Selected Topics in Computer Programming #1

It
E

last update: 2008-03-28

Selected Topics in Computer Programming #1

To Copy or Not To Copy:
A Deeper Look at Values in C++

Je
aE

Walter E. Brown, Ph.D.
Computing Division
£& Fermi National Accelerator Laboratory

Copyright © 2006-2008 by Walter E. Brown. Al ights reserved.

A little about me 2

B.A. (math’s); M.S., Ph.D. (computer science).
Professional programmer for nearly 40 years.
Experienced in both academia and industry:

= Founded Comp.Sci. Dept.; served as Professor
and Dept. Head; taught/mentored at all levels.

= Managed/mentored programming staff for a computer reseller;
self-employed as a software consultant and commercial trainer.
At Fermilab since 1996; now in Computing Division/LSC Dept.,
specializing in C++ consulting and programming.
Participant in the international C++ standardization process.
Be forewarned: Based on the above training and experience,
1 hold some rather strong opinions about computer software

and programming methodology — these opinions are not shared by all
programmers, but they should be! ©

Qur most important resource: memory, aF

A digital computer’s memory is modelled as a sequence
of cells (bytes, words, registers, units, ...):

= The size (capacity, width, ...) of a cell is measured in bits.
= All cells within a memory have identical capacity, w bits.
Associated with each cell are:

= |ts memory address, a unique unsigned integer denoting
that cell’s permanent position in the sequence, and ...

= |ts contents, a specific pattern of w bits.

Today’s topics =
e Values and their role in modern C++ (“C++03”)

= Behind the scenes: the two kinds of values
= The impact of context in values’ use
= Value copying: prevalence, cost, and mitigation
¢ New uses of values in the next C++ (“C++0X”)
= Anew kind of reference
= Application for significantly improved performance

= Solution to a previously unsolved programming problem

Memory address characteristics 3
e Agiven cell’s address is determined by the circuitry:

= Two cells are neighbors iff their addresses differ by 1.
= Neighboring cells are described as contiguous or adjacent.
= Cells are remote from each other if they are not adjacent.

* From a programming perspective, memory addresses are
considered Ivalues:
= High-level programming languages let programmers use
symbols (names, identifiers) in lieu of addresses.

= Programmers then rely on a compiler to select addresses
and then map their program’s names to those addresses.

A

Memory contents characteristics
* As conceived by J. von Neumann (following A. Turing),

any cell’s contents can represent:

@ An encoded instruction, or ...

@ An encoded data value.

¢ From a programming perspective, memory
contents are considered rvalues:

= Since all bits look alike, we can’t tell by inspecting an rvalue
what kind of information it encodes.

= We therefore don’t know how to decode the rvalue unless
we have some external knowledge about it.

= Programmers rely on a compiler to track each rvalue’s type,
so that any rvalue’s bits can be properly interpreted
(encoded and decoded).

Cooperating_cells form important abstractions 3=
¢ A function is an organized e Adata structure is an organized

collection of instructions collection of data values

that cooperatively denote that cooperatively denote

a logical task: a logical object:

= Lets us think and reason
about the object
as if it were a single
(composite) data value.

= Lets us think and reason
about the task
as if it were a single
(composite) instruction.

¢ A function is conventionally * An object is conventionally
identified via the address identified via the address
of the cell holding its leading of the cell holding its leading
(initial/first) instruction. (initial/first) datum.
= Use the leading address

of the object’s principal part

if the object is linked

to remote parts.

A historical perspective 2

“About 1,000 instructions is a reasonable upper limit
for the complexity of problems now envisioned.”

— Herman H. Goldstine & John von Neuman,
1946

‘.g;’ @
3 4

In the context of a high-level expression £

e Sometimes an Ivalue (address) operand is needed:

= E.g., the left operand of a traditional assignment
(operators =, +=, —=, etc.).

e Other times an rvalue (data value) operand is needed:

= E.g., the right operand of a traditional assignment.
e Some operators give an Ivalue result, others give an rvalue.
¢ In addition to a result, other side effects may also ensue:

= E.g.,1/0, further memory updates, thrown exceptions, etc.

Instruction architecture IF
e Each instruction:

= Has one operator, ...
= Has zero or (usually) more associated operands, and ...
= (Usually) produces a result.

e Each operand and each result represents a point of
interaction with the computer’s memory:

= Each instruction documents the nature of each such
interaction either as a data value or as an address.

