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Abstract. We develop two models for Myxobacteria swarming, a modified 
Lattice Gas Cellular Automata (LGCA) model and an off-lattice CA model. In 
the LGCA model each cell is represented by one node for the center of mass 
and an extended rod-shaped cell profile. Cells check the surrounding area and 
choose in which direction to move based on the local interactions. Using this 
model, we obtained a density vs. expansion rate curve with the shape similar to 
the experimental curve for the wild type Myxobacteria. In the off-lattice model, 
each cell is represented by a string of nodes. Cells can bend and move freely in 
the two-dimensional space. We use a phenomenological algorithm to determine 
the moving direction of cells guided by slime trail; the model allows for cell 
bending and alignment during collisions. In the swarming simulations for A+S- 
Myxobacteria, we demonstrate the formation of peninsula structures, in 
agreement with experiments. 

Keywords: probabilistic cellular automata, lattice and off-lattice models, 
bacteria swarming, slime guidance, pattern formation.  

1   Introduction  

Myxobacteria (Myxococcus xanthus) are social bacteria that live in the soil; they 
exhibit complex multi-cellular behavior and provide many useful insights to 
multicellular morphogenesis. They are rod shaped with an aspect ratio of roughly 
10:1. When growing on a solid medium with sufficient nutrient, Myxobacterial cells 
grow as a swarm that spreads outwards from the origin, forming rafts and group of 
cells that project from the edge of the swarm (peninsula structures) [1] (see Figure 1). 
When nutrient is depleted, the starved Myxobacteria stop growing and build fruiting 
bodies [2, 3].  

Myxobacteria moves by gliding on surfaces, it cannot swim in liquid [4]. It has two 
types of motility, S(social)-motility and A(adventurous)-motility that are driven by 
different engines. S-motility is due to pilus extension from the front end of the cell, 
attachment of the pilus tip to a group of cells ahead, and pilus retraction, drawing the 
cell up to the leading group [4]. A-motility is due to secretion of polysaccharide slime 
from the rear of the cell. The hydration-driven swelling of the slime gel is suggested 
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to generate the pro-pulsive force for A-motility [5]. A+S- mutants of Myxobacteria 
have only A-motility but no S-motility , while those with S-motility but no A-motility 
are called A-S+ mutants [1]. Individual Myxobacteria cells reverse their gliding 
direction roughly once every 10 min, and the mglA mutants which are unable to 
reverse normally are unable to swarm [2, 4, 12].  

 

Fig. 1. The swarming patterns of wild-type A+S+ Myxobacteria (Picture taken from [1], by 
Kaiser, D. and C. Crosby (1983)). On the upper-left part of the END picture, a large peninsula 
projected outwards from the colony edge. There were also smaller peninsulas and rafts of cells. 

Isolated cells move along their long axis and may bend slightly [1, 2]. When a cell is 
less than a pilus length from other cells, S-motility can be active because the pili can 
reach groups of other cells that are ahead [2]. As the cells move, they leave a slime trail 
behind which pushes the cells forward (A-motility). Experimental observations showed 
that when cells meet a slime trail, they tend to turn at the acute angles to follow the 
trail [8].  

Swarming of Myxobacteria has been modeled using a continuous model with partial 
differential equations (PDE) [9], which treats the radial swarming pattern expansion as 
a one-dimensional problem and assumes a rate at which peninsulas merge.  

In this paper, we first present a modified two-dimensional LGCA model, and 
investigate the expansion rate as well as the peninsula formation in wild type 
Myxobacteria during swarming. We then present an off-lattice model, which is the first 
computational model based on slime guidance for cells and motility engine reversal. 
We describe preliminary simulations for the swarming of A+S- Myxobacteria, which 
successfully reproduce the peninsula pattern. 

2   Lattice Gas Cellular Automata (LGCA) Model 

2.1   Description 

Unlike classical LGCA [10], in our model each cell is not simply a point particle, it 
has an extended domain (profile) that encompasses several lattice sites.  (Notice that  
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the extended profiles have been used previously, amongst others, for modeling 
collective cell movement in Dictyostelium discoideum [11].) Each cell is defined by 
the position of its center of mass on the two dimensional hexagonal lattice, direction 
of movement (when it is moving), its length and the extent of its bending.  From these 
five state variables we determine the extended domain (profile) of the cell. Cell 
direction is updated using a Monte Carlo algorithm. 

