-zero demands.

4 Results

We carried out the morphing process on each of the two datasets, then explored the
ability of multidimensional scaling software to reproduce the network drawing using
only pipe length information. These visual results are presented in Section 4.1 below.
Next, we ran sensor placement algorithms from [1] on both the original and morphed
versions of the networks. These results are presented in Section 4.2 below.

4.1 Visual Results

Consider Figures 1 and 2. The (a) pane of each figure shows the result of applying
XGvis multidimensional scaling (with default settings) to the original network and
visualizing the result using GGobi. In each case, the result is good enough to identify
the original network. The (b) panes of these figures show the result of applying the
identical tools to networks with new pipe lengths and diameters determined by our
MORPH model. In both cases, the new lengths confound multidimensional scaling
and the original network layout remains hidden.
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(a) (b)

Figure 1: A simple grid network drawn with coordinates obtained from multi-dimensional
scaling with (a) the original pipe lengths, and (b) the morphed pipe lengths

4.2 Computational Results

The motivation for morphing is to provide datasets that do not betray their location,
yet behave much like the originals during water quality simulations. We compared the
performance of our original and morphed networks using the SPOT [5], software tool
for running large ensembles of water quality simulations and using the results to find
sensor layouts that minimize the impact of contamination events.

For the both networks, we generated contamination event ensembles as follows.
For each of four different starting times throughout the day (3am, 9am, 3pm, and
9pm), we ran 59 water quality simulations – one for each non-zero demand node. The
grid network had only one flow pattern: gravity flow from the high ground to the low
ground. The EPANET example had four flow patterns. We used TEVA [? ] to control
the runs of our water quality simulations, and SPOT [5] to generate files containing
sequences of node hits (contamination events) and the assocatied network-wide impact
at the moment of those hits. After computing the impacts, we ran the PICO [3] solver
that is included with SPOT to find optimal sensor placements that minimize impact
across all contamination events. SPOT allows the user to select many variations of
this objective, and we chose to minimize the expected impact (as opposed to the worst
case, etc.).

We explored two different types of impact values: contaminant mass consumed in
generic units (e.g. cells for a biological contaminant), and population exposed to sickness
in people, according to the model of [6]. Given a budget of 5 sensors per network, we
generated optimal solutions for each network and impact type.

Our computational results are found in Figures 3 and 4. Although the actual travel
times of contaminated water do not match the predictions made by MORPH, these
are sufficiently similar to obtain similar impacts for similar contamination events.
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(a) (b)

Figure 2: The 97 node ’EPANET example 3’ network drawn with coordinates obtained
from multi-dimensional scaling with (a) the original pipe lengths, and (b) the morphed pipe
lengths

Note the for the EPANET example, the optimal solution, given our modeling as-
sumptions, is equivalent in the original and morphed networks. The sensor locations
themselves were very close, as in this example small differences in node identifier indi-
cate close proximity. The symmetry of the grid network makes it more likely that many
sets of sensor locations may produce good results, and indeed, our sensor locations for
the morphed model differ significantly with those for the original. However, the objec-
tive values realized by these two solutions are within 2% of one another, indicating that
the spread of contamination is comparably responsive to 5 sensors in each network.

Network Objective Value Events × Witnesses Sensor Locations
Original mass consumed 2566995 40400 56 61 76 4 16
Morphed mass consumed 2539625 40400 83 65 68 76 41

Original population exposed 53.84 40400 47 79 56 61 12
Morphed population exposed 53.84 40400 9 100 5 12 25

Figure 3: Sensor placement results for the grid network. The “Value” (objective value)
and “Events × Witnesses”columns indicate that contaminant spread in the morphed model
follows roughly the same pattern as it does in the original. The latter column counts the
number of nodes that experience nonzero concentration, summed over all events. Since there
are symmetries in this network and only one flow pattern, many different sensor placements
can achieve an optimal solution.
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Network Objective Value Events × Witnesses Sensor Locations
Original mass consumed 4001568153000 7731 2 4 59 71 81
Morphed mass consumed 3725635521186 5201 2 14 59 70 81

Original population exposed 329.68 7731 2 4 14 59 75
Morphed population exposed 435.47 5201 2 4 15 59 81

Figure 4: Sensor placement results for the 97 node EPANET example 3 network. With
the more complicated, varying flow patterns in this network, the morphed model does not
match the contaminant spread properties of the original network as closely as with the grid
network. However, these patterns are sufficiently similar to achieve nearly identical optimal
sensor placements (in this network, similar node id’s indicate nodes in close proximity to
each other).

5 Conclusions

We have presented a nonlinear optimization model to morph water distribution net-
work models by altering their pipe lengths and diamaters. For two small datasets,
we have demonstrated that the original layouts cannot be determined from morphed
networks using methods that do reconstruct the layouts, given the original network
models. Furthermore, we found that the patterns of contaminant impacts during wa-
ter quality simulations are sufficiently similar that sensor placements computed based
on simulations on morphed networks are similar to those based on the original network.

It remains to be shown that this technique is scalable to large inputs. Better use
of IPOPT may achieve this goal.

Along with sanitized node and pipe identifiers, this morphing technique is a first step
toward securely sharable, yet realistic water network data for evaluating algorithms.
We hope to spur a new sub-area of research within the water community to augment
this work. Eventually, we hope to see realistic water network data more widely available
to algorithm researchers.

Before we would recommend sharing data derived from real network models, further
work should be done on network equivalence. Our MORPH model makes predictions for
travel times that are not always realized, so modeling improvements may be necessary.
Also, for security purposes, the network topology should be modified in such a way
that is is structurally different from the original, yet retains similar impact patterns
during water quality simulations.
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