
Wetlands mapping in the Central African Congo River Basin using remote sensing 
multisource data 

 
I. Introduction 
 

Wetlands are areas inundated or saturated by surface or ground water at a frequency and duration 
sufficient to support a prevalence of vegetation adapted for life in saturated conditions (Federal register, 
Circular 33; 1984). There is no clear boundary between open water and wetland on the one hand and 
wetland and terrestrial communities on the other hand (Bradbury and Grace, 1983). Wetlands are seen as 
diverse mosaics of landforms, communities and environments acting as interfaces between terrestrial and 
aquatic systems (Naiman et al, 1998; Junk and Piedade, 2005). Clement (1905) and Hansen and Di Castri 
(1992) use the concept of ecotone to represent them as tension zones between plant communities. Junk 
(1980) and Odum (1985) argue that wetlands have a status of specific ecosystems because soil water 
saturation, anaerobic conditions, and flooding, provide specific environmental conditions that result in 
specific biogeochemical processes, organisms specific adaptations, and particularities in community 
structure and development (Junk and Piedade, 2005; Junk, 1980; Odum, 1981). Flooded forests, also 
referred to as forested wetlands, are wetlands with a significant component of woody vegetation, living in 
temporarily or permanently waterlogged or inundated soils (Lugo, 1990; Beard, 1944; Naiman et al., 1998; 
Trochain, 1957).   
 

The role of tropical wetlands in global climate system, ecosystem regulation, biodiversity 
conservation, water supply, water quality preservation and food supply has long been recognized (Naiman 
et al, 1998; Mathews and Fung, 1987; Segers, 1998). This has served as an important justification for 
promoting international wetland protection frameworks such as the Ramsar Convention (Davis, 1994) and 
other initiatives under the frame work of the Convention for Biological Diversity (Balmford et al., 2005). 
However, despite their economical and ecological importance, there are many uncertainties on their extent, 
distribution, and ecological and physical functions (Mathews and Fung, 1987; Junk and Piedade, 2005; 
Wang et al 1995). Political instabilities in most humid tropical countries during the last five decades, poor 
infrastructures, isolation and  difficult access may account in part for the scientific inattention (Campbell, 
2005). 

 
Although persistent cloud coverage often prevent data acquisition from passive remote sensing systems 

in equatorial areas, optical remote sensing data have widely been used for deforestation mapping, that is, to 
separate degraded from intact forest (Achard et al 2001, Hansen and Defries 2004, Hansen et al. 2003). 
Tropical wetlands however have had little attention from the remote sensing community especially in 
Central Africa (De Grandi et al., 2001). A number of studies have focused on mapping tropical flooded 
forests, most of them using active remote sensing data. Wang et al (1995) used radar backscattering for 
mapping the flooded and non flooded Amazonian forest. Van der Saden and Hoekman (1999) used 
airborne radar data to support the assessment of tropical primary forests. Hoekman and Quinones (2002) 
used airborne polarimetric SAR data for biophysical forest type characterization in the Colombian Amazon. 
De Grandi et al (2000) used wide area radar mosaics for flooded forest mapping at regional scale in the 
Congo Basin. Hess et al. (2003) used mosaicked L-band synthetic aperture radar (SAR) imagery for dual-
season mapping of wetland inundation and vegetation in the Central Amazon. Although these studies have 
demonstrated the great potential for using radar data for mapping tropical wetlands, many limitations 
remain to the application of standalone SAR data (Twonsend,  2002) because most of the analyses reported 
in the literature employed data from airborne SAR missions which are not widely available and a very few 
works have addressed the need for specifically mapping wetlands in the Congo basin.  

 
Over the years, a growing number of works have been suggesting approaches employing both passive 

and active remote sensing for better characterization of vegetation (Le Hegart-Mascle et al. 2003; 
Amarsaikhan and Douglas 2004). In fact, it has been shown that the use of multi-source remote sensing 
data offers improved classification accuracy as compared to the accuracy achieved by a single source 
classification (Briem, Benediktsson and Sveinsson 2002; Amarsaikhan and Douglas 2004). However the 
selection of appropriate analysis methods is still a challenge since conventional parametric statistical 



pattern recognition methods are not appropriate in classification of multi-source data (Briem, Benediktsson 
and Sveinsson 2002).  