= Atalow level, the distinction affects the circuitry that is
activated to deal with the operand/result.

= At a high level, the distinction affects the code that is
generated.

10

Recognizing Ivalues and rvalues in C++ 3
e An operandis an Ivalue:

= |If it is named (i.e., an alias for a cell’s address), or
= |f it has reference type (also an alias for an address), or ...
= |f it has array type (more about arrays shortly), ...
= Otherwise it is an rvalue.
¢ A few interesting cases:

= Literals are rvalues, usually corresponding to some encoded
bit pattern that need not occupy program storage; ...

= But a string literal is an lvalue, since it corresponds to an
in-memory array of characters.

= The result of a function call is unnamed, hence is an rvalue
unless it’s of reference type.

12

The Ivalue-to-rvalue conversion 3=

e Any address can be used to obtain its cell’s value:

= E.g.,via a microcoded memory fetch or read.

= Analogously, any C++ Ivalue is convertible to its cell’s rvalue.
e Such conversions are very, very common:

= They will happen implicitly whenever an Ivalue is supplied
in a right-hand context (one which demands an rvalue).

= |.e., aconversion happens each time a programmer supplies
an Ivalue operand to an operator needing an rvalue there.

= Example: a=b; // rhsIvalue converted to rvalue before assigning

= The cost of the conversion depends on the rvalue’s type.

Examples of Ivalues and rvalues 5
e Literals:

=3 // an rvalue (of type int)

= "abc" // an Ivalue (of type char const [4])
o After declaring int i; :

= // an lvalue

= (i) // an Ivalue (unaffected by parentheses)

= i+3 //int addition yields an rvalue

=i=3 // int assignment yields an Ivalue
e After declaring int f(int);:

= f(3) // call to f yields an rvalue

= f(i) // call to f yields an rvalue
e After declaring int & g(int);:

= g(3) // call to g yields an (anonymous) Ivalue

= g(i) // call to g yields an (anonymous) Ivalue

13

Mutable vs. immutable values £

e Each value (whether an Ivalue or an rvalue) is further
classified as modifiable or nonmodifiable:

= The sole criterion is the value’s mutability/constness.
= Thus each named variable is an Ivalue, whether const or not.

= The result of a function call can be a modifiable rvalue.

updates the newly-

class C {

. i created mod. rvalue
private:

int 1 ¢)iner()
public:

C():i(o) {} c'tor produces

a modifiable rvalue

void incr () { ++i; }

L

R

Analyzing_some traditional operators

e Arithmetic, relational, and shift operators:
= Take two rvalues as operands.
= Yield an rvalue result.
e Assignment operators:
= Take one modifiable Ivalue and one rvalue as operands.
= Yield an Ivalue result.
¢ Increment and decrement operators:
= Take one modifiable Ivalue operand.
= Prefix forms ++i and --i yield an Ivalue result, but ...

= Postfix forms i++ and i-- yield an rvalue result.

Using_pointer types 3F
e Use of a pointer value is an rvalue:

= Same as using a value of any other type.
e Use of a pointer variable’s name is an Ivalue:
= Same as using a named variable of any other type.
¢ An lvalue of pointer type can implicitly decay (be
converted) into an rvalue:
= Happens via an ordinary Ivalue-to-rvalue conversion, ...
= Same as using an lvalue of any other type.

= The result of such a decay is a pointer value.

_Analyzing some pointer-related operators 3=
e Address-of operator (unary &):
= Takes one Ivalue operand.
= Yields a pointer value (i.e., an rvalue) as its result.
¢ |Instantiation operator (new):

= Allocates (obtains) memory for an unnamed variable
via an allocation function (operator new), then ...

= Initializes that memory via the appropriate c’tor.

= Yields a pointer value (i.e., an rvalue) as its result.
o Dereferencing operator (unary *):

= Takes one rvalue operand of pointer type.

= Yields an Ivalue as its result.

