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Summary

The traditional fully stressed method performs satisfactorily
for stress-limited structural design. When this method is
extended to include displacement limitations in addition to
stress constraints, it is known as the fully utilized design (FUD).
Typically, the FUD produces an overdesign, which is the
primary limitation of this otherwise elegant method. We have
modified FUD in an attempt to alleviate the limitation. This
new method, called the modified fully utilized design (MFUD)
method, has been tested successfully on a number of
problems that were subjected to multiple loads and had both
stress and displacement constraints. The solutions obtained
with MFUD compare favorably with the optimum results that
can be generated by using nonlinear mathematical program-
ming techniques. The MFUD method appears to have allevi-
ated the overdesign condition and offers the simplicity of a
direct, fully stressed type of design method that is distinctly
different from optimization and optimality criteria formula-
tions. The MFUD method is being developed for practicing
engineers who favor traditional design methods rather than
methods based on advanced calculus and nonlinear mathemati-
cal programming techniques. The Integrated Force Method
(IFM) was found to be the appropriate analysis tool in the
development of the MFUD method. In this paper, the MFUD
method and its optimality are examined along with a number of
illustrative examples.

Introduction

The fully stressed design FSD method (ref. 1) which is based
on a simple stress-ratio approach, is an elegant design tool that
is popular across the civil, mechanical, and aerospace engineer-
ing industries. However, the FSD is useful only for stress-
limited designs; it cannot properly handle the displacement
limitations that have become typical design constraints of
modern structures. When FSD is extended to handle situations

with both stress and displacement constraints, it is called the
fully utilized design (FUD). Two steps that are required to
obtain the FUD are (1) generate the FSD for stress constraints
only, and (2) then uniformly prorate it to obtain the FUD. The
constant proration factor is obtained to satisfy the single most
infeasible displacement constraint. Although the FUD thus
obtained is feasible, it can be an overdesign, which is the primary
limitation of the otherwise elegant design method. At present,
a direct design method to efficiently handle both stress and dis-
placement constraints is not available. Moreover, sustained
effort to improve FUD has not been reported in the literature.
Instead of developing a simpler tool, the designers of the 1960’s
were complicating the approach by applying nonlinear mathe-
matical programming techniques of operations research
(refs. 2 to 8) and Langrangian-based optimality criteria meth-
ods (refs. 9 to 11). Some success has been achieved in design
optimization; however, these techniques can be  computationally
intensive, and convergence difficulties are frequently encoun-
tered, even for modest problems (refs. 12 and 13). Despite these
limitations, design optimization is popular in academia and is
being improved and promoted for industrial applications, espe-
cially since there is no alternate design tool that effectively
handles both stress and displacement constraints. These opti-
mization methods, to a certain extent, have yet to mature and
become a standardized design tool for utilization by practicing
engineers. Imagine the distress of these engineers at finding
that design has been made more complex by the introduction of
advanced calculus and variational techniques, without a com-
parable benefit. Although design optimization is analytically
elegant, a simpler alternative, such as FSD/FUD, need not be
abondoned, especially for routine and practical engineering
design. Further research and development needs to be done
on direct design methods that do not employ mathematical
programing techniques.

This paper outlines the development of a simple FSD/FUD
type design tool that can handle both stress and displacement
constraints simultaneously. The proposed design tool is called
the modified fully utilized design (MFUD) method. In its
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simplicity, MFUD is comparable to the FUD method, yet it
alleviates the overdesign limitation that has been associated
with the traditional FUD technique. When tested on a number
of problems, MFUD produced solutions comparable to those
generated by design optimization methods. At this early stage,
MFUD has been developed for two- and three-dimensional
trusses with linked member areas as design variables. Success-
ful completion of the MFUD method for stress and
displacement constraints will eventually open up an avenue for
the extension of this method to other types of structures and
constraints. The proponents of optimization methods can also
benefit from MFUD by using it to initiate optimization itera-
tions, thereby alleviating some of the computational burden of
such methods.

In this paper the theoretical basis of MFUD is developed and
illustrated for two examples. A summary of MFUD results,
along with optimization solutions for several examples, is
included. The Integrated Force Method (IFM, refs. 14 to 16) is
shown to be an appropriate analysis tool for deriving the MFUD
formulas (see appendix A). An analytical examination of the
optimality of FSD and FUD (see appendix B) is followed by a
discussion.

Design Optimization Problem

Standard nonlinear programming terminology is used to
formulate the design problem for trusses because solutions
obtained by the MFUD method are compared with optimiza-
tion results. The areas of truss members that can be linked for
practical purposes are considered to be design variables. The
structures are subjected to multiple load conditions, and con-
straints are imposed simultaneously on both stresses and dis-
placements. The number of stress and displacement constraints
are denoted by Js and Jd, respectively, with the total number of
constraints being m = Js + Jd. The Js number of stress constraints
can be specified as

  

g j Jj
j

jo
s= − ≤ =

σ
σ
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where σj is the stress in the jth member and σjo is its permissible
value.

Likewise, the Jd number of displacement constraints can be
written as
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where Xj is the jth displacement component and Xjo is its per-
missible value. The stress and displacement behavior con-
straints are feasible provided that gk ≤ 0.

For a truss with n members, the weight can be considered as
the objective function for design optimization, and it can be
written as
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where øi, ρi, and Ai are the length, density, and area of the ith
member of the truss, respectively. The computer code auto-
matically modifies equation (3) for linked design variables, but
that modification is not elaborated here.

Fully Utilized Design

The traditional FUD can be obtained in two steps: (1) gener-
ation of an FSD and (2) uniform proration of the FSD to obtain
the FUD.

An FSD for stress constraints only is generated iteratively by
using a stress-ratio technique that can be written as

  A A R i ni
k

i
k
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σ σ

σ
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where Ai
σ,k is the area of the ith member at the kth iteration (unit

member areas can be used to initiate the iterations). The factor
Rsi for the ith design variable is determined as
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where σLi represents stress in member i for load condition L,
and σio represents the yield strength of member i. The con-
verged solution of equation (4) is the FSD, designated as {A} fsd.
The FSD technique produces very fast convergence, usually in
about 10 iterations, regardless of problem size.

Prorating the FSD to satisfy the maximum violated displace-
ment constraint yields the traditional FUD for simultaneous
stress and displacement constraints:

A A g A
X

X
fud fsd fsd

o
{ } = { } +( ) = { } 





1 6max
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where {A} fud is the vector of member areas; gmax is the value
of the most violated displacement constraint; and Xmax and Xo
are, respectively, the most violated and the allowable displace-
ment values. The uniform proration factor (1 + gmax) in equa-
tion (6) produces a feasible design. The FUD is likely to be
overdesigned because all member areas have been increased by
the same amount, and it has only one active displacement
constraint.

The overdesign condition associated with the traditional
FUD method can be illustrated by considering displacement
constraints in the design of a five-bar truss (ref. 17) (see
Numerical Examples, Example 3). The FUD method pro-
duces an optimum weight of 62.228 lb, whereas the optimality
criteria method (OC) and the Sequential Unconstrained Mini-
mization Technique (SUMT) yield 45.016 and 45.029 lb,
respectively. In this example, the traditional FUD is 38 percent
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too heavy. For this problem, the proposed MFUD produced a
weight of 44.817 lb; this is, respectively, 27.98, 0.44, and 0.47
percent lighter than the weights produced by the FUD, OC, and
SUMT methods. In the comparison of MFUD and optimization
results, more than one optimizer is used because the perfor-
mance of such methods can be problem-dependent, as is shown
in reference 12.