 
The availability of optical and radar data as well as digital elevation models derived from passive 

and/or active remote sensing systems represent an excellent opportunity for mapping wetlands in the 
tropics as shown by Hamilton et al. (2007) for the Madre de Dios River in Peru. Our work presents result of 
classification of wetlands in the Congo River basin using multisource remote sensing data including 
Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+), the Japan Earth Resources 
Satellite (JERS-1) low and high water radar data and 3 arc seconds elevation data derived from the Shuttle 
Radar Topography Mission (SRTM).  
 
2. Materials and methods 
 
2.1 Study site 
 

The Congo Basin extends to approximately 3,000,000 km2 stretching from northern Cameroun to 
northern Angola. It holds the world’s second largest tropical forest with relatively uniform forest over 
approximately 2,000,000 km2 (Laporte et al, 1998) in six central African countries: Cameroun, Central 
African Republic, Congo, Equatorial Guinea, Gabon, and the Democratic Republic of the Congo. This 
research cover a rectangular area comprised between the parallels 5 degrees North and 6 degrees south and 
between the meridians 13 and 26.5 degrees East inside of the basin (fig.1). 

 
The climate of the region is generally warm and humid with two seasons: a long rainy season and a dry 

season. The average rainfall is about 1800 mm per year in 115 days (Bultot, 1974). As the basin 
encompasses the Equator, there is little seasonal variation for regions located 1 degree north or south of the 
Equator and an inverse seasonal variation far from that line in either side. The northern part of the basin 
experiences a rainy season from the first half of March to early November while in the south; the rainy 
season last from September to early June. There is little variation in the temperature throughout the year. 
The mean temperature during the year is approximately 25 degrees Celsius, but the difference between the 
high temperature of the warmest month (March) and the coldest month (July) is only 2 degrees Celsius 
(Bultot, 1974). 

 
The climax ecosystem is a tropical evergreen forest showing little or no seasonal variation (Mayaux et 

al, 2000; Lebrun and Gilbert, 1954). The highly heterogeneous upper canopy layer is composed of 
evergreen and shade tolerant species that can reach 35 to 45 meters height. They have irregular and very 
dense (70-100%) crown coverage which preclude the development of shrubs and grass in the under storey 
(Mayaux et al, 2000). However, the lower layers have two individual strata composed mainly of 
regenerating upper canopy layer species (Lebrun and Gilbert, 1954).  

 
At the border of the central basin, semi-deciduous forests become the dominant climax vegetation 

(Mayaux et al, 2000; Devred, 1958) in mixture with evergreen species in the upper canopy layer (Mayaux 
et al., 2000). The crown coverage totally closed during the rainy season can become slightly open during 
the dry season when some species loose their leaves. This favors the development of shade tolerant species 
in the lower canopy layers (Mayaux et al., 2000).  

 
Secondary forests are complexes of regrowth, fallow and crops with dense undergrowths and regular 

crown cover. The upper canopy layer is continuous and homogeneous with often Musanga cecropioides as 
dominant specie (Mayaux et al., 2000).  
 

Swamp forests are located along major rivers. They are temporally or permanently inundated and 
characterized by soils with poor drainage (Mayaux et al, 2000). These forests cover large areas in the center 
of the study site mainly in the western part of the Democratic Republic of Congo and the northeastern part 
of the Republic of Congo (Mayaux et al, 2000). 

 
 



2.2. Data sets 
 

2.2.1. Landsat Data  
 
Landsat ETM+ data were obtained from the University of Maryland Global land Cover Facility 

website (http://glcf.umiacs.umd.edu) for two different time periods (1990’s and 2000’s). We used NASA’s 
Orthorectified global Landsat dataset (Geocover) because they have less than 50-m root mean square 
location error (Neigh, Tucker and Townsend, 2007 in press). The Geocover coordinate system is defined in 
Universal Traverse Mercator (Hansen et al, 2008, in press).  Additional data were coregistered and 
resampled to fit the Geocover coordinate system using a ground control point automatic matching 
algorithm and by bilinear sampling (Hansen et al, 2008, in press).  