Three representative cells and the surrounding search area of one of the cells are 
displayed in Figure 2. Each cell has a length of 7 sites and a width of 1 site. The sites 
of the cell are indexed from the back of the cell to the front of the cell.  The center of 
mass of the cell is always at half of the cell length. The dark grey spot is the center of 
mass, and the black ones are the rest of the body of the cell.  The shaded spots are to 
show the search area for S-motility.  The length of the cell changes as the cell absorbs 
a diffusing nutrient until it reaches a maximum value. Then the cell divides into two 
equal halfs. 

 

Fig. 2. Three representative cells and the surrounding search area of one of the cells.  The three 
cells are represented by the groups of black circles with the center of mass node in light gray.  
The three areas below the cell on the right represent the search areas for the S-motility algorithm.  
The four sites that are shaded dark between two searching areas belong to both areas. 

Cells choose which direction to turn at each time step based on three components, 
slime, S-motility, and physical contact with other cells.  Cells tend to align with the 
direction of previous cells that have passed and deposited slime.  S-motility is pili 
driven, and we model it by favoring cells to be pulled towards areas of higher local 
cell density.  Physical contact accounts for side-to-side alignment due to adhesion, 
deflections by collisions with other cells, and physical obstacles to turning caused by 
nearby cells. 

We assign a weight, iα  to each effect listed above. For each cell we collect data 

pertaining each of them, )(xf j
i , where x is the current system state and j

if is the 

function describing the strength of  an effect in the jth direction.  The detailed 

explanations for j
if are listed in Table 1.  
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Table 1. The local information collected to model each effect for determining cell turning and 
bending 

 Effect 
modeled 

Data collected 

f1 A- motility The amount of slime deposited on the three lines passing through the 
center of mass of the cell. 

f2 S- motility The number of occupied sites in each of the three regions of Illustration 1. 

f3 Cell-Cell 
alignment 

The number of sites that will contain a parallel cell beside this cell if it 
turns in this direction. 

f4 Collisions The number of cells one lattice site in front of the current cell that are not 
aligned with this cell 

f5 Crowding The negative of the number of occupied lattice sites that are in the triangle 
formed between the current cell and the cell if it turns this direction. 

The cell is only allowed to bend 60° to the left or right.  After these function values 
are collected we assign each of the possible outcomes a probability )( jP  calculated 
as follows: 
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This choice of probability function provides a good separation of similar states, with ! 
corresponding to the amount of separation. The new direction for the cell is 
determined by this probability. To model motility mutants, A+S- and A-S+, we 
set 2 0α = and 1 0α =  respectively. 

A cell moves one step forward and straightens as long as this does not cause it to 
overrun another cell, otherwise it stalls, and stays bent.  All cells turn or bend 
simultaneously, so collisions that involve two cells moving into an unoccupied space 
are not prevented. After that all cells move simultaneously.  After movement, cells 
can grow, deposit slime, or reverse with a preset period.  The time step and lattice 
spacing are matched to produce the appropriate velocity for the motilities of the cells. 

2.2   Simulation Results 

We simulated circular colonies of A+S+ wild type Myxobacteria of initial radius 60 
"m and varying initial densities. We first calculate the radial distribution function of 
cell density for the entire colony. Then define the edge of the colony by a cell density 
threshold of the distribution. The rate of expansion was then calculated from the 
linear fit for the distance to the colony edge versus time. 

The expansion rates from simulations were plotted against the initial density of the 
colony, the plot was fit by this function:  
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where x is the initial density, as in [1].  From simulation data, a fit of A=-0.1±0, 
B=0.5±0.2, C=50±20 was found for wild-type cells.  In the experiment with an initial 
radius of 1.5 mm [1], the fit of the same form for wild type cells was A=0.1, B=1.48, 
C=48±6, with A+B=1.58±0.06.  While the length scale between the simulation and 
experiment differ by 3 orders of magnitude, the expansion rate was constant over two 
orders of magnitude for the simulation. 