Modified Fully Utilized Design

The MFUD for simultaneous stress and displacement con-
straints can be obtained iteratively as follows:

Step (1): Identify the design variables to initiate the MFUD
iterations. The first MFUD iteration can begin from the
FSD {A} fsd (see eqs. (4) and (5)). For subsequent iterations, the
areas for stress constraints can be obtained from

  
A

F
i ni

i

io
=

( )
=max , , , ( )

σ
1 2 7K

where (Fi)max is the maximum force in the ith member for all
load conditions. This strategy ensures that the final MFUD is
not biased towards the initial FSD, {A} fsd.

Step (2): Identify the vq number of violated displacement
constraints{D} = { gv1, gv2,  . . . , gvq} for the design obtained in
step (1).

Step (3): Update the design independently for each of the vq
violated displacement constraints contained in set {D}. (See
the section Identification of Subset of Design Variables for
a Violated Displacement Constraint,  which shows how only
a few design variables need to be updated to satisfy a violated
displacement constraint.) Let the number of design variables
that should be updated to satisfy a violated displacement
constraint gvr be qt (where qt ≤ n is the total number of design
variables). The design update rule for the qith design variable,
then, is

  
A A g qi q q qtqi

vr
qi
fsd

qi
vr

vr= +( ) =ξ 1 1 2 8, , , ( )K

where ξqi
vr ≤ 1.0 is a weighted parameter (see the section

Member Weighted Parameter). The design variables in the
MFUD method are updated independently, in contrast to uni-
form proration in case of the traditional FUD method.

Step (4): Repeat step (3) for all vq numbers of the violated
displacement constraints to obtain vq design subsets ({A} vi,
for vi = v1, v2, . . . , vq).

Step (5): Obtain the design update for the structure as the
union of the vq designs

  A A A Amfud v v vq{ } = { } { } { }1 2 9U U KU ( )

In the union process, the maximum value should be selected in
case of member duplication.

Step (6): Repeat steps (1) to (5) until the design converges.
The converged design will satisfy both stress and displacement
constraints. A minimum weight condition is not explicitly
imposed in the MFUD method; however, as will be shown for
the examples solved, the weight of the design calculated by the
MFUD method is very close to the optimum weight generated
from optimization methods.

The number of design variables qt that are associated with a
violated displacement constraint and the weighted parameter
ξqi

vr (see eq. (8)) for each design variable can be easily identi-
fied when the IFM (refs. 14 to 16) is used as the analysis tool.
The derivation of these two parameters is discussed next.

Identification of a Subset of Design Variables for a Violated
Displacement Constraint

The subset of design variables qt directly associated with a
violated displacement gvr can be identified by examining the
displacement-force relationship of IFM (see appendix A):

X J G F{ } = [ ][ ]{ } ( )10

where {X} is the nodal displacement vector; [J] = m rows of
[S]–T, with [S] being the governing IFM matrix; [G] is the
diagonal flexibility matrix; and {F} is the internal force vector.

Because of the banded nature of matrices [J] and [G], for a
single displacement component Xvr, equation (10) can be
expanded as
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The displacement component Xvr is an explicit function of the
subset of member areas referred to by indices q1, q2, . . . , qt in
equation (11). Thus it is sufficient to update qt design variables
to satisfy the violated displacement constraint gvr. Repeating
this process identifies the critical members for each violated
displacement constraint in set {D}.

Member Weighted Parameter

Instead of a uniform proration of all the design variables in
the subset qt for a violated constraint gvr, individually weighted
parameters are calculated for each design variable. The deter-
mination of individually weighted parameters is illustrated by
the example of a 10-bar truss with a violated displacement
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constraint at its tip—node 3 along the transverse direction
shown in figure 1. In this example, the violated tip displacement
can be satisfied more effectively by increasing the area of the
members nearest the support, such as members 1 and 5 in fig-
ure 1, rather than the areas of those nearest the free end, such as
members 3 and 10. The weighted parameters bias the design in
favor of support members 1 and 5. These parameters can be
selected by examining the sensitivities of the violated displace-
ment constraints. The sensitivity of violated displacement Xvr
with respect to member area Aqi

vr can be obtained via the IFM
(ref. 19) (see appendix A) as

  

∂
∂

X
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F
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qi
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For the 10-bar truss example, the displacement sensitivities
for the four members (i.e., 1, 3, 5, and 10) are

∂
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Equations (13) show that tip displacement is most sensitive to
member areas 1 and 5 (near the support) and least sensitive to
member area 3 (close to the tip). Overall, selecting a proration
factor proportional to the sensitivities is adequate in satisfying

a violated displacement constraint. The weighted parameter for
the qith member area can be considered proportional to the
negative gradient of the violated displacement Xvr with respect
to the member area  Aqi

vr.
To safeguard against an overdesign, the weighted parameter

should also be biased against long members with higher densi-
ties. Such a condition can be imposed from the gradient of the
objective function W with respect to member area Aqi:

  

∂
∂

W

Aqi
vr qi qi= ρ l ( )14

The gradients of the objective function with respect to
member areas 1, 3, 5, and 10 (weight density for all members
is 0.1 lb/in.3) are
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The weighted parameters can be considered inversely propor-
tional to the gradient of the objective function.

Equations (12) and (14) can be combined and normalized to
obtain the weighted parameter for the qith member area:
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Although displacement and weight sensitivities are used in the
derivation of equation (16), their calculations require trivial
computational effort since the force vector {F} and displace-
ment coefficient matrix [J] are available from analysis.

The final normalized weighted parameters for member areas
1, 3, 5, and 10 of the 10-bar truss are

ξ ξ

ξ ξ

1
3

5
3

3
3

10
3

1 000 0 962

0 059 0 216

= =

= =

. .

( )

. .

( )

members near the support

members near the free end

(17)

Figure 1.—Ten-bar truss (members are circled, nodes are
not).
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The area for the qith member of the vrth violated displace-
ment constraint can be updated by using the following formula:

  
A A t g qi q q qtqi

vr
qi
fsd

qi
vr

p vr= +( ) =ξ 1 1 2 18, , , ( )K

The preceding equation is identical to equation (8) except for a
step length tp < 1. The step length restricts member areas against
rapid changes, for which the current analysis may no longer be
valid. Default step lengths of tp = 0.5 for constraint violations
exceeding unity (i.e., gvr ≥ 1.0) and tp = 0.25gvr for other
constraint violations were found satisfactory for most problems
that have been solved.

The design obtained from equation (18) for the displacement
component Xvr is designated by the vector {A} vr. Likewise,
areas can be obtained for all vq of the violated displacement
constraints contained in set {D}. The union of the vq area
subsets produces the area vector {A} mfud-x for the truss. This
area is then compared with the area for stress constraints
(eq. (7)), and the final MFUD area {A} mfud for a kth iteration is
obtained as

  
A A A i ni

mfud
i
fsd

i
mfud x= [ ] =−max , , , , ( )1 2 19K

The MFUD iterations are continued until convergence is
achieved for both stress and displacement constraints.