 
These Landsat data were normalized using the dark object subtraction (DOS) method to reduce the 

impact of sensor calibration change, difference in scene illumination and observation angle, variation in 
atmospheric effects, and phenological variations. A previous 250-m MODIS Vegetation Continuous Field 
(VCF) Forest / Non forest map (Hansen et al., 2003) was used to perform this normalization for infrared 
ETM+ bands 4, 5, 7 and for the thermal band 6. A cloud and cloud shadow classification tree model was 
developed and applied to each normalized Landsat scene to detect and to classify clouds and shadow into 
low, medium and high confidence categories. The resulting normalized Landsat scenes had reduced 
radiometric differences due to atmospheric and sun-sensor-target geometric variation (Hansen et al., 2008 
in press). 
 

2.2.2. Radar data 
 

 A mosaic of wide area multi-resolution and multi-temporal Synthetic Aperture Radar (SAR) of 
JERS-1 over the Central African region was compiled under the frame work of the Global Rain Forest 
Mapping (GRFM) project (Rosenqvist and Birket, 2002; De Grandi et al., 2000; Mayaux et al., 2002), an 
international collaborative effort managed by the National Space Development Agency of Japan (NASDA).   
These include 100-m spacing bi-temporal data resampled from 12.5-m resolution JERS-1 L-band 
horizontally co-polarized SAR data. These data were acquired in 1996 during January to March (low water) 
and October to November (high water) periods (De Grandi et al., 2000). They comprised georeferenced and 
calibrated wide area mosaic of both textural and radiometric information (Rosenqvist and Birket, 2002; 
Mayaux et al., 2002; De Grandi et al., 2000). For the present work, 8 bit binary image files representing 
brightness of radar reflections were converted to normalized radar cross section (σo) using the following 
equation provided by the GRFM project team: 
 
      (1) ( FDN ++= 2506log20 10

0σ )
 

- where DN is the digital number representing the brightness of each pixel and F is the calibration 
factor (-68.2 dB for the present data).  

 
Since the GRF mosaic was provided in direct Mercator projection (datum WGS84), it was 

reprojected using nearest neighbor resampling method to fit the Geocover data coordinate system. 
  
 
2.2.3. Elevation data 

 
Tropical wetlands are often arranged in linear pattern corresponding to valley bottoms (Saalovara et 

al., 2005). Topography is therefore important for wetlands characterization (Wolock and McCabe, 1999). A 
number of metrics that quantify the effects of topography on hydrological processes have been widely 
considered for hydrological modeling (Wolock and McCabe, 1999). Most of these topographic attributes 
can be derived from digital elevation data and are classified as primary and secondary elevation derivatives 
(Moore et al, 1991). Slope gradient (slope) and orientation (aspect) are primary attributes derived from 
digital elevation data while other attributes such as curvatures are secondary layers derived from these 
primary attributes.  

http://glcf.umiacs.umd.edu/


 
We used 3 arc seconds (approximately 92 meters) Digital elevation Model (DEM) derived from the 

NASA Shuttle Radar Topography Mission (SRTM), which was flown onboard of the Space Shuttle mission 
STS-99 in orbit from February 11 to February 22, 2000 (Hennig et al., 2001; Hamilton et al., 2007).   The 
DEM was derived from interferometric processing of single-pass data collected by a C-band (5.6 cm) SAR 
(Hamilton et al., 2007; Hennig et al., 2001) with an absolute vertical error less than 16 meters and a relative 
error less than 10 meters (Brown, Sarabandi and Pierce, 2005). It was reprojected from a spherical 
coordinate system (latitude and longitude) into Geocover coordinate system (UTM zone 33) and was used 
to derive a number of metrics by fitting a quadratic surface to the digital elevation data for a 3X3 kernel 
size window and taking the appropriate derivative using the ENVI software topographical modeling 
package. These include: slope, aspect, shaded relief, curvatures and Root Mean Square Error. 