 

Fig. 3. Density (X-axis,) vs. Growth Rate (Y-axis,) curves for experiment (upper) and 
simulation (lower). The density is in Klett-Summerson unit [1], and the growth rate is in unit of 
microns per minute. The exes are simulation results.  

Figure 4 shows the peninsulas that formed from an initial smooth colony edge.  
The peninsulas appear mostly in the areas of the initial circle of cells where the radius 
aligned with a direction of the lattice. This agrees with experimental observation that 
cells are initially aligned perpendicularly to the colony boundary.               

 

Fig. 4. The initial condition and a representative snapshot of a myxobacteria colony after 300 
time steps. The snapshot demonstrates peninsulas that curve and merge, as well as rafts of cells.  
Five peninsulas exist in this snapshot. 
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From our simulations, we find that the exponent, C, in the expansion function 
agrees with experimental measurements within error; we also observe the peninsulas 
forming.  But the overall expansion rate is much lower than the experimental 
measurements. This is due to several artifacts in our model.  The first is that 
peninsulas form mostly at the corners of a hexagon centered at the center of the 
colony, since this is the only point on the boundary where a direction normal to the 
boundary is allowed. If a cell attempts to leave the colony at another point, the local 
rules for S-motility turn it back into the colony, since pili are modeled to prefer areas 
of higher cell density.  This S-motility effect also causes a negative expansion rate at 
low densities. Secondly, due to the rigidity of the cells, cells collide with each other 
and cannot easily free themselves from the current configurations.  Therefore in the 
high density area in the initial colony, cells become entrapped and can not move. We 
overcome these difficulties by introducing an off-lattice model, which is described in 
the next section. 

3   Off-Lattice Model 

3.1   Modeling Individual Cell 

To incorporate into the model the elastic properties of the Myxobacteria cell body as 
described in [12], we adopt an off-lattice cell representation to allow for more flexible 
cell shape and mechanical properties [13]. An individual cell’s configuration is 
represented by a string of N nodes (Figure 5) which can occupy any positions in two-
dimensional space. The first node is called the head-node, and the N-th node is called 
the end node. The vector pointing in the direction from the end-node to the head-node 
determines the cell’s orientation. There are (N-1) segments of length r each between 
every two neighboring nodes. There are also (N-2) angles # between every two 
neighboring segments. We define the Hamiltonian for an individual cell (see Figure 5) 
as follows: 

 
 

Stretching and bending energies are defined as a quadratic function of segment 
length r between nodes and the angles # between two segments respectively, i.e. we 
approximate the cell body as having simple elastic stretching and bending energies: 
 

 
 
 

Here bK  and Kθ  are parameters analogous to the spring constants in Hooke’s Law; 

they determine the extent to which the segment lengths and angles can change in the 
presence of external forces, respectively. They are the same for all segments and 
angles. 0r  is the target length of the segment. 
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Fig. 5. A cell body of Myxobacteria is represented by N=4 nodes. The black solid dot is the 
head-node. The length to width ratio of the cell is 10:1. 

The relative positions of nodes can change during the configuration updates in our 
algorithm, so the cell body is flexible.  

The Monte Carlo approach is used for configuring the position of the nodes at 
every time step. We first move the head-node to a new position, denoting the 
magnitude of the displacement as !x, and then repeat the following steps for a 
sufficient number of times (we choose this number as 2.5N): 1. Randomly choose a 
node within the same cell, for instance, node i, and move it in the direction from node 
i to node (i-1) for a distance of !x, with a small random fluctuation; 2. Calculate the 
energy change $E due to the relative position change of the nodes; 3. Use the 
Metropolis algorithm [14] to determine the acceptance probability for the positional 
change of a node:  
 
 
 

Here k is a Boltzmann constant; T is a parameter that characterizes the system’s 
tendency to statistically fluctuate from the equilibrium.  The cells in the model can 
bend elastically due to the random fluctuation during the updating of nodes 
configurations while keeping their lengths within certain range.  

3.2   Modeling Cell Motion 

In our off-lattice model, cells are allowed to move freely in any direction in the two-
dimensional space.  This is a significant improvement compared to the lattice models 
where cells move on a fixed lattice.    