Arrays’ relationship to pointers g

e Use of an array’s name is a nonmodifiable Ivalue:

= When needed, decays into a pointer value (i.e., an rvalue).
¢ An ordinary Ivalue-to-rvalue conversion for an array type.
= The pointer value denotes the array’s leading item.
e Array instantiation operator (new []):
= Yijelds a pointer value (i.e., an rvalue) ...
= That denotes the new array’s leading item.
e Indexing/subscripting operator ([]):
= Recallthata[b]isdefinedas*(a+b).
= Hence its operands are rvalues (same as binary +) ...

= And it yields an Ivalue (same as unary *).

Functions’ relationship to pointers 3=

e Use of a function’s name is a nonmodifiable Ivalue:

= Decays implicitly into a pointer value (i.e., an rvalue).
* An ordinary Ivalue-to-rvalue conversion for a function type.

* Use of a function template-id f<---> is likewise
a nonmodifiable lvalue that decays implicitly.

= The pointer value typically denotes the function’s leading
instruction.
o Call operator () takes two operands:
= Left: an rvalue designating the callee (function to be called).

= Right: an argument list (a sequence of Ivalues and rvalues
consistent with the callee’s type).

= Yields an rvalue result unless the callee’s return type
specifies an Ivalue result.

Simple decay can be just what's needed £
e Function example: e Array example:
= typedef void F(int); = typedef int A[10];
void f(int); A a;
F* fp = &f; A* ap = &a;
(*fp)(3); (*ap)[3];

// pointer lvalue ® decays to an rvalue,

// that then @ is dereferenced to obtain an Ivalue,

// that then ® decays to yield the rvalue left operand
fo(3); \ ap[3];

// equivalent semantics via a single decay

Using traditional reference types 3=

o A value of traditional reference type is an lvalue, no matter
how it was produced:

= float const & pi() { //yields a nonmodifiable Ivalue when called
static float const pi = 3.1415926F;
return pi;
}
e Use of a named variable of reference type is an Ivalue:
= Same as using any other named variable.

¢ Given an lvalue reference (lvalue of reference type), what
can be bound to (initialize) it?

= |f modifiable, only a modifiable Ivalue.

= If nonmodifiable, any Ivalue or any rvalue.

22

Je

Examples of Ivalue reference bindings €

e Can bind only a modifiable Ivalue to a modifiable Ivalue
reference (maintains const-correctness):

= int m;
int&r =m;
e Can bind any lvalue/any rvalue to a nonmodifiable Ivalue
reference:
= int m;
intconst& r = m; // binding a modifiable Ivalue

" intconst n = O;

intconst& r = n; // binding a nonmodifiable Ivalue
= intconst& r = int(); //binding a modifiable rvalue

= intconst& r = 0; // binding a nonmodifiable rvalue

Je

Binding during call/return 3

¢ |Initialization semantics also apply to parameter passage:

= Before the caller gives over control to the callee, ...

= Each argument from the argument list is bound ...

= Toits corresponding parameter (function-local variable).
¢ |Initialization semantics also apply to result return:

= Before the caller regains control from the callee,
the return statement’s value is bound
to some ephemeral (temporary) object owned by the caller.

= RVO (return value optimization): a compiler may elide this
binding if the caller immediately binds his ephemeral to
another target; i.e., 1 binding may replace a sequence of 2.

24

Copying in today’s C++ g

e Always involves an Ivalue target (destination).

¢ Non-native types carry out copying via member functions:
= Namely, copy c’tors and copy assighment operators, ...
= With each taking a source (original) as its parameter.

e Such copy functions have several possible signatures, e.g.:

= // copy without modifying the source:
T(Tconst& src);
T & operator = (T const & src);
= // copy from only a modifiable Ivalue source
// (not generally recommended, but used, e.g., by std::auto_ptr<>):
T(T& src);
T & operator=(T & src);

25

But copying_isn’t always what it seems to be 3=
e Neither arrays nor functions have copy operators, so:
= An apparent array copy first produces a decay,
then copies only that decayed rvalue.
= An apparent function copy first produces a decay,
then copies only that decayed rvalue.
e Array example:
= void f(int[10]);
int a[10];
fla); // a pointer rvalue is bound, not the array a
e Function example:
= void g(int(int));
int h(int);
g(h); //apointer rvalue is bound, not the function h

Why should we programmers care about copying? aF
e Per the C++ Standard, copying occurs frequently “in
various contexts” [12.2] during execution, e.g.:

= When “binding an rvalue to a reference,
= returning an rvalue,
= aconversion that creates an rvalue,

= throwing an exception,

= entering a handler,
= and in some initializations.”
e Copying can be (very) expensive.
= The costs depend heavily on the source’s data type.