 
The slope of a surface represent a change in elevation or the magnitude of elevation gradient in a specific 
direction, usually, the direction of the steepest path up or down the surface (Rana, 2006).  
For an analytical surface: 

 Z = F(x,y) =    (2) feydxcxybyax +++++ 22

Where a, b, c, d and f are constants, the slope (S) of the surface is defined as the magnitude of the first 
derivative of the surface function (De Smith, Goodchild and Longley, 2007): 
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Aspect is defined as the directional component of the gradient vector and is the direction of maximum 
gradient of the surface at a given point. It is the polar angle described by the two orthogonal partial 
derivatives of the surface function (Wood, 1996; De Smith, Goodchild and Longley, 2007): 
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Curvatures are single measures of the second order derivatives for an intersecting plane (Wood, 1996). This 
measure yields a different profile depending on the orientation of the intersecting plane (Wood, 1996; De 
Smith, Goodchild and Longley, 2007): profile convexity, plan convexity, longitudinal, cross-sectional, 
maximum and minimum curvatures.  

  The profile convexity intersects with the plane on the elevation axis and aspect direction and measures the 
rate of change of the slope along the profile (Wood, 1996). The plan convexity intersects with the x,y plane 
and measures the rate of change of the aspect along the plane (De Smith, Goodchild and Longley, 2007). 
These two surface curvature measures are in orthogonal directions; the profile convexity is oriented in the 
direction of maximum gravity effects and the plan convexity is in the direction of minimum gravity (Wood, 
1996). 

The longitudinal curvature (intersecting with the plane of the slope normal and aspect direction) and the 
cross-sectional curvature (intersecting with the plane of the slope normal and perpendicular aspect 
direction) are measures of the surface curvature orthogonally in the down slope and across slope directions, 
respectively (wood, 1996; De Smith, Goodchild and Longley, 2007). 

The maximum and minimum local curvatures of the surface are derived by intersecting a normal plane with 
the surface. Evans (1979) as cited by Wood (1996) introduced maximum and minimum curvatures for the 
above defined analytical surface in any plane as:  

( ) cbabaK +−+−−= 2
min      (5) 



and     ( ) cbabaK +−−−−= 2
max      (6) 

De Grandi et al. (1998) showed that the normalized standard deviation for radar data were a good 
discriminator for the thematic forest classes and therefore could be used for the characterization of flooded 
forest because it acts as an edge and point target detector in heterogeneous areas (edge) and will be a 
measure of the canopy or landform structure in homogeneous areas (De Grandi et al., 1998). Therefore, we 
integrate in the model, the Root Mean Square Error (RMS) which also indicates how well the quadratic 
surface fits the actual digital elevation data.  

Topographic position is of great importance for wetlands characterization due to location of most 
floodplain in valley bottom. Therefore, the accuracy of wetlands modeling depends upon the quality of 
landform extraction and modeling. For the present work, a terrain attribute of elevation with a local 
meaning was considered. The computation of this derivative requires prior calculation of hydrological 
topology as defined by flow paths and watershed delineation (MacMillan et al., 2000).  We used the D8 
method implementing the steepest descent approach (O’Callagan and Mark, 1984; Thompson et al., 1998) 
to compute the flow direction and the upslope contributing area (flow accumulation). Following 
O’Callagan and Mark (1984), we extracted channels as all points with accumulated areas above a certain 
threshold defined by the support area threshold. However, the question of what support area threshold to 
use is still important because different support areas thresholds return drainage networks of different 
densities. Tarboton et al.(1991) state that the drainage density (Dd) is inversely proportional to the square 
root of the support area (Sa) and suggest the use of the smallest possible for which elevation scaling related 
properties ( the power law, the bifurcation and length law and the area law) still holds. However, they also 
found that the use of higher support areas thresholds means that slopes are averaged over longer distances 
and therefore reduces the effects of DEM data errors (Tarboton et al., 1991; Tarboton and Ames, 2001; 
Tarboton, 1997).   