Numerical Examples

The MFUD method was applied to a number of examples.
The solutions are compared with those obtained by the tradi-
tional FUD method and with the optimum solutions generated
by several optimization algorithms, such as SUMT (ref. 20);
Sequential Quadratic Programming, SQP_IMSL (ref. 21); FD
(ref. 22); and OC (ref. 9). The MFUD process is illustrated in
detail here for the first two examples, a three-bar truss and a
cantilevered truss, under a wide range of linked displacement
constraints. For other examples, only the final results (summa-
rized) are presented.

Example 1: Three-Bar Truss

A three-bar truss with Young’s modulus E = 30 000 ksi,
density = 0.10 lb/in.3, and allowable strength σo = 20 ksi is
depicted in figure 2. The truss is subjected to two load condi-
tions; the first has two load components (Px = –50 kips and Py
= –100 kips), whereas the second has only one component (Px
= 50.0 kips). The truss has 10 behavior constraints, consisting
of 3 stress and 2 displacement constraints (at node 1,
X1x ≤ 0.2 in. and  X1y ≤ 0.05 in.) for each load case. The optimum
solution for the three-bar truss was generated by using three

optimizers: SUMT, FD, and OC. Initial designs of unity were
used for all design methods. The SUMT and FD optimizers
converged to optimum weights of 100.07 and 99.95 lb, respec-
tively, whereas the OC optimizer generated a slight overdesign,
reflected in a weight of 101.33 lb. The FSD (for stress con-
straints only), as determined by the stress-ratio technique, gave
A1 = 1.182, A2 = 2.504, and A3 = 3.533 in.2  The FSD violated
one displacement constraint (X1y) under the first load condi-
tion. The traditional FUD, which satisfied the violated con-
straint, gave  A1 = 1.574,  A2 = 3.336, and A3 = 4.706 in.2 The
FUD had only one active displacement constraint and was
overdesigned by 22.2 percent, with a weight of 122.182 lb.

The MFUD for the truss converged to an optimum weight of
99.97 lb (see table I). The MFUD results compare well with
those generated by SUMT, FD, and OC optimizers (see
table II). The MFUD, SUMT, and FD methods yielded identi-
cal numbers of active stress and displacement constraints;
however, the OC method produced only one active stress
constraint (a one-fifth of 1-percent constraint thickness is
considered active). Overall, the MFUD method performed
satisfactorily for this problem.

The convergence characteristics of MFUD, along with those
for SUMT, FD, and OC are depicted in figure 3. MFUD
converged rapidly and monotonically in 24 reanalysis cycles
that included the 12 reanalyses to obtain the FSD. The conver-
gence characteristics for FD were rather uneven, requiring 47
reanalysis cycles to reach the optimum solution. SUMT and OC
solutions required 62 and 80 reanalysis cycles, respectively.

Figure 2.—Three-bar truss (members are
   circled, nodes are not).
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42
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TABLE I.—THREE–BAR TRUSS RESULTS FOR A FEW
MFUD ITERATIONS

Iterations Weight,
lb

Member area, in. 2 Violated
constraint,

X1y

A1 A2 A3
a0
 1
 2
 10
 14 (final)

91.714
93.770
94.669
99.000
99.966

1.182
1.179
1.149
1.100
1.088

2.502
2.710
3.042
3.673
3.841

3.533
3.534
3.445
3.330
3.265

0.3322
.2626
.2131
.0329
.0009

a
Represents FSD.
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Example 2: Cantilevered Truss With Stress and a Sequence
of Displacement Constraints

The 10-bay cantilevered steel truss shown in figure 4 is the
second example. The truss has 22 nodes and 50 members. It is
made of a material with a Young’s modulus E = 30.0×106 psi,
a weight density ρ = 0.289 lb/in.3, and an allowable strength
σo = 20×103 psi. The truss is subjected to two load conditions.
The first is a single load of 100 kips at node 22 along the nega-
tive y-direction. The second is a load of 10 kips applied at all
nodes along the top chord (i.e., node numbers 4, 6, . . . , 22; see
fig. 4). Stress constraints are considered for all 50 bars—100
stress constraints for both load conditions. Displacements along
the transverse direction are specified at the free end (nodes 21

and 22) as well as at the center span (node 11). The magnitude of
the center span displacement is specified to be a quarter of the
tip displacement. The tip displacement is a parameter that
changes, ranging in magnitude between 0.05 and 1.5 in. The
stress constraints dominate the design only when the magni-
tude of the tip displacement exceeds 1.4 in. When displace-
ments are less than 1.4 in., both stress and displacement become
active constraints. Constraint activities of final designs ob-
tained with MFUD, FUD, FD, and SQP_IMSL are given in
table III for three design situations (tip displacements of 0.5,
1.0, and 1.5 in.).

Optimum weights obtained by MFUD, FUD, and FD methods
were normalized with respect to the weight obtained by the
SQP_IMSL method, which performed best for the entire dis-
placement range 0.05 ≤ δ ≤ 1.5 (see fig. 5). Notice the following
observations from figure 5 and table III. The MFUD method
performs adequately for the entire displacement range, with the
error not exceeding 2 percent of the optimum solution gener-
ated by SQP_IMSL. In contrast, the maximum error in the weight
obtained by the FUD method was about 26 percent. When
stresses dominated the design (i.e., displacement values
exceeded 1.4 in.), the FD optimizer produced a 4-percent over-
design, but MFUD, FUD, and SQP_IMSL converged to the
correct optimum. In other words, the traditional FUD method
exhibited an overdesign condition when the displacements were
active constraints, but converged to the correct solutions when
the displacements became passive constraints, that is, at the FSD
condition. Optimizers SQP_IMSL and FD, and the MFUD
method provided the same number of active displacement con-
straints for the entire displacement range (see table III). The
MFUD method, however, produced a greater number of active

TABLE II.—THREE-BAR TRUSS: RELATIONSHIP OF ACTIVE STRESS AND
DISPLACEMENT CONSTRAINTS TO OPTIMUM DESIGN

Design
method

Weight,
lb

Member area, in. 2 Number of active
constraints

Number of
reanalyses

A1 A2 A3 Stress Displacement

MFUD
FUD
SUMT
FD
OC

99.97
122.18
100.07
99.95

101.33

1.088
1.574
1.088
1.092
1.053

3.841
3.336
3.848
3.855
3.913

3.265
4.706
3.267
3.250
3.345

2
-
2
2
1

1
1
1
1
-

24
10
62
47
80

Figure 3.—Convergence history of three-bar truss.
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Figure 4.—Cantilever truss (members are circled, nodes are not). Displacement limitation 
   d at center is one-fourth of that at the end.
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stress constraints. For example, when the displacement limita-
tion was 0.5 in., the number of stress constraints produced by
MFUD, SQP_IMSL, and FD were 4, 2, and 0, respectively. For
this problem, the MFUD method produced results equal or
superior to the FUD method for all three displacement limita-
tions (0.5, 1.0, and 1.5 in.), as shown in table III. A comparison
of the weights obtained by the MFUD method and the
SQP_IMSL optimizer shows that  SQP_IMSL outperforms
MFUD by 1.8 percent at a displacement of 0.5 in. and by
0.2 percent at a displacement of 1.5 in. When the displacement
value is 1.0 in., the MFUD weight is better than the SQP_IMSL
weight by 0.69 percent.