= E.g., copying a std::vector<T> is O(n-t) in time and space.

Strategies to mitigate costly or repeated copying 2=
e Avoid implicit copy operations when not needed:

= F.g., prefer ++i to i++.

= F.g., prefer a += 10 to a = a+10.
e Precompute and cache const values to avoid recalculation.
e Choose parameter passage with size in mind:

= Pass small, cheap-to-copy objects (e.g., ints) by-value.

= Pass larger, costly-to-copy objects by-const-reference;
references are always cheap to initialize.

e Prefer smart pointers to native pointers:

= Copying a native pointer is cheap, but introduces
ownership (lifetime management) issues.

= Details presented in course dedicated to pointers.

Je

Example: unnecessary temporaries [Sutter, 2000] aF
e “A programmer has written the following function, which
uses unnecessary temporary objects [...].”

= typedef std:list<Employee> e_list;

std::string FindAddr(e
\std::string/name) {

for (e_list::const_iterator it = e.begin()

return it —> addr;

}

return "";

28

Introducing.a new technique o

¢ In general, reduce costs via strength reduction:
= Use a semantically equivalent but cheaper operation ...
= In place of a more expensive operation.

e In C++0X, prefer move semantics to copy semantics:
= By making selected types movable, and ...

= By making selected client code move-aware.

30

Selected Topics in Computer Programming #1

To Copy or Not To Copy:
A Deeper Look at Values in C++

It
E

End of Part 1
Part 2 will discuss Ivalues and rvalues
in the context of the next C++ standard,
emphasizing new coding opportunities
that lead to improved runtime performance.

R

Today’s topics
v’ Values and their role in modern C++

v' Behind the scenes: the two kinds of values
v’ The impact of context in values’ use
v Value copying: prevalence/cost/mitigation
e New uses of values in the next C++
= Anew kind of reference
= Application for significantly improved performance

= Solution to a previously unsolved problem

Overview of move semantics A

e Moving can safely replace copying whenever:
= The source’s value is about to be replaced, or ...
= The source is about to go out of existence in toto.
= [.e., we won't again use that value from that source.
e We can then safely move (pilfer ©) from that source:
= Provided that the source is left with some value ...

= That is consistent with at least basic exception safety
(invariants hold and no resources are leaked).
= Beyond that, a client doesn’t/can’t care what that value is:
* Since that value is about to be replaced or to go away ...

¢ The larceny that is move semantics is an acceptable strength
reduction for much traditional copying.

Copy semantics vis-a-vis move semantics 3¢
e Copy assignment (and copy c’tor) semantics:

= assert(b ==orig); // precondition
a=b; // side effect on a only; b is unaffected
assert(a==b && b==orig); //postcondition

e Move assignment/move c’tor has weaker semantics:

= assert(b == orig && &b != &orig);
a = std::move(b); //side effect on a and maybe also on b
assert(a == orig);

e For some types, a move is much cheaper than a copy:
= The postcondition is weaker, so there’s often less work.

= A compiler will automatically optimize move-aware code
whenever it’s applied to a movable type.

34

Advantages of a move-aware std::vector, part 1 £

e std::vector<T> can make good use of T’s movability when
creating a new internal buffer:

N old buffer LITTTTTT oldbuffer

U
EEEuEEEEEEEEEE Ny _jjmﬁffj

= Elements are now moved (not copied) to the new buffer.

= Why? Since the entire old buffer is about to be destroyed,
we care little about its elements’ post-move values.

Advantages of a move-aware std::vector, part 2 %

e std::vector<T> can make good use of T’s movability when
inserting (or erasing) within a single buffer:

= Elements can be moved (not copied)
within the buffer to create a “hole”
for the new element.

= Why? Since each “hole” quickly gets
anew value, we care little about its
post-move value.

vk

36

A

Advantage of a moveable std::vector

e Example:
= std::vector<T> f(---) {
std::vector< T > result;
// calculate result, then ...
return result; // will exploit vector<>’s movability
}
= Why? Move semantics are applicable in the above return
because of the imminent end of result’s lifetime.

e Moving a std::vector is far less expensive than copying it:

= Copying entails allocating a new buffer, then copying each
element of the old buffer into the new one, but ...
= Moving entails only two cheap pointer assignments:
® Take possession of the old buffer, and
@ Leave a vacuous buffer behind!