 
We therefore used six support areas thresholds of 500, 1000, 1500, 10000, 15000 and 20000 grid 

cells (92 x 92 meters size) in order to obtain maximum stream density layers (with smaller Sa) and to 
reduce effects of data errors at the same time using higher support areas thresholds. We obtain sets of 
synthetic stream channels of various   densities. A higher support area threshold (20000 grid cells) channel 
network was used for watershed delineation.  

 
We computed the local topography layer as the measure of the difference in elevation between the 

closest point along a river or stream and the surrounding points at the hillslope (Williams et al., 2000; 
Deng, 2007).  Each cell was evaluated in term of its absolute difference in elevation and horizontal distance 
to the nearest channel cell to which it is connected by a flow path (MacMillan et al., 2000). Due to the fact 
that SRTM was mapping the top of canopy, some anomalies appeared in areas were the flooded forest had 
a higher tree canopy height and most importantly, degraded forest connected to swamp forests appeared as 
depressions. Some of these anomalies were however attenuated with the higher support area threshold 
channel network. 
 
2.3. Methodology 
 

A classification tree algorithm (Breiman, Olshen and Stone, 1984) was used to estimate a per-
pixel likelihood of wetlands using training of swamp/non swamp to predict wetlands using multisource data 
layers described in the previous section as independent variables.  The classification tree uses a set of 
hierarchical rules that split data into two groups (child nodes) which are purer then the input group (parent 
nodes). The algorithm searches for the best univariate split (each decision rule is univariate) by iteratively 
selecting a threshold on the feature, then, computing the reduction of the residual sum of square, or 
deviance (Simard et al., 2002). The split that produces the greatest reduction of the deviance is used to 
divide the data and the process begins for the newly created subsets (Hansen et al., 2003).  
 

The tree is finally generalized (pruning) by cutting branches. A cost-complexity function is used to 
evaluate each node of the initial decision in term of classification error rate on the training set (Simard et 



al., 2002; Breiman, Olshen and Stone, 1984). The weakest nodes are successively cut to produce a 
sequence of smallest decisions trees which are subsequently tested using the training sets. The tree with an 
overall smallest misclassification error is selected as final (Simard et al., 2002). Each terminal node is 
finally labeled with the class which has the maximum proportion of samples (Simard et al., 2002; Breiman 
et al., 1984). For more details in the decision tree implemented in this study, the reader is referred to 
Hansen et al. (2003). 
 

Training sets were collected using manual photo-interpretation techniques on the Landsat ETM+ 
color composition, along a 3 pixels grid lines equally spaced in both X and Y direction to make sure that 
interclass variability is well sampled. This ensured that spatial variations in homogeneous and 
heterogeneous areas (where more mixed pixels and discontinuities are present) were both well captured to 
reduce bias.  
 
 Thirty perfectly fit trees were grown independently using 20% of the training samples selected 
randomly with replacement for each class (bagging) with 0.015% cutoff threshold.  This method uses a per 
pixel voting procedure based on thirty derived classification trees to label outputs. Per nodes likelihoods are 
used to derive mean class membership likelihood values for each pixel (Hansen et al., 2008, in press).  The 
procedure involves a fitting of a linear regression model to the data in each node in order to generate a 
mean cover value based on training data present in each node (See Hansen et al., 2003 for more details).  
 
Results are finally ranked using a per pixel comparison with the median result for each pixel. An overall 
median result is selected from the thirty ranked results to produce the final output map. However, this result 
layer presented some noises which were particularly obvious in some upland forests. Therefore, a standard 
deviation map was computed to check noises over the thirty mean maps. Higher values of the standard 
deviation indicate inconsistency in the reproduction of the results and therefore, a high likelihood of noises. 
By interactively evaluating this map over the entire study site, a threshold was defined in the standard 
deviation map in order to eliminate noisy pixels which were replaced by lower ranked results which 
showed fewer noises across the entire area. 
 