Example 3: Five-Bar Truss
The five-bar aluminum truss (refs. 17 and 18) depicted in

figure 6 was subjected to a single load and had a single displace-
ment constraint in the transverse direction at node 4. The design
parameters obtained by the four methods are summarized in
table IV. For this truss, MFUD produced results slightly superior
to SUMT and OC. The traditional FUD produced a design that
was 39 percent too heavy.

Figure 5.—Weight normalized with respect to SQP-IMSL
   as a function of displacement constraints of a cantilever
   truss
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Figure 6.—Five-bar truss (members are circled, nodes are
   not).
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TABLE IV.— FIVE–BAR TRUSS DESIGN
RESULTS

Results MFUD FUD SUMT OC
Optimum weight, lb
Member area, in. 2

  A1

  A2

  A3

  A4

  A5

Active displacement
constraints

44.817

0.001
1.475
0.001
2.124
0.001

1

62.228

1.068

      ▼

1

45.029

0.001
1.501
0.001
2.119
0.001

1

45.016

0.001
1.499
0.001
2.120
0.001

1

Example 4: Tapered Five-Bar Truss
The tapered five-bar steel truss (ref. 23) shown in figure 7

was subjected to two load conditions and had five stress and two
displacement constraints for each load condition. The attributes
of the designs generated by the four methods are summarized
in table V; all the optimum weights are in good agreement. The
MFUD method produced five active constraints, whereas SUMT
and OC produced three and four active constraints, respectively.

TABLE III.—CANTILEVERED TRUSS:
RELATIONSHIP OF ACTIVE CONSTRAINTS TO
OPTIMUM WEIGHT OF TRUSS AT VARIOUS

DISPLACEMENTS
Design method Number of active

constraints
Weight,

klb
Stress Displacement

At d = 0.5 in.a

MFUD
FUD
FD
SQP_IMSL

4
-
-

2

2
1
2
2

4.701
5.855
4.669
4.618

At d = 1.0 in.
MFUD
FUD
FD
SQP_IMSL

23
--

20
21

1
1
1
1

2.521
2.928
2.540
2.538

At d = 1.5 in.
MFUD
FUD
FD
SQP_IMSL

44
44
25
41

-
-
-
-

2.196
2.196
2.279
2.191

a
d = tip displacement.
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Example 5: Ten-Bar Truss
The popular 10-bar truss (ref. 17) depicted in figure 1 was

subjected to a single load and had 10 stress and 4 displacement
constraints. Table VI summarizes the design results
obtained by the four methods. MFUD produced a weight
2 percent higher than that generated by the SUMT optimizer.
The design generated by the traditional FUD, however, was
13 percent heavier than the SUMT optimum design weight.

Example 6: Tapered Ten-Bar Truss
The tapered 10-bar aluminum truss (ref. 23) depicted in

figure 8 was subjected to two load conditions, each with 10
stress and 4 displacement constraints. Table VII presents the
design results produced by the four different methods. For this
example, SQP_IMSL provided the best optimum weight; SUMT
and MFUD designs were 0.1 and 0.4 percent heavier, respec-
tively. The active constraints for MFUD, SUMT, and
SQP_IMSL numbered 5, 7, and 7, respectively.

Figure 7.—Tapered five-bar truss (members are circled,
   nodes are not).

75 in.

y
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1

100

50

x

400300200100 2

4

325 in.

3

4
1

2

5 50 in.

TABLE V.— TAPERED FIVE–BAR TRUSS DESIGN
RESULTS

Results MFUD FUD SUMT OC
Optimum weight, lb
Member area, in. 2

A1

A2

A3

A4

A5

Active constraints
  Stress
  Displacement

6528.72

27.16
9.37

22.04
11.18
1.63

3
2

6549.67

27.38
9.42

21.91
11.27
1.63

– – – –
1

6541.52

26.23
10.37
21.35
11.91
1.81

2
1

6549.02

26.47
10.33
21.23
11.97
1.46

3
1

TABLE VI.—TEN–BAR TRUSS DESIGN RESULTS
Results MFUD FUD SUMT OC

Optimum weight, lb
Member area, in. 2

A1

A3

A5

A8

A10

Active constraints
Stress
Displacement

5164.11

22.97
0.33

31.50
7.43

21.58

– – – –
2

5741.21

29.11
0.36

28.58
20.78
20.03

– – – –
1

5057.51

23.19
0.55

30.46
7.43

21.64

1
2

5061.86

23.54
0.53

30.86
7.48

21.09

– – – –
2

x
75 in.

6

1

100

y

3

4

162.5 in.

62.5 in.

2

50 in.

162.5 in.

5

8

1

4

2

5
7

3
96 10

Figure 8.—Tapered ten-truss (members are circled,
    nodes are not).

400300200100
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TABLE VII.— TAPERED TEN–BAR TRUSS DESIGN RESULTS
Results MFUD FUD SUMT SQP_IMSL

Optimum weight, lb
Member area, in. 2

A1

A3

A5

A8

A10

Active constraints
Stress
Displacement

3272.64

58.55
2.29

34.87
19.67
5.84

3
2

3350.60

62.49
1.95

35.73
20.11
7.27

– – – –
1

3260.75

55.97
1.98

38.25
21.15
6.78

5
2

3258.26

54.91
2.36

40.07
22.28
5.29

5
2

Example 7: Twenty-Five-Bar Truss
The 25-bar aluminum truss (ref. 7) in figure 9 was subjected

to 2 load conditions, with 25 stress and 6 displacement con-
straints for each load case. The bars’ areas were linked to obtain
8 independent design variables. The attributes for the optimum
design for this truss are summarized in table VIII. SUMT, FD,
and MFUD produced comparable optimum weights; however,
the MFUD weight was 0.23 percent lighter than that of the FD
optimizer. The active constraints for MFUD, SUMT, and FD
were 8, 6, and 8, respectively. The weight generated by the
traditional FUD method was 6.4 percent heavier than that of the
FD optimizer with a single active constraint.
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Example 8: Simply Supported Truss
Figure 10 shows a 10-bay steel truss with 51 members sub-

jected to a single load. All bar areas were considered indepen-
dent variables. The results obtained for 51 stress and 2 midspan
transverse displacement constraints are summarized in table IX.
For this example, the MFUD weight lies between the optimum
weights generated by the FD and SUMT optimizers.

2315

9

8

1

Figure 9.—Twenty five-bar truss (members are circled, nodes
   are not).

78
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3
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25
14
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24

18 19
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5
13

11
10

5

2

4

6
4 75 in.

100 in.

100 in.

200 in.

200 in.
x

y

z

75.0 in.

12

10

20
21

TABLE VIII.— TWENTY–FIVE–BAR TRUSS
DESIGN RESULTS

Results MFUD FUD SUMT FD
Optimum weight, lb
Member area, in. 2

A1

A3

A5

A7

A8

Active constraints
Stress
Displacement

380.26

0.01
2.07
0.01
1.16
1.86

4
4

404.44

0.02
2.27
0.01
1.34
1.72

– – –
1

381.71

0.01
2.06
0.01
1.16
1.88

2
4

381.12

0.01
2.11
0.01
1.17
1.83

4
4

5

61

4

3

2 4

3

10

11

7

9

8

6

5

15

16

12

14

13

8

7

20

21

17

19

18

10

9

12

11

30

27

28

14

13

45

42

44

43

20

19

50

51

47

49

22

40 in.