37

R

_Applicability of move semantics
¢ Move semantics can be exploited explicitly:

= E.g., a = std::move(b);

= Typically to take advantage of an algorithm’s pattern
of memory access, as determined by a programmer.

e Move semantics can also be exploited implicitly:
= By acompiler ...
= Whenever the source of a copy is a modifiable rvalue ...
= Asis true of most ephemerals!

¢ Atype must be movable before move-aware code (such as
the above) can exploit it:

= Movable types and move-aware code are made possible
via a new C++ language feature, the rvalue reference.

What is an rvalue reference? [H. Hinnant, 2002-2006 £
e A compound type, much like a traditional reference:

= Formed by placing && after a type name: T && .
e Examples:

= T&& r = T(); //rvalue bound to modifiable rvalue ref r

" Tt
T&& r =t; //Ivalue t bound to modifiable rvalue ref r

e Today’s rules remain unchanged:
= T& r = T(); //no:still can’t bind rvalue to modifiable Ivalue ref

= Tconst& r = T(); //still okay when r is nonmodifiable

Bindings to references 3

Permitted hindings to C++ reference types;
overload resolution preferences are numbered

4

New function overloading_options 3=

e Can now overload a function on Ivalue/rvalue parameters:

= void f(intconst&) {---} //#1
void f(intconst&&) {---} //#2

e Overload resolution will pick the correct version to call:

= f(i); // Ivalue argument; calls #1 as a better match
f(i+1); //rvalue argument; calls #2 as a better match

¢ A function taking rvalue references is often most valuable
when it overloads functions that take Ivalues.

40

_Type deduction from an rvalue reference 3=

e Today’s deduction rules don’t cover this new scenario:

= template < class T >
void f(T &&) //how to deduce T when fis called?
{1
¢ Additional deduction rules (current rules unchanged):

= When the above function template is invoked via f(3)
(i.e., with an rvalue argument of type int),
T will be deduced as int, calling f<int>(3).

= When the template is invoked via f(i)
(i.e., with an Ivalue argument of type int),
T will be deduced as int &, calling f<int &>(i).

42

Reference-to-reference types g

e C++ has long prohibited the formation of any reference-to-
reference type:

= E.g., if Tisdeduced as int &, then returning T & is equivalent
to returning int &, a simple reference.

e We introduce analogous rules for rvalue references:

The new library component std::move() 3=

e Designed:

= To accept a modifiable (lvalue/rvalue) argument, and ...
= To return that argument as an rvalue, but ...
= To use only references (to avoid copying any object).

e template<classT >
std::remove_reference<T>::itype &&
move (T && t)
{ return t; }

e Combined with type deduction rules (shown earlier),
std::move() lets us write move-aware code that can take
advantage of any movable type T .

Deduced T Returning Produces
int& ‘ T& ‘ int&
int & T&& int &
int && T& int &
int && T&& int &&
43
Evolution of a move-aware standard algorithm 2

e template<classT >
void swap(T& a, T& b) {

tmp(a); T tmp(std::move(a));
a=m a = std::move(b);
) b =tm b = std::move(tmp);
e Each line in the body copies a source to a target:
= |f Tis a class, uses potentially expensive copy-function calls.
= We'd strongly prefer no copies; we just want to swap!

e Let’s recode the body to be move-aware such that:

= |f Tis movable, swap() can avoid the copying and so provide
improved performance.

= |f Tis not movable, swap()’s behavior is unchanged

(preserving backwards compatibility).
45

Movability is orthogonal to copyability 2=
* A class can be copyable, movable, both, or neither:
= |t’s up to the class designer/implementor.

= No class is movable by default; a programmer must explicitly
provide the pair of move functions.

e A class can usefully be movable even if not copyable!

= F.g., today’s standard streams are noncopyable by design,
but will become movable in the next C++, allowing ...

= std::vector<std::ofstream> v;
v.push_back(std::ofstream("myfile"));

= This will work because the move-aware std::vector<> will
require only movability, not copyability, of its elements.