3. Results 
 
 The thirty bagged classification trees using all the 27 layers explained approximately 54% of the 
total root node deviance (Table 1). They returned around 670 terminal nodes with a mean classification 
accuracy of approximately 87% (13.0% misclassification error). All the predictors were used during the 
classification process each predictor contributing at different level to the reduction of the deviance. The 
local topography layers were the most important drivers for the classification explaining all together 30.6 % 
of the total deviance showing the relative importance of topographic position for wetlands occurrence. The 
first split in the tree used the local topography layer derived using 1000 grids support area threshold which 
alone explained 22.1% of the total deviance. The Landsat band 5 was used to split the first children nodes 
and explained 6.8% of the total deviance. The Landsat band 4 was used third and explained approximately 
3.4% of the total deviance. The slope layer which contributed for 3.2% to the reduction of the deviance was 
the fifth important layer. The local topography using the smallest support area threshold contributed for 
2.6%.  
 
All the remaining parameters were used for the classification even though their contributions were smaller. 
However, we didn’t create a parsimonious model utilizing a reduced number of parameters because we 
believed that even though the contribution of some parameters were small, they were targeting some 
specific areas in the swamp that the five most important parameters were likely to misclassify. 
Furthermore, it was less likely that the reduction of the number of metrics will provide any substantial 
advantage to the processing. Table 1 shows the relative contribution of each parameter to the classification. 



 
Table 1: Relative contribution of each parameters in the overall classification process 
 
Layer Name Deviance % Total 

deviance 
% Explained 

deviance  
    
Local Topography 1000 Grid Support Area threshold 117427.39 22.09940 40.92
Landsat Band 5 Time 2 36394.73 6.84936 12.68
Local Topography 20000 Grid Support Area threshold 21110.37 3.97289 7.36
Landsat Band 4 Time 2 18177.74 3.42098 6.33
slope 17082.51 3.21487 5.95
Local Topography 5000 Grid Support Area threshold 14262.88 2.68422 4.97
Landsat Band 5 Time 1 12480.10 2.34871 4.35
Radar high water 9858.23 1.85528 3.44
Landsat Band 5 Combined 6482.99 1.22007 2.26
Landsat Band 4 Combined 6282.73 1.18239 2.19
Local Topography 1500 Grid Support Area threshold 5055.78 0.95148 1.76
Local Topography 10000 Grid Support Area threshold 3739.49 0.70376 1.30
Landsat Band 4 Time 1 2908.42 0.54735 1.01
Root Mean Square Error 2668.25 0.50215 0.93
Maximum Curvature 2130.16 0.40089 0.74
Landsat Band 7 Time 2 1905.45 0.35860 0.66
Radar low water 1676.19 0.31545 0.58
Minimum Curvature 1354.68 0.25495 0.47
Landsat Band 7 Time 1 1340.40 0.25226 0.47
Shaded relief 1268.53 0.23873 0.44
Local Topography 15000 Grid Sp A thr 1177.43 0.22159 0.41
Aspect 1009.34 0.18995 0.35
Landsat Band 7 Combined 334.48 0.06295 0.12
Crossectional Convexity 309.65 0.05828 0.11
Profile Convexity 224.20 0.04219 0.08
Longitudinal Convexity 177.52 0.03341 0.06
Plan Convexity 116.85 0.02199 0.04
    
Total 286956.50 54.00416 
 

The first output map for wetlands is a per pixel likelihood of wetlands (fig.2) which was generated 
using the Vegetation Continuous Field (VCF) method as defined by Hansen et al. (2003). It shows the 
likelihood of non-wetlands over the study site ranging from 0 (absolute confidence of wetlands) to 99 (non 
wetlands). Overall, results agree well with the visual appearance in the Landsat color composition (fig. 3). 

 
A user defined acceptance threshold was used to separate between wetland and non wetland 

classes generating a wetland mask for the study site (fig. 4). This threshold was found by interactive 
evaluation of the model on the entirety of the data. Results show that 44% of the study site (322,356 Km2) 
is occupied by wetlands which represent the maximum inundable area comprising forested and non-
forested wetlands.  They predominate particularly in the Lake Tele/Tumba Landscape where they extend to 
207,467 Km2accounting approximately for 56% of the total landscape area which represent 373,302 Km2. 
This vast swamp bloc is located west of the Lake Tumba area across the border between the Democratic 
Republic of the Congo and the Republic of Congo. Another important swamp forest bloc is located west of 
the lake Mai-Ndombe in the Democratic Republic of the Congo specifically in the basin of the Lotoi and 
Lukuru rivers. 



