X-ray Diffraction Imaging of Nanoscale Materials and Biological Structures

John Miao

Dept. of Physics & Astronomy and California NanoSystems Institute University of California, Los Angeles

NSLS-II Coherent X-ray Diffraction Workshop, March 14, 2008

Coherent Diffraction Microscopy (or Lensless Imaging)

Phase Recovery

Shannon Sampling vs. Bragg Sampling

Oversampling

Miao, Sayre & Chapman, J. Opt. Soc. Am. A 15, 1662 (1998).

The Missing Center Problem

AFM Image of GaN quantum dots, showing the platelet structures.

$$\eta_i = \frac{D_i - 1}{2\sigma_i} \quad i = x, y, z$$

Oversampled diffraction pattern from a GaN quantum dot nanoparticle

- i) Start with 16 independent reconstructions.
- ii) For each reconstruciton:

iii) Calculate the *R*-value,

$$R = \sum \left\| F_{\text{exp}} \right\| - \alpha \left| F_{cal} \right\| / \sum \left| F_{\text{exp}} \right|$$

iv) Select a seed out of 16 images (ρ_{seed}) with the smallest *R*-value.

v)

$$\rho_{new}^{i} = \sqrt{\rho_{seed}} \times \rho_{old}^{i}$$

 $i = 1, 2, \dots, 16$

Chen et al., PRB 76, 064113 (2007).

Image Reconstruction Using the GHIO Algorithm at 0th Generation

Image Reconstruction Using the GHIO Algorithm at 8th Generation

3D Surface Morphology of Nanoparticles

Revealing 3D GaN-Ga₂O₃ Core Shell Structure

Miao et al., PRL 97, 215503 (2006).

Schematic Layout of Resonant X-ray Diffraction Microscopy

Schematic Layout of Resonant X-ray Diffraction Microscopy

100 E=2.550 keV 10 (1) |F(Q)| (arb. unit) 100 (2) 10 E=2.595 keV 2 1 0.06 0.07 0.08 0.09 0.10 0.05 Q (1/nm)

X-ray Diffraction Patterns of a Bi Doped Si Crystal at E=2.550 and 2.595 keV

Elemental Mapping of Buried Bi Structure

Hierarchical Structures in Bone

X-ray Diffraction Imaging of Unmineralized Bone Particles

X-ray Diffraction Imaging of Low Mineralized Bone Particles

X-ray Diffraction Imaging of Highly Mineralized Bone Particles

Jiang et al., PRL 100, 038103 (2008).

- Oversampling the diffraction intensities \Rightarrow the phase information.
- Imaged nanoscale materials and biological structures in 2- and 3- dimensions.
- Resonant X-ray diffraction microscopy for element specific imaging of buried structures.
- Towards 3D structural determination of noncrystalline materials at the near atomic resolution using future brighter X-ray sources such as NSLS-II.

UCLA, Physics & Astronomy

C. Song, H. Jiang, B.P. Fahimian, E. Lee, J. Zhao, J. Rodriguez, R. Xu, D. Chang, K. Raines, B. Amirbekian

University of Colorado and NIST, Boulder

M.M. Murnane, H.C. Kapteyn, R.L. Sandberg

RIKEN/Spring-8	T. Ishikawa, Y. Kumara
Colorado State University	J.J. Rocca
APS, ANL	I. NcNulty, M.D. de Jonge
UCLA, Electric Engineering	K. Wang
UC, Davis	S. Risbud
LBNL	T. Earnest
Academia Sinica, Taiwan	C.C. Chen, T.K. Lee
UCLA Medical School	R. Sun, Z.H. Shout, P. Li, F. Tamanoi
Harvard Medical School	M.J. Glimcher, L. Graham