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AbstractAbstract

The early nonlinear phase of Rayleigh-Taylor (RT) growth is typically described 
in terms of the classic model of Layzer [1955] in which bubbles of light fluid rise 
into the heavy fluid at a constant rate determined by the bubble radius and the 
gravitational acceleration.  However, this model is strictly valid only for planar 
interfaces and hence ignores any effects which might be introduced by the 
spherically converging interfaces of interest in inertial confinement fusion.  The 
work of G. I. Bell [1951] and M. S. Plesset [1954] introduced the effects of 
spherical convergence on RT growth but only for the linear regime.  Here, a 
generalization of the Layzer nonlinear bubble rise rate is given for a spherically 
converging flow of the type studied by Kidder [1974].  A simple formula for the 
bubble amplitude is found showing that, while the bubble initially rises with a 
constant velocity similar to the Layzer result, during the late phase of the 
implosion, an acceleration of the bubble rise rate occurs.  The bubble rise rate 
is verified by comparison with full, 2-D hydrodynamics simulations.
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MotivationsMotivations

• Understanding the nonlinear phase of RT growth is important for 
IFE where optimized capsule designs may “push the limits” of 
hydrodynamic instability.

• Layzer’s model [1955] simply & quite accurately describes 
nonlinear RT bubble growth but is strictly valid only in planar 
geometry.

• Is there an analogous model for a spherically converging system 
more relevant to IFE targets?

• Finding an analogous analytical model could provide a rigorous &
relevant nonlinear test problem to validate hydro codes.

• Model might also reveal interesting scaling properties of nonlinear 
bubble growth.

• Problem has not been solved, but appears solvable…
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OutlineOutline

• Review of Layzer’s nonlinear RT bubble model

• 1st attempts at adapting Layer’s model to converging geometry

• Review of Kidder’s self-similar spherical implosion — from an RT 
perspective

• A model of nonlinear RT growth in a self-similar implosion

• Comparison with HYDRA simulations
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Nonlinear bubble growth in planar geometry: 
Davies & Taylor [1950], Layzer [1955]

Nonlinear bubble growth in planar geometry: 
Davies & Taylor [1950], Layzer [1955]
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Layzer model agrees remarkably well with 
hydrodynamics simulations

Layzer model agrees remarkably well with 
hydrodynamics simulations

g
Measuring bubble growth from ALE hydrodynamics simulations with 
HYDRA (with uniform gravity  ) shows approximately linear bubble
growth in time.

Symmetry along z and constancy of acceleration make it “easy” foSymmetry along z and constancy of acceleration make it “easy” for flow tor flow to
“attract” to Layzer solution.  Symmetry does not apply in conver“attract” to Layzer solution.  Symmetry does not apply in converging case…ging case…
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Nonlinear growth in converging geometry:  
convert cylindrical boundaries to conical

Nonlinear growth in converging geometry:  
convert cylindrical boundaries to conical

Replace bubble rising in cylinder with bubble rising 
in cone to capture lowest order convergence effect:

I.I. no longer expect constant bubble rise velocity no longer expect constant bubble rise velocity 

II.II. cannot choose convenient coordinates fixed in cannot choose convenient coordinates fixed in 
bubble frame where flow is time independentbubble frame where flow is time independent

III.III. frame of accelerating interface no longer  frame of accelerating interface no longer  
equivalent to uniform gravitational fieldequivalent to uniform gravitational field

Now seek self-consistent, time-dependent solution 
near bubble apex to 

0== )( βθυθwith                          and                          .

)(cos)( θφ ν
ν PrtA≈Using                                   , find that bubble decelerates

while rising:

0

22  
2
1)(        0

=

−−∇−==∇
S

t gzptF
ρ

φφφ and

∞<→ )0( rv

{ } ∞→−−→ ννν    ,   /)/( 0 tgagu
r

β

θ

0r

u
g



HIF Symposium  8

Nonlinear growth in converging geometry:  
adopt a contracting coordinate system

Nonlinear growth in converging geometry:  
adopt a contracting coordinate system

In place of a bubble rising in a cone under gravity, consider  flow 
satisfying conical boundary conditions in a coordinate system 
accelerating spherically inward:
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Kidder’s [1974] self-similar (homogeneous) 
spherical implosion

Kidder’s [1974] self-similar (homogeneous) 
spherical implosion

Assume a uniform (1-D), isentropic, compressing flow (                       )
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Nonlinear RT growth during a Kidder-type 
implosion

Nonlinear RT growth during a Kidder-type 
implosion

Consider nonlinearly perturbed Kidder-type implosion:
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Bubble shape is “self-similar” with flowBubble shape is “self-similar” with flow
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RT Bubble amplitude and implosion scale factor 
are coupled

RT Bubble amplitude and implosion scale factor 
are coupled

Substituting into Bernoulli’s eqn. and likewise expanding to    
gives two eqns. to determine         and         simultaneously

For            , 1st eqn. reduces to Kidder’s eqn., so may approximate

.  The 2nd eqn. may then be solved for        by the WKB method
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Numerical & WKB solutions predict greater 
bubble growth than in Layzer model

Numerical & WKB solutions predict greater 
bubble growth than in Layzer model

In the cylindrical limit (           ) and for early times (    ), Layzer-like 
bubble growth and bubble curvature are recovered         

Numerically integrating ODE’s confirms                  for     as well as 
“faster-than-Layzer” growth for                    — presumably due to greater 
effective acceleration         at late times.
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Full 2-D hydrodynamics simulations confirm 
acceleration of bubble growth

Full 2-D hydrodynamics simulations confirm 
acceleration of bubble growth

Apply external Kidder pressure source in HYDRA simulations with 
imposed nonlinear perturbation and measure bubble growth.

Agreement with the theoretical bubble curvature on axis and bubble rise 
rate are evident.  Similar results were found for larger and smaller 
values of   .ν

R(θ,t)

HYDRA
numerical
WKB

Layzer
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Careful specification of the nonlinear initial 
conditions was required

Careful specification of the nonlinear initial 
conditions was required

Substantial ALE relaxation of the mesh was also required throughout 
the simulation.

Careful specification of the initial conditions according to the theoretical
, , and (in the dense fluid as well as the low 

density pusher) was required to avoid shock formation and obtain
“correct” nonlinear bubble growth.
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Summary & ConclusionsSummary & Conclusions

• Layzer’s model quite accurately describes nonlinear RT bubble 
growth but is strictly valid only in planar geometry.

• By combining Kidder’s self-similar implosion with a Layzer-like 
bubble rise model in spherical geometry, a bubble model for 
spherical interfaces more relevant to IFE can be developed.

• Model reveals initial bubble growth linear in time like Layzer, 
followed by late time acceleration.

• Comparison with full, 2-D numerical simulations confirms bubble 
curvature and bubble acceleration predictions but requires care in 
specifying initial conditions.

• Extending the theory from the imploding solid sphere considered 
so far to imploding shells and non-self-similar flows is underway.