 
4. Validation 
 
 Field validation for regional scale vegetation maps is still a challenge because of the difficulty to 
conduct ground truth in such a scale (Mayaux et al, 2002). For the present work, results were compared to 
existing maps: the Africover map for the Democratic Republic of the Congo (Africover, xxxx) and the 
vegetation map of Central Africa by Mayaux et al. (2002) which included swamp forest as thematic classes.  
Contingency matrices and a bivariate maps were computed between the swamp forest mask and the 
Africover and the GLC 200 vegetation maps for which all the wetlands classes were merged.  
 
 The overall accuracy representing agreement in both mapping the wetlands and non wetlands 
between the Wetlands mask and the Africover vegetation map of the Democratic Republic of the Congo 
(fig.6)  is 71.5% with a user’s and producer’s accuracy of 47 and 87% respectively and a Kappa coefficient 
of agreement  of 41.3% (Table 2).  
 
Table 2:  Vegetation contingency matrix and accuracy results for comparing Africover map and the 

wetlands mask. 
Wetlands Mask AFRICOVER 

Wetlands Non Wetlands 
   
Wetlands 128818.96 147399.62 
Non Wetlands 19863.90 291772.32 

Accuracy 
Accuracy Wetlands 

 (%) 
Non-Wetlands 

(%) 
User's accuracy 46.64 66.44 
Producer's accuracy 86.64 93.63 
 71.5% 
Kappa coefficient 0.41 

 
AFRICOVER Semi-deciduous forest class was the most confused with the swamp forest with a total 20.2% 
disagreement (Table 3). Several factors can explain these disagreements. First, an area of swamp forest in 
the Mankanza and Bomongo territories in the Democratic Republic of the Congo was probably 
misclassified by the Africover operators (fig.9). Second, ribbons of swamp forests along medium sized 
rivers in the Maringa-Lopori-Wamba CARPE landscape were classified as non swamp and semi-deciduous 
forests (fig. xx).   
 
Table 3:  Vegetation contingency matrix and accuracy results for comparing Africover map and the 

wetlands mask by classes. 
 
 

AFRICOVER  
Classes 

Wetlands  Mask % Error % 
Agreement 

Wetlands Non-
Wetlands 

  

     
Dense Humid 14509.13 18717.29 2.5 3.2 
Semi-deciduous 118462.02 187944.53 20.2 32.0 
Woody Savanna 7874.16 48364.48 1.3 8.2 
Dense Dry 36.57 146.44 0.0 0.0 
Secondary Forest 6388.99 36048.85 1.1 6.1 
Savanna 128.75 550.72 0.0 0.1 



Wetland 128818.96 19863.90 -3.4 21.9 
     
 276218.59 311636.21 28.5 71.5 

 
 

Third, small ribbons of swamp forests along small river networks are not taken into account in the 
Africover map whereas they are well evidenced in the wetland mask. Fourth, the boundaries between 
forests types are sometime fuzzy in case of visual interpretation such as in the case of the Africover map. 
Fifth, the color composition reveals clearly evidence of misclassification for some other swamp forest in 
the Africover map. Sixth, some discrepancies can result from overestimation or underestimation of 
wetlands during the thresholding process while creating the wetland mask. 
 
 The comparison with the regional Global Land Cover 2000 vegetation map of Central Africa 
(fig.4) shows an overall correspondence of 62.3% with a users and producer’s accuracy of 45.5 and 82.3% 
respectively and a kappa coefficient of agreement of 0.575. The main source of difference is due to 
misclassification of swamp forests in the lake Tumba / Lake Tele Landscape where the regional radar map 
classified large swamp areas as upland dense humid forests. In addition, the radar map was unable to detect 
swamp forests along medium sized and small rivers (fig.10).  
 
