
MODELS FOR INTEGRATING SCHEDULING AND SHOP FLOOR DATA
COLLECTION SYSTEMS

FRANK RIDDICK ANOUK LOREAU
Manufacturing Engineering Laboratory Manufacturing Engineering Laboratory

National Institute of Standards and Technology National Institute of Standards and Technology
Gaithersburg, MD USA Gaithersburg, MD USA

ABSTRACT

Increasing shop floor efficiency through scheduling
has become one of the major concerns of manufacturing
companies. Two of the problems that manufacturers have
to overcome are 1) difficulty inputting the information
needed for scheduling into the scheduling applications and
2) reacting to changes in the shop floor environment that
occurred after the schedule has been started. Methods to
facilitate the transfer of data for the production of initial
schedules must be devised along with methods to
reschedule based on updated information from the shop
floor. To address these problems, a project is underway at
the National Institute of Standards and Technology
(NIST) to facilitate the development of reactive
scheduling systems. This paper will present a model
which describes shop floor status data and a model
defining a simple message protocol for communicating
shop floor status information. Implementation issues and
vendor involvement in the development of these models
will also be discussed.

Keywords: Scheduling, Shop Floor, Modeling, Express

INTRODUCTION

Manufacturing systems have become increasingly
dependent on the adequate supply of information that is
related to their control [1]. To address this problem, many
software applications have been developed to aid in
controlling manufacturing processes. However, too little
attention has been paid to the flow of information
between these applications. This has lead to a situation
whereby manufacturing software applications have been
described as ‘islands of information.’ This phenomenon
can be observed through the examination of the
information flows between shop floor scheduling
applications and shop floor data collection systems.

Scheduling applications are increasingly being
deployed to optimize shop floor operations. Since it is not
unusual that 80% to 90% of the time needed to
manufacture a product is queue time (the time a product
waits to be processed), these systems have become an
important factor in the manufacturer’s profitability [2].
Shop floor data collection systems have been deployed to
collect updated shop floor status information and to
provide this information to other applications.

Typically, the shop floor performs operations based
on a schedule produced by the scheduler, and the data
collection system senses/collects/reports the current state
of the shop floor. There is no standard way to feedback
this information to the scheduler in a timely fashion and in
a form that the scheduler can use.

To address these problems, a project is underway at
NIST to facilitate the development of real-time reactive
scheduling systems. This project focuses on developing
methods for integrating commercial scheduling software
with commercial shop floor data collection software and
improving the real-time, functional capabilities of the
scheduling software tools. Achieving integration will
require the development of new interface and information
exchange standards. Interface standards will specify the
feedback information that is needed to update the
simulation models used by the scheduling software.
Information exchange standards will specify how this
feedback is actually stored and retrieved.

This paper focuses on models for defining and
exchanging shop floor status information developed as
part of the NIST project. First, an overview of the
integrated system being developed will be discussed. The
general architecture of the system, the components of the
system, and the function of each of the components will
be described. Next, an information model which describes
entities needed to maintain shop floor status will be
presented. The motivation behind the choice of entities
defined in the model will be discussed. Then, an
information model which defines a simple message
protocol for communicating shop floor status will be
presented. The relationships between the entities of the
shop floor status model and the status message model will
also be discussed. The paper will conclude with a
discussion of vendor involvement in defining the models,
implementation issues, and possible extensions to the
models.

REACTIVE SCHEDULING SYSTEM:
FUNCTIONAL DECOMPOSITION

The goal of any reactive scheduling system is to be
able to track, react to, and compensate for changes in the
shop floor environment (through the production of a new
schedule based on current information) after an initial

schedule has been generated and is being executed on the
shop floor. Figure 1 shows the components and inter-
component data flow of the reactive scheduling system.
Following is a brief discussion of the functional
responsibilities of each of the components.

Scheduler

Dispatcher

Shop floor
& Data

 Collector

Status
Manager

Status
Information

New Order
Information

Schedule Work Orders

 Status
 Messages

Current
Shop Floor Status

FIGURE 1: REACTIVE SCHEDULING SYSTEM
COMPONENTS

The Scheduler takes in order information and
produces a schedule to be executed on the shop floor. The
Dispatcher repackages the schedule into chronological
lists of production orders related to each resource and
manages the delivery of these packages to the appropriate
resource. The Shop floor contains resources which
execute the production orders to process loads into
finished products. The Data Collector gathers and reports
shop floor status information about loads and resources in
the form of status messages. The Status Manager receives
the status messages, stores the status information in a
database, and provides an interface for accessing current
status information from the database. The Status Manager
may also monitor shop floor performance and request that
the Scheduler perform a reschedule based on performance
metrics.

Methods for exchanging information between the
functional elements of the reactive scheduling system
need to be developed. The first step in this process is
defining models of the information to be exchanged. This
paper focuses on conceptual models for Factory Status
information and Status Message information. Express-G,
which is a part of the STEP standard [3], is the language
used to develop the models.

FACTORY STATUS INFORMATION
MODEL

The Factory Status information model defines what
is meant by status from the schedulers’ perspective. This
status provides critical, dynamic information scheduling

applications need to update their simulation models in
order to do reactive scheduling.

Figure 2 shows the Factory Status information
model. The key entity in this model is the Factory Element
entity.