Biologically, wild type A+S+ Myxobacteria cells move by using pulling force 
from pili retraction at the head and pushing force from slime secretion at the end.  We 
focus on the global motion of a large number of cells during swarming instead of 
studying details of motility mechanisms of an individual cell. Therefore, we model 
the cell’s effective motion by using simplified assumption about the motion of a cell 
being led by the head. That is, the head of a cell pulls the whole cell body to move 
forward. We distinguish cells with different types of motility through a variable 
magnitude of the head velocity. In this preliminary model, we only include the A-
motility and fix the magnitude of the head velocity at about 4 microns per minute.  

In experiment, an isolated cell moves along the direction of its long axis and keeps 
roughly straight. When meeting a slime trail, cells tend to turn at the acute angles to 
follow the trail [8]. When cell density is high, as they are at the colony’s edge at early  
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stage of Myxobacteria swarming, cells are packed layer by layer, and they can move 
on top of other cells. In this case, there will be a lot of intersecting slime trails and 
cells may not follow a particular slime trail. On the other hand, collisions between 
cells are more important than cell-slime interactions at high cell densities. For these 
reasons, we define a searching circle centered at the head node of each cell (Figure 6), 
and define a local slime field density D(s) for each cell as the total area covered by 
slime within the divided by the area of searching circle (Figure 6): 

 
 
 
 
We then let the cell follow a particular slime trail only if the slime field density is 

below a certain threshold. Because the width of a slime trail is close to cell-width, 
while the radius of searching circle is defined to be about half of a cell-length, then 
the slime field density for a searching circle with single slime trail will be: 

 
 

 
 
A typical cell’s width-to-length ratio is 1:10, so we choose the threshold of slime field 
density to be 0.2, which corresponds to only a few slime trails in the simulation 
domain. 

Based on experimental observations of cell motion, we develop a phenomenological 
algorithm to determine the direction of head node velocity, which we call the head-
sensing slime guidance algorithm (see Figure 6): 

(1) Search the circlar area ahead of the cell for slime trail and calculate the local 
slime field density D(s); 

(2) If no slime trail is found, or if D(s)>0.2, choose the cell orientation as head 
velocity direction and go to step (6) (The cell’s orientation is defined by the 
vector pointing in the direction from end to head).  If D(s 0.2, go to next 
step; 

(3) Approximate the direction of the slime trail as a line segment (from point A to 
B); 

(4) Transform the coordinate of point A and B from XOY to the cell’s local 
coordinate system (X’O’Y’); 

(5) If Y’ of one point is less than that of the other one, for instance, Y’(A) < 
Y’(B), then choose the new direction as O’!B because cells tend to turn at 
the acute angles to follow slime trails; if the new direction opposes the cell 
direction and thus may reduce the cell length, choose the new direction as 
A!B. In the case of Y’(B) < Y’(A), simply change O’!B (or A!B) to be 
O’!A (or B!A). 

(6) Tentatively advance the cell using the head velocity obtained through the 
above procedures. If it collides with another cell, choose the collided cell’s 
orientation as the new head-velocity direction, so that cells can align with 
each other when collision happens. 
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Fig. 6. A schematic description of head-sensing slime guidance for Myxobacteria cells. The 
orange lines represent a part of cell body, which meets with a slime trail. The head of the cell is 
defined as O’ point, the origin of the cell’s local coordinate system X’O’Y’. The cell 
orientation is along the direction of O’Y’. The cell will turn to a new direction at an angle # 
with O’X’ axis when it meets the slime trail. 

In our simulation, cells move at most 0.8 micron every time step, so 5 simulation 
time steps correspond to one minute of real time. At each time step, we do the 
following for each cell in the order of numbering of cells: First, find out the moving 
direction for its head node by the head-sensing slime guidance algorithm. If no 
collision happens in the direction, move the head node for a distance of 0.8 microns; 
otherwise the cell stalls and waits until next time step for a new moving direction. 
Next, apply the Monte Carlo algorithm described in section 3.1 to re-configure the 
positions of the rest nodes. Besides, cells reverse polarity every 50 time steps. We also 
include cell divisions. Typically cells divide after more than 10 times reversals [6]. The 
division rate is set in such a way that the total number of cells approximately doubles 
after about 3 hours, which is the typical duoubling time of the swarming stage. 