Table 4:  Vegetation contingency matrix and accuracy results for comparing the Global Land Cover 2000 

map and the wetlands mask. 
 

Wetland 
Mask 

GLC 2000 Regional map 
Wetlands Non wetlands 

   
Wetlands 96569 115698 
Non 
Wetlands 

20789 129090 

   
 117358 244788 

Accuracy 
Accuracy Wetlands (%) Non-Wetlands (%) 
User's 45.49 52.74 
Producer's 82.29 86.12 
Overall 62.31% 
Kappa .575 

 
 The Global Land Cover 2000 vegetation map of Central Africa 2000 compare also very well with 
Africover map with an overall correspondence of 66%, user’s and producer’s accuracy of 78 and 74% for 
non wetlands. However, there is less agreement on mapping wetlands with user’s and producer’s accuracy 
of respectively 41 and 47%.  The kappa coefficient of agreement is also very low (0.20) showing perhaps 
that these two maps may probably agree more by chance. Table 5 shows results of accuracy assessment for 
agreement between the Africover map and the Global land Cover 2000. 



 
Table 5:  Vegetation contingency matrix and accuracy results for comparing Africover map and the Global 

land Cover 2000 vegetation map. 
 

GLC 2000 
Regional Map 

AFRICOVER 
Wetlands Non Wetlands 

   
Wetlands 27,913 31,711 
Non-Wetlands 39,941 113,566 
   
 67,854 145,276 
   

Accuracy 
   
Accuracy Wetlands (%) Non Wetlands (%) 
Producer 41.14 78.17 
User's 46.81 73.98 
Overall 66.38% 
Kappa 0.1995 

 
Comparison with GPS points 
 
 

Swamp Mask Truth (Pixels) 
Non 

Wetlands 
Wetlands 

Non wetlands 4066 96 
Wetlands 487 1050 

  
 4553 1146 

Accuracy 
   
Accuracy Wetlands 

(%)
Non Wetlands (%) 

Producer 91.62 89.30 
User's 68.31 97.69 
Overall 89.77 

 
Kappa 0.7176 

 
Conlusion 
 
The use of multisource data for wetlands mapping in the Congo basin improved significantly the 
characterization of wetlands in the Congo basin. The process is fully automated except for training samples 
collection which is sometime labor intensive and requires the interpreter’s knowledge of the region’s 
vegetation and landforms. Although it was reported in the literature that SAR data are best suited for 
mapping wetlands, the backscattering response from upland forests sometime overlaps those of wetlands 
making it hard to discriminate between these two classes. The use of multisource data contributed to 
ameliorate the classification due to the complementary characteristics of multisource data.  
 



The Decision Tree analysis tool showed that, in this study, the DEM derivatives and landsat data were the 
most important drivers for wetlands characterization in the Central Africa region. This shows the 
importance of topographical position for wetlands occurrence.  
 
Overall, results agree well with the visual appearance of floodplains in the Landsat color composition. 
However, validation of the accuracy of wetlands characterization is still a critical issue. For the present 
study, due to lack of ground information, results were compared with existing maps (the AFRICOVER and 
the Regional Global Land Cover 2000 Central Africa Wetlands product). Results showed good 
correspondence with these two products even though there was important disagreement in specific areas 
due to inability of single sensors data used to generate both products to fully capture the variability of flood 
plains.  Even if the confidence in mapping wetlands seems to be satisfactory with our methodology, field 
information are still needed to support the accuracy of the classification. 
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Figure 1: Location of the study site 
 

 



 
 
 
 

 
 
Figure 2: Continuous field result showing the Likelihood of Non wetlands for the study site. 
 
 



 
 
Fig. 3: Comparison of the Continuous likelihood map with the color composition 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 4: Wetlands mask derived by thresholding the Continuous field result to 49% 
 



 
 
Figure 5: A closer view of the wetlands mask  



 

 
 
Figure 6: Bivariate map for accuracy assessment against the AFRICOVER map 



 
 
Figure 7: Bivariate map for accuracy assessment against the GLC 2000 Wetlands map of Central Africa 
 



 