10 members at 20 in./member = 200 in.

1

25

26

22

24

23

21

95

96

92

94

93

16

15

100

101

97

99

98

1835

36

32

34

33

40

41

37

39

38

17

48

4631

29

Figure 10.—Ten-bay truss (members are circled, nodes are not).

2

TABLE IX.— SIMPLY SUPPORTED TRUSS
DESIGN RESULTS

Results MFUD FUD SUMT FD
Optimum weight, lb
Member area, in. 2

A2

A15

A25

A35

A51

Active constraints
Stress
Displacement

734.15

2.38
3.46
5.46
5.23
1.00

3
2

808.74

2.73
4.10
6.29
5.98
1.23

– – –
2

719.69

2.54
3.33
5.73
5.03
1.00

13
2

782.52

2.68
4.16
5.23
4.99
1.93

11
2
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Example 9: Sixty-Bar Trussed Ring
A ring idealized by 60 bar members (ref. 23) subjected to 3

loads is depicted in figure 11. It has 60 stress and 6 displacement
constraints for each load case. The 60 bars’ areas were linked
to obtain 25 independent design variables. Table X presents the
optimum designs obtained for the ring. For this example,
MFUD, SUMT, and FD results were in good agreement, and
the active constraints for each method numbered 19, 12, and 15,
respectively.

52
28

4

16

40

5329

41

54
30

31

55

42
18

6

7
19

43
56

32
20

8 44
57

33

9

21

45
58

34
10

22
59

46

35 11

23
47

60

36
12

24
48

49

25

1
13

37

50

26
14

23851

3

27

22

16

15

14

2420

19

17

4

3

2

1

12

11

10

9

8

7

6

5

x

y

17

5

Ro

Ri

39

15

Figure 11.—Sixty-bar trussed ring (members are circled, nodes are not;
   Ro = outer radius;  Ri = inner radius).

18

21 23

13

TABLE X.— SIXTY–BAR TRUSSED RING
DESIGN RESULTS

Results MFUD FUD SUMT FD
Optimum weight, lb
Member area, in. 2

A5

A10

A15

A20

A25

Active constraints
Stress
Displacements

308.07

0.59
1.84
0.77
0.97
1.16

18
1

324.23

0.63
1.61
0.57
1.04
1.34

– – –
1

308.96

0.58
1.94
0.69
1.07
1.15

11
1

308.93

0.57
1.85
0.71
1.07
1.15

14
1
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Example 10: Geodesic Dome
An aluminum geodesic dome (ref. 17) idealized by 132 bar

members and subjected to a single load is depicted in figure 12.
The areas of the bars in the dome were linked to obtain the seven
independent design variables. The designs obtained for 132
stress and 1 displacement constraint are given in table XI. For
this example, the MFUD weight of 119.44 lb was lighter than
the FD weight by 5.52 lb, but heavier than the SUMT weight by
0.8 lb. The traditional FUD weight was 560 percent heavier.

TABLE XI.— GEODESIC DOME DESIGN RESULTS
Results MFUD FUD SUMT FD

Optimum weight, lb
Member area, in. 2

A1

A3

A5

A7

Active constraints
Stress
Displacements

119.44

0.52
0.31
0.29
0.30

46
1

676.01

1.68
1.70
1.74
1.76

– – –
1

118.65

0.55
0.29
0.29
0.30

46
1

124.96

0.90
0.29
0.29
0.30

50
1

91 92

54 53 52 51 50

4928293031132 73 74 75 99

130 72 31 32 49

128 70 30 7 17

126 68 28 6 3

124 66 26 10 21 55

19 53

51

122 64 38 37 57

120 84 83 82

157189 42 13 14 16 33 50 77

4690131 43 44 45 47 48 76

16988 41 29 12 522 8 18 34

1187125 67 40 27 355 4 9 20

2486123 65 39 25 8023 22 36 56

6085121 63 62 61

78

59 58 81

114118119 117 116 115 113 112

54 79

127

129

56

57 33 16

6173458

59

60

61

38 39 40 41 42

43

44239

271835

36 19 8

2037 21 22

2410 45

46

5 4 12 26 47

251131

32 15 14 13 27 48

55

93 94 95 96 97 98

100

101

102

103

104

105

106

107

108

109

110

111

240.0 in.

30.0 in.

Figure 12.—Geodesic dome (members are circled, nodes are not).

30.0 in.
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Step Length and Gradient

Gradient and step length concepts are used differently in the
MFUD method and in an optimization method. In the MFUD
method, step length is a reduction factor and is assigned a value
such as t = 0.5. The factor guards against rapid change in the
updated design for which analysis may no longer be valid. Step
length in optimization is determined from a one-dimensional
search for a profile that is contrived or assumed by using local
information, including the gradient vector. The step length
reduction factor in the MFUD and the step length determination
in optimization are quite different. In the MFUD, the gradient
information is used to separate critical design variables. This
separation—and consequently gradient calculation—needs to
be carried out a few times for the entire design process: for
example, at initial design, at final design, and at some interme-
diate iterations. In optimization, gradient information is used to
generate a search direction and subsequent calculations.

Discussion

Table XII summarizes the normalized weights obtained by
SUMT, MFUD, and FUD for all nine examples with stress and
displacement constraints. Solutions for stress constraints only
were generated by using optimization and FSD methods for all
the examples and are also included in table XII. From these
results the following observations can be made:

(1) For stress constraints only, the FSD’s generated by the
stress-ratio technique are identical to the optimum designs
obtained with mathematical programming techniques.

TABLE XII.—SUMMARY OF NORMALIZED WEIGHTS
Problem Normalized weight under—

Stress and displacement
constraints

Stress constraints
only

Optimuma MFUD FUD Optimum FSD
Three-bar truss
Five-bar truss
Tapered five-bar truss
Ten-bar truss
Tapered ten-bar truss
Twenty-five-bar truss
Simply supported truss
Sixty-bar trussed ring
Geodesic dome

1.0

▼

1.00
1.00
1.00
1.02
1.00
1.00
1.02
1.00
1.01

1.22
1.38
1.00
1.14
1.03
1.06
1.12
1.05
5.70

1.0
– –
1.0

▼

1.0
– –
1. 0

▼

aNormalized with respect to optimum weight obtained by SUMT.

(2) For both stress and displacement constraints, designs
generated by the MFUD method are in close agreement with the
optimum designs—only 1 or 2 percent variation (which can
largely be attributed to the values of the convergence parameter
of the optimization algorithms).

(3) For stress and displacements constraints, the traditional
FUD method typically produced overdesigns as expected.

Concluding Remarks

A modified fully utilized design (MFUD) method has been
developed for the design of structures with both stress and
displacement limitations. In the development of the MFUD
method, the Integrated Force Method was found to be the
appropriate analysis tool. The MFUD method has been verified
through successful solutions of a number of design examples.
It alleviates the overdesign limitation associated with the tradi-
tional fully utilized design method. The MFUD method has the
potential to become an industrial design tool for practicing
engineers, since this simple approach can generate
designs comparable to those produced with design optimiza-
tion methods based on difficult nonlinear mathematical
programming techniques. A fully utilized design, which by
definition is a design wherein the number of active constraints
equal or exceed the number of design variables, represents the
optimum condition. The MFUD method needs to be developed
for dynamic constraints and nontruss type structures.
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Either the displacement method or the force method can be
used to develop the modified fully utilized design (MFUD)
technique. The IFM (integrated force method) offers certain
advantages in the development of MFUD. In this appendix, the
basic IFM equations are summarized, and the suitability of the
IFM for design is explored.