3.3   Simulation Results 

We first run simulations to demonstrate the head-sensing slime guidance algorithm 
for cells. As shown in Figure 7(a-d), the cells could efficiently orient along slime 
trails. Initially 10 cells were randomly distributed in space. The black dots and lines 
represent slime (cells are not shown in the figure).  

In swarming experiments, tens of thousands of cells form a solid wall at the edge 
of a circle with a radius of about 1.5 mm [1]. Due to the computation limit, we first 
look at a small curved section which is 167 microns in length and 17 microns in 
width. The length is about 1/60 of the perimeter of circle. Because the length of the 
section is much smaller than the radius of circle, the small section can be 
approximated as a rectangular area. We use a 100 ×1000 square as the simulation 
domain as shown in Figure 8, and the rectangular area is indicated as “Initial Area of 
Cells”. 1000 units of length are equivalent to 167 microns, so 6 units of length are 
equivalent to 1 micron. We distribute 1111 cells randomly in the rectangular area,  
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Fig. 7. (a) At 10 time steps, cells have not yet interacted with the slime trails deposited by other 
cells. The red arrows indicate directions of moving cells (cells are not shown in the figure).  
(b) At 25 time steps, some cells begin to follow the existing slime trails in the arrow-indicated 
areas. (c, d) At 40 and 55 time steps, more cells have been following and gliding on slime trails. 
The cell on the left does not meet any slime trail deposited by other cells, so it keeps gliding 
and reversing on its own slime trail. 

which corresponds to the case of close-packing of cells, because the average area 
occupied by one cell is 2.5 square-microns, the same as the area of one cell body. The 
sides a and c in Figure 8 are set to be periodic boundaries, and the upper side of 
“Initial Area of Cells” acts as a reflecting boundary, that is, when a cell crosses the 
boundary upwards, it will disappear, while another cell will emerge and cross the 
boundary downwards. The reason of doing this is that we only simulate a small 
section of the edge of cell colony, and the cell population in simulation region should 
keep roughly the same if not considering cell division.  

 

Fig. 8. The simulation region is a 1000×1000 square. Cells are initially distributed in the 
“Initial Area of Cells” as indicated. Sides a and c are periodic boundaries, while side d acts as a 
reflecting boundary. 
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Figure 9 shows the simulation results. We find that the edge solid with cells is 
broken in some positions, which leads to small gaps. Meanwhile raft and peninsula 
structures emerge, and the peninsulas are roughly radial if looking at the whole colony 
circle. These behaviors agree with the experimental observations in Reference [1]. 

 

Fig. 9. (a). Initially 1111 cells are randomly distributed in a rectangle area 167 microns in length 
and 17 microns in width. (b) At 20 minutes, some cells start to move outwards the edge and some 
small peninsulas form. (c) At 60 minutes and 80 minutes, gaps appear on the initial edge and 
larger peninsula structures form by merging of smaller ones. The peninsulas point downwards, 
corresponding to pointing outwards in radial direction if looking at the whole colony circle. The 
peninsulas are similar to the structures shown in the experimental Figure 1 (END picture). 

4   Discussion 

Both the modified LGCA model and the off-lattice model presented in this paper can 
simulate the peninsula formation during Myxobacteria swarming.  We have also used 
modified LGCA model to obtain a quantitative result of the relationship between 
expansion rate and initial density with the exponential coefficient being within 
experimental error.  However, several artifacts in the LGCA model became apparent 
while running simulations. The primary one is that a perpendicular direction for 
peninsula formation only occurred in a few points on the perimeter of the colony.  
The advantage of this model is that it can model up to tens of thousands of cells, and 
does produce initial patterns similar to that of experiment. 

The off-lattice representation for cells does not have geometric constraints. It 
allows for bending at small angles and stretching, and incorporates easily a detailed 
mechanism for slime guidance.  Therefore, we expect that the off-lattice model can 
provide more accurate results for swarming stage. With the off-lattice approach, we  
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plan to model in detail the quantitative properties of the swarming process, such as the 
expansion rate and the peninsula dynamics. We are also currently developing parallel 
algorithms to overcome the computational limitations of this approach.  
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