47

How to make a class movable 3F

e Augment the class by adding
® a move c'tor, and @ a move assignment operator:

o Skeletal example:
from the source to the target
class C {
private:
. a resource-free source
public:
c():p(0) {}
C(C&& src) : p(src.p) { src.p =0; }
C& operator=(C&& src) {
std::swap(p, src.p);
return *this;
|
~C() { delete p; } of the source and the target

g

46

Phasing_in move semantics 3

@ Existing code retains existing behavior:

= Except that any use of standard components may show
improved performance ...

= Just by recompiling/relinking with a move-aware library.

= E.g., several std::vector<> operations immediately become
much faster, on average!

@ Algorithms can gradually be made move-aware:
= To take greater advantage of movable components ...
= Often just by inserting judicious calls to std::move().
® Classes can gradually be made movable:

= So that move-aware client and library code can take
advantage of performance improvement opportunities.

= Not every class needs to be made movable.

48

A

Move-aware std utility components

e std::move()

e std::move_iterator< >
e std::make_move_iterator()
e Example (std:: omitted for clarity):
= |ist<string> s;
= // C++03: copy sequence of strings into v
vector<string> v (s.begin()
,s.end());
= // C++0X: move sequence of strings into v
vector<string> v (make_move_iterator(s.begin())
, make_move_iterator(s.end()));

49

R

When to make a class movable?

e Let M denote a type such that:
= M has direct resource-ownership semantics, or ...
= Miis already movable (read M's documentation!).
e A class C will likely benefit from move semantics if:
= C has an M-like direct base class, or ...
= Chas an M-like nonstatic data member.

e What about a class template with a base/member
of a generic type T?
Advice: make the template movable, because ...

There is potential for a substantial performance gain
when T is M-like, and ...

There’s no performance loss when T is not M-like (the
attempted move in that case just copies, as before).

A

The forwarding_problem
e Wewantacallf(ay,a,, -, a,)that will:

= Internally forward to (call) g (a,, a,, --*, a,) such that ...

= ftakes an argument list of n arbitrary types and ...

= Passes that list to g, Ivalues as Ivalues, rvalues as rvalues.
¢ Additional constraints:

= Valid uses (calls) of g must also be valid uses of f.

= |nvalid uses of g must also be invalid uses of f.

= f must be implementable in at worst O(n).
* No solution is possible in today’s C++:

= Several come close, but none is perfect.

= C++ with rvalue references does allow a perfect solution.

51

Consider just the generic two-argument case aF

* template< class T, class A1, class A2 >
std::shared_ptr<T>
factory(Al & al, A2 & a2); //forwardal, a2toT’s c’tor
* template< class T, class A1, class A2 >
std::shared_ptr<T>
factory(Al const & al, A2 const & a2);

* template<class T, class A1, class A2 >
std::shared_ptr<T>
factory(Al const & al, A2 & a2);
* template< class T, class A1, class A2 >
std::shared_ptr<T>
factory(Al & al, A2 const & a2);
¢ And even all these don’t cover:
= volatile and const volatile (admittedly rare, but possible).

= Call-by-rvalue-reference, plus all its cv variants.
52

Solving the forwarding problem in the next C++ £

e template<class T, class Al, class A2 >
std::shared_ptr<T>
factory (A1 && al, A2 && a2)
{

return std::shared_ptr<T> (new T(std::forward<A1>(al)
, std::forward<A2>(a2)

));
}

e This example twice uses the new library component
std::forward<>() ...

= To forward two arguments, each of arbitrary type,
to a two-parameter c’tor of type T...

= Preserving each argument’s Ivalue/rvalue-ness.

In sum 3
e Programmer attention to Ivalues and rvalues is very
important to achieve effective and efficient code
in today’s C++ programs.

e Future C++ programs will be able to take increasing
advantage of lvalue/rvalue distinctions:

= To improve performance, sometimes dramatically, under
common circumstances, and ...

= To apply coding techniques not previously possible.

54

FIN

Selected Topics in Computer Programming #1

To Copy or Not To Copy:
A Deeper Look at Values in C++

It
E

Walter E. Brown, Ph.D.
Computing Division
2% Fermi National Accelerator Laboratory

Copyright © 2006-2008 by Walter E. Brown. All rights reserved.

10