Equations of the Integrated Force Method

In the IFM, the n internal forces {F} are considered the
primary unknowns, and these can be obtained from the solution
of its governing equation as follows:

[ ] * ( )S F P{ } = { } 20

where [S] is the n × n governing matrix, and {P*} is the
n-component thermomechanical load vector.

The m displacement components {X} can be obtained from
the forces by back-calculation as follows:

X J G F{ } = [ ] { } + { }{ }[ ] ( )β o 21

where [J] is the m × n deformation coefficient matrix ([J] = m
rows of [S]–T), [G] is the n × n flexibility matrix, and {β}o is the
n component for the initial deformation vector.

Notice that the IFM provides two sets of equations (eqs. (20)
and (21)), one for the calculation of forces and another for
displacement computations. For more details on IFM, see
references 14 to 16.

Equations of the Displacement Method

The displacement vector {X} of dimension m is the primary
unknown in the displacement method, and it can be obtained
from its governing equation

K X P[ ]{ } = { } ( )22

where [K] is an m × m stiffness matrix, and {P} is an
m-component load vector.

Unlike the force method, the displacement method does not
provide two sets of equations, one for displacements and
another for forces. Instead, from nodal displacements a series
of operations (such as determining the field displacement func-
tion, computing the strain by differentiation, and then calculat-
ing the stress by using Hooke’s law) are carried out to determine
internal forces.

Appendix A

Analysis Tool for the Modified Fully Utilized Design

Suitability of Analysis Methods for Design

The suitability of the force and the displacement methods for
the development of MFUD can be illustrated by considering the
example of a three-bar truss (fig. 2). The IFM governing
equations for forces for the three-bar truss have the following
explicit form:

1

2
0

1

2
1

2
1

1

2

2 2
0

23

1
2

3

3

1

2

3

−

− − −

−











































=

















f

f
f

k

F

F

F

P

P

x

y ( )

where Fi is the force in the ith member;  fi = (øi/EiAi ) is the
flexibility of the ith member for Young’s modulus Ei, length øi,
and area Ai; and Px and Py are the applied load components.

The two displacement components (Xi, for i = 1, 2) of the
three-bar truss can be obtained from the forces by using the
following equation:
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( )

Consider the design of the truss for stress limitations σoi, for
i = 1, 2, 3, and displacement limitations Xoi, for i = 1, 2. The two
IFM equations (eqs. (24) and (25)) can be written in terms of
member areas (A1, A2, A3) as follows.
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For stress limitations:
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For displacement limitations:
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In equation (27), if a displacement component Xi exceeds its
allowable value  Xoi, then that component should be replaced by
the allowable value.

An iterative solution of equations (26) and (27) can provide
a design for the three-bar truss that accommodates both stress
and displacement constraints. However, convergence diffi-
culty can occur if this solution is used for more general trusses.
The modified fully utilized design method developed in this
paper is more suitable for such applications.

The displacement method, on the other hand, provides only
two equations in terms of the three bar areas:
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Even for displacement constraints only, the three areas cannot
be directly determined from the solution of two stiffness
equations. The stiffness formulation is not the most appropriate
analysis tool to develop a direct design formulation.

Displacement Sensitivities

The n × m displacement sensitivity matrix [∇X] required in
the MFUD method can be obtained in explicit form with the
IFM (ref. 19) as

  ∇[ ] = −[ ]X J J G[ ][ ][ ] [ ][ ][ ] ( )C F R
T 29

where
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In the previous equation, Diag. designates a diagonal matrix,
and [C] is an (m – n) × n compatibility matrix of IFM. The
first term in equation (29) accounts for changes in member
flexibility, whereas the second term accounts for the changes in
member forces with respect to member areas. However, Berke
(ref. 9) has shown that the second term is identically equal
to zero, which has also been numerically verified. The first term
in equation (29) is equivalent to equation (12), which is used to
develop the MFUD method.
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A fully stressed state is reached when all members of a truss
are utilized to their full strength capabilities. Historically, such
a design was considered optimum, but recently this optimality
has been questioned because the weight of the structure is not
used in the design calculations. This appendix examines
optimality of the fully stressed design (FSD) with analytical
and graphical illustrations. Solutions for a set of examples
obtained by using FSD and optimization methods confirm the
optimality of FSD. FSD, which can be obtained with little
calculation, can be extended to displacement constraints and to
nontruss-type structures.

Introduction

Researchers are baffled by two conspicuous attributes of
FSD: the good numerical results obtainable with FSD; and the
merit function, or weight function, of the structure, which is not
taken into consideration. Optimization proponents think that
FSD need not represent the optimum since the good FSD results
are considered simply special cases. Practicing engineers
believe that when all the members of a truss (or structure) are
utilized to their full strength capabilities the design can no
longer be improved. They, however, cannot offer a mathemati-
cal proof supporting the optimality of FSD. This dilemma has
persisted since the sixties (refs. 1, and 24 to 28). Here, an
attempt is made to alleviate the confusion. The optimality of
FSD is examined in four sections: the problem is defined;
optimality is discussed; numerical examples follow; and dis-
cussions and a summary are presented.

Truss Design Problem

Consider an n-bar truss with n member areas as design
variables subjected to q load conditions. A fully stressed state
(of FSD) is reached when each members’ stress equals allow-
able strength σ0. This design can be cast as the following

mathematical programming problem: Find n variables Ai for

i = 1, 2, . . . , n to minimize weight  W Ai

i

i i=
=
∑ρ

1

n

l  subjected to

nq stress constraints

g i nqi
i

0
= − =1 1 2 31

σ
σ

, , , ( )K

The optimum solution—variables (Ai
opt for i = 1, 2, . . . , n),

minimum weight (Wopt), and active constraints (gj
act = 0,

j = 1, 2, . . . ,n)—can be obtained by using one of several
optimization methods (see refs. 13 and 29). In optimization
methods, both the weight function and the constraints partici-
pate. In FSD, only the constraints are solved iteratively to
obtain the design variables, without any reference to weight.
The FSD weight (Wfsd) is back-calculated from the areas. That
FSD need not be optimum (i.e.,  Ai

fsd ~/  Ai
opt for i = 1, 2, . . . , n,

and Wfsd ~/  Wopt) is a popular misconception.

Optimality of the Fully Stressed Design

The Lagrangian functional obtained by adjoining the active
constraints to the weight function is used to examine the
optimality of FSD:

L A A g Ai i
*{ } { }( ) = { }( ) + { }( )∑, ( )λ λW

active set

32

where (*) indicates the active constraints and {λ} the multi-
pliers. The variables and the multipliers can be obtained from
its stationary condition:

∇ { }( ) + ∇ { }( ) = { }∑W A g Ai i
*

active set

λ 0 33( )

g A gi i
*{ }( ) = { } ( )0 34within the active set ( )

Equations (33) and (34) yield the optimum solution.
The optimality of FSD is considered by examining three rela-

tions between the design variables and the active constraints.

Case 1: There are more active constraints than design
variables.
Case 2: There are an equal number of active constraints and
design variables.
Case 3: There are fewer active constraints than design
variables.

The three-bar truss (fig. 2) subjected to two load conditions,
with three design variables, six stress constraints, and weight as
the merit function, is used for illustration.

Appendix B

Optimality of a Fully Stressed Design
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Case 1: More Active Constraints Than Design Variables

Geometrical solution.—Consider an optimum solution with
n variables and (n + v) active constraints. The optimal solution
is at the intersection of any n out of the (n + v) active constraints.
The remaining v are follower constraints passing through the
optimal point. For the truss with three design variables, assume
an optimal design with four active constraints, g1, g3, g5, and g6
(fig. 13). Three constraints (g3, g5, and g6) are sufficient to
establish the optimal point. The follower constraint (g1) can be
neglected without any consequence. From a geometrical con-
sideration, the inclusion of a maximum of n active constraints
is sufficient to establish the optimal design. The weight func-
tion is not essential when v > 0.

Analytical solution.—The (2n+v) unknowns (being n vari-
ables and (n + v) multipliers) can be determined as the solution

When the number of active constraints equal or exceed the
number of design variables, the solution of the active con-
straints (i.e., eq. (34)) provides the design variables. The design
thus obtained is both fully stressed and optimum.

Case 3: Fewer Active Constraints Than Design Variables

An optimum solution with fewer active constraints than
design variables is not a fully stressed design. For the three-bar
truss, assume two active constraints (g1 and g2) given by equa-
tion (34). The two constraint equations are expressed in terms
of three unknown design variables. Although equation (34) is
independent of Lagrangian multipliers, it does not have suffi-
cient quantity for a solution of the three design variables. Thus,
both equations (33) and (34), which are coupled in variables,
multipliers, and weight gradient, must be solved simulta-
neously to generate the optimum solution. The gradient of the
weight function and the multipliers are required to calculate the
design variables. In other words, only when the number of
active constraints is fewer than the number of design variables
do both the constraints and the weight function participate.
Mathematical programming methods address this situation in
particular. Practical truss design, however, more frequently falls
under Cases 1 and 2.

Design of a Truss Under a Single Load Condition

For an indeterminate truss under a single load condition, a
full stress state may not be achievable because of the compat-
ibility condition (refs. 27, 28, and 30). Take, for example, an
n-bar truss with r redundant members. If its FSD is attempted
without restricting the lower bound of the member areas, then
the design will degenerate to a determinate structure that, of
course, will be fully stressed and optimum. If, however, a mini-
mum bound Amin is specified for member areas, the resulting
design will have (n – r) fully stressed members with (n – r)
active stress constraints and r member areas that reach the
minimum bounds of Amin. These properties, from an analytical
viewpoint, become equivalent to n active constraints consisting
of (n – r) stress constraints and r lower bound side constraints.
Since there are n design variables, this example falls under
Case 2. In other words, the design of a truss under a single load
also represents the optimum design.

A fully stressed design state can be defined in terms of two
indices, Indexstress and Indexall:

Index
number of active stress

number of independent design
stress = ( )

( )
constraints

variables

Index
number of independent design

all =
+( )

( )
number of active stress constraints number of active bounds

variables

Figure 13.—Three active constraints (sufficient to
   determine optional point) and two follower
   constraints.
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to equations (33) and (34). An uncoupled strategy is to solve for
the n design variables from any n of (n + v) constraint functions
given by equation (34). Values for other variables and the
weight function can be back-calculated. Summarizing, when
active constraints exceed design variables, the optimum can be
obtained from the solution of a set of n active constraints.

Case 2: An Equal Number of Active Constraints and
Design Variables

An optimal solution with n variables and n active constraints,
by definition, represents a fully stressed design. The stationary
condition of the Lagrangian (eqs. (33) and (34)) represent 2n
equations in 2n unknowns. The uncoupled equation (34), being
n constraint equations, can be solved for the n design variables.
The n multipliers and optimum weight can be back-calculated.
For the truss, the solution of three constraints will yield the
design variables. The optimum weight and the multipliers can
be back-calculated from equations (31) and (34) respectively.
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Index imum Index Index
stress all= ( )max ,

For analytical purposes, a fully stressed state is reached when
the Index ≥ 1.

Numerical Examples

Examples are separated into a first example and a group of
problems. The first example, with several subcases, examines
the role of the weight function when the number of active con-
straints exceed or equal the number of design variables (as in
Cases 1 and 2). The second group of examples compares stress-
ratio-based FSD’s with their optimum designs. Two optimizers,
SUMT (Sequential Unconstrained Minimization Technique)
and IMSL (i.e., the Sequence of Quadratic Programming tech-
nique of IMSL) are used to solve examples in group 2. The
figures and descriptions for the examples are not given here, but
can be found in references 13 and 29. All the examples were
solved in a controlled environment on the NASA Lewis Cray
Y–MP computer.

Example 1

A three-bar truss (see fig. 2) is used to illustrate that the
weight function does not influence the optimum design when
the number of active constraints equal or exceed the number of
design variables. The truss is subjected to two load conditions
and has a total of six stress constraints, three per load condition.
The optimum solution for an aluminum truss with equal weight
densities of 0.1 lb/in.3 for its three bars was obtained by using
several optimization algorithms. The optimum solution for the
problem is optimum weight Wopt = 133 lb; design variable
Aopt = (3.29, 3.99, 3.32) in.2; and four active stress constraints
(g1, g3, g5, and g6).

Fully stressed design.—The stress-ratio-based FSD pro-
duced the optimum design. The weight coefficients were
changed over a wide range, from 0.1 lb/in.3 for aluminum to
300 lb/in.3 for a fictitious material. The design and active con-
straints obtained by FSD remained the same since the weight
does not participate in the calculations. The FSD weight, how-
ever, was back-calculated; it is shown in table XIII.

SUMT optimizer.—Solutions for five different weights were
attempted by SUMT (see table XIII). The SUMT optimizer

TABLE XIII.—OPTIMUM DESIGNS OF THREE-BAR TRUSS WITH
DIFFERENT MATERIALS

[Number of active constraints exceed number of design variables.]
Method Cost

coefficients
Member areas Active

constraints
Optimum
weight, lb

FSD 0.1
3
6

16
1

0.1
6

12
13

200

0.1
8

18
25

300

3.30

▼

3.99

▼

3.32

▼

g1,g3 ,g5 ,g6

▼

1.33×102

7.53×103

1.60×104

2.43×104

2.20×105

SUMT 0.1
3
6

16
1

0.1
6

12
13

200

0.1
8

18
25

300

3.291
3.299
3.299
3.298

67.068

3.986
3.998
3.997
3.998
9.111

3.323
3.299
3.298
3.299
0.001

g1,g3 ,g5 ,g6

▼

1.33×102

7.53×103

1.59×104

2.43×104

1.92×105

ISML 0.1
3
6

16
1

0.1
6

12
13

200

0.1
8

18
25

300

1.000
3.299

▼

1.000
4.000

▼

1.000
3.299

▼

(a)
g1 ,g3 ,g5 ,g6

▼

3.83×101

7.53×103

1.60×104

2.43×104

2.20×105

OPTM1 0.1
3
6

16
1

0.1
6

12
13

200

0.1
8

18
25

300

3.313
3.309
3.309
3.308
3.300

3.971
3.963
3.962
3.961
3.967

3.323
3.334
3.335
3.336
3.328

g1 ,g3 ,g5 ,g6

▼

1.33×102

7.55×103

1.60×104

2.44×104

2.21×105

SQP 0.1
3
6

16
1

0.1
6

12
13

200

0.1
    8
  18
  25
300

2.335
2.334
2.334
2.335
2.335

2.503

▼

2.505

▼

(a)

▼

9.35×101

5.32×103

1.14×104

1.74×104

1.57×105

OPTM2 0.1
3
6

16
1

0.1
6

12
13

200

0.1
   8
 18

  25
 300

3.199
3.501
3.635
3.657
3.684

2.556
2.402
2.353
2.316
2.336

5.102
4.682
4.563
4.467
4.512

g1 ,g5

(a)
g6

g6

g6

1.42×102

8.22×103

1.75×104

2.71×104

2.39×105

aNo active constraints.
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converged to the optimum solution for the first four cases, pro-
ducing the correct optimum weight and an identical set of four
active constraints. For the fifth case, SUMT converged to an
eccentric local optimum design with two, instead of four, active
constraints.

IMSL optimizer.—This optimizer produced correct solu-
tions for the last four cases. For the first case, no active con-
straints were produced and the IMSL solution was unsatisfactory.

Table XIII also shows solutions obtained with other optimi-
zation methods. The FSD method provided successful solu-
tions for all five cases. The success rate for optimization
methods varied.

Example Set 2

Nine examples were solved by using FSD along with SUMT
and IMSL optimizers. The normalized results with respect to
the FSD answers are depicted in table XIV.

Consider the 25-bar truss, referred to as BAR25 in table XIV.
It is subjected to two load conditions. Its 25 areas are linked to
obtain eight independent variables. Since, at optimum, 11
stress constraints are active, a fully stressed state has been
reached. The FSD, IMSL, and SUMT methods produced iden-
tical optimum solutions for the example with different CPU
times. Optimizers IMSL and SUMT were, respectively, 10 and
18.5 times more expensive than the FSD method. Solutions to
the other eight problems followed the pattern of the 25-bar
truss, with minor variations.

TABLE XIV.—PERFORMANCE OF FULLY STRESSED DESIGN VERSUS OPTIMIZATION METHODS
Problem Load

condition
Independent

design
variables

Design
method

Normalized
weight

Number of
active stress
constraints

Number of
active side
constraints

Indexall Indexstress Normalized
CPU time

BAR3 1 3 FSD
IMSL
SUMT

1.000
1.000
1.000

2
2
2

1
1
1

1.0
1.0
1.0

0.667
.667
.667

1.000
1.596
6.263

BAR5 2 5 FSD
IMSL
SUMT

1.000
1.000
1.000

7
7
8

0
0
0

1.4
1.4
1.6

1.400
1.400
1.600

1.000
.527

1.288
BAR10 1 10 FSD

IMSL
SUMT

1.000
1.000
1.001

6
6
6

4
4
4

1.0
1.0
1.0

0.600
.600
.600

1.000
1.362
2.859

BAR25 2 8 FSD
IMSL
SUMT

1.000
1.000
1.001

11
11
11

3
3
3

1.75
1.75
1.75

1.375
1.375
1.375

1.000
8.688

14.213
DOME 1 12 FSD

IMSL
SUMT

1.000
.983
.984

188
192
192

5
5
4

16.08
16.42
16.33

15.667
16.000
16.000

1.000
.743
.740

RING_A 3 25 FSD
IMSL
SUMT

1.000
.999

1.000

40
38
38

0
0
0

1.60
1.52
1.52

1.600
1.520
1.520

1.000
5.476

13.101
RING_B 1 60 FSD

IMSL
SUMT

1.000
1.000
1.003

52
52
52

16
16
8

1.133
1.133
1.0

0.867
.867
.867

1.000
2.882
5.569

TOWER_A 1 252 FSD
IMSL
SUMT

1.000
.999

1.000

117
117
117

135
131
139

1.0
.984

1.016

0.464
.520
.551

1.000
57.249
81.442

TOWER_B 2 252 FSD
IMSL
SUMT

1.000
1.000
1.000

165
165
165

97
98
99

1.040
1.044
1.048

0.655
.655
.655

1.000
48.031
59.557

Discussion

For a truss, if a fully stressed state can be reached (i.e., the
number of active constraints exceed the number of design
variables), then such a design can be handled satisfactorily with
the stress-ratio-based FSD method. Optimization techniques
for such problems can be computationally expensive and un-
necessary.

In special circumstances a practical structural design may be
associated with fewer active constraints than design variables.
Such a design is likely to represent an overdesign condition,
which can be alleviated by relaxing some of the nonactive
constraints. If, however, there are fewer active constraints than
design variables, then the design is not fully stressed; here, non-
linear programming optimization methods can be useful. For
such problems the stress-ratio-based design can differ from the
optimum design, especially when weight densities for truss
members are different.

When the fully stressed design is extended to include dis-
placement constraints, it is called a fully utilized design (FUD).
FUD, which can produce overdesign conditions, has been
modified to give a  method that produces a satisfactory design
for stress and displacement constraints (ref. 31).

The FUD method has been extended in reference 32 to
nontruss-type structures.
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Summary

A fully stressed design is optimum when a full stress state can
be achieved. At optimum, when the number of active con-
straints equal or exceed the number of design variables, then
such a design can be obtained by simply using a stress-ratio
algorithm without any consideration to the weight function.
The stress ratio algorithm can produce a fully stressed design in
a small fraction of the calculation time required by the design
optimization methods. The fully stressed design method may
have the potential for extension to nontruss-type structures and
nonstress constraints.
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Modified Fully Utilized Design (MFUD) Method for Stress
and Displacement Constraints
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Surya N. Patnaik, Ohio Aerospace Institute, 22800 Cedar Point Road, Cleveland, Ohio 44142; Atef Gendy, National
Research Council—NASA Research Associate at Lewis Research Center; Laszlo Berke and Dale Hopkins, NASA Lewis
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The traditional fully stressed method performs satisfactorily for stress-limited structural design. When this method is
extended to include displacement limitations in addition to stress constraints, it is known as the fully utilized design
(FUD). Typically, the FUD produces an overdesign, which is the primary limitation of this otherwise elegant method.
We have modified FUD in an attempt to alleviate the limitation. This new method, called the modified fully utilized
design (MFUD) method, has been tested successfully on a number of designs that were subjected to multiple loads and
had both stress and displacement constraints. The solutions obtained with MFUD compare favorably with the optimum
results that can be generated by using nonlinear mathematical programming techniques. The MFUD method appears to
have alleviated the overdesign condition and offers the simplicity of a direct, fully stressed type of design method that is
distinctly different from optimization and optimality criteria formulations. The MFUD method is being developed for
practicing engineers who favor traditional design methods rather than methods based on advanced calculus and nonlin-
ear mathematical programming techniques. The Integrated Force Method (IFM) was found to be the appropriate analysis
tool in the development of the MFUD method. In this paper, the MFUD method and its optimality are presented along
with a number of illustrative examples.