It is an abstract supertype for the more specific
entities for which status information is to be maintained. It
provides for the identification and differentiation of
entities in its inheritance hierarchy. There are two main
subtypes of the Factory Element entity. Resource entities
define information about the machines, tools, operators,
and fixtures used on the shop floor. Load entities define
information about the groups of parts that are processed
by the resources to produce finished products. There are
two kinds of attributes associated with Load and Resource
entities, mutable attributes and immutable attributes.

The immutable attributes are those attributes that
cannot be changed after an instance is created. The type of
an immutable attribute is defined as whatever is
appropriate for the information that is being modeled, i.e.
there is no common supertype for immutable attributes.
The immutable quality of these attributes refers only to
their static nature with respect to instance creation, not to
their associated type. Immutable attributes were used to
model things such as the type of a resource and the
product that is to be the outcome of processing a load.

Mutable attributes of Load and Resource entities
differ from the immutable attributes in several ways.
First, mutable attributes may change their value after their
enclosing entity instance is created. The type of a mutable
attribute must be a subtype of the Mutable Attribute Type
entity. Subtypes of the abstract Mutable Attribute Type
entity exist to allow the specification of attribute values
for any attribute type that needs to change after the entity
is created. The types of mutable attributes are all related to
a common ancestor, while the types of immutable
attributes are not.

In the message information model that will be
discussed in the next section, Create Load and Create
Resource message entities specify the values needed for
the creation of Load and Resource entities (the actual
attribute definitions have been elided for brevity). Change
Load and Change Resource message entities specify
modifications to Load and Resource entities. Mutable
Attribute Types, which are indirectly aggregated within
the Change Message entities, are used to specify the new
values for changed attributes. This ensures Change
Message entities will only contain information appropriate
for making modifications to the Factory Element entities
while still allowing the changes to be specified in a
flexible manner.

STATUS MESSAGE INFORMATION
MODEL

This model defines elements and relationships for
Factory status messages, which are the means through
which modifications to elements conforming to the factory
status information model are specified (see Figure 3).
The key entity in this model is the Factory Status message
entity. It is an abstract entity which relates message
information with the factory element that is to be
modified. A timestamp attribute is used to indicate the
chronological order of a group of messages. There are
three main subtypes of the factory status message entity:
create message entities, change message entities, and
delete message entities. Each message entity subtype has
been further specialized into lower level subtypes.
Instances of the lower level subtypes are restricted to data
relating to only one of the factory element entity types. A
delete message entity specifies a request to delete the
associated factory element instance. A create message
entity specifies a request to create a new instance of a
factory element based on the supplied immutable attribute
values (The complete definition for the delete and create
message subtypes have been elided for brevity.)

A Change Message specifies a request to change one
or more of the mutable attributes of an instance of a
factory element. Associated with a Change Message is a
set of Attribute Value Pair entities. These entities specify
the name of the mutable attribute of a factory element to
be changed and the new value for that attribute. To

ensure only valid combinations of attribute names and
new values are specified, subtypes of the abstract
Attribute Value Pair entity are defined with “constraints”.
These constraints restrict instances to information
pertaining to either Load entity mutable attributes or
Resource entity mutable attributes. In a similar manner,
subtypes of the abstract Change Message entity have been
defined which restrict the associated Attribute Value Pair
entities to the subtype appropriate for the associated
factory element.

MODEL DEVELOPMENT ISSUES

The Factory Status and Status Message information
models were developed as conceptual models to support
the development of different implementations of reactive
scheduling systems. Systems based on these models have
been developed using different commercial scheduling
systems, data collection systems, and data storage
mechanisms. In some systems, discrete event simulation
systems have been used to simulate the function of the
real shop floor and data collector. These models have
provided ample support for research and for developing
reactive scheduling applications while not restricting
implementation alternatives [4].

The philosophy used in the development of these
models was not to attempt to develop one monolithic
model of factory information, but to focus on describing
the minimal information necessary to support a reactive
scheduling system by maintaining and communicating

(ABS)
Factory_Element Related_Product

Due_Date
Release_Date

Start_Amount

Resource_
Status_MAT

Load_MAT String_MAT Integer_MAT
Timestamp_

MAT Load_Status
_MAT

Previous_State
Current_State

Associated_Load

Elapsed_
Time_MAT

 Last_Product Produced

Estimated_Downtime

 Resource_Usage

Id

Associated
_Value

Associated
_Value

Associated
_ValueResource_Status Load_Status(ABS)

Mutable_Attribute
_Type

Related_Order

Resource

Time_of_Last_Update

Resource_Group

Load

Associated_Value

Current_Jobstep

Jobstep_Start_Time
Actual_Start_Date

 Current_Amount
 Pieces_Complete

Previous_State
Current_State

Uptime

Associated
_Value

Associated
_Value

Associated
_Value

Resource_Type Resource_Type

FIGURE 2: FACTORY STATUS INFORMATION MODEL

status related information. When an existing application
is used as one of the functional elements of a reactive
scheduling system, the application already contains an
internal representation of shop floor information.
Therefore, instead of developing models to replace the
internal representations used by functional elements,
models which facilitate the communication of common
information between functional elements are what is
needed. This is why entities for order, product, and
process plan information are not defined in these models.
Such information is often defined internally to the
functional elements and only a means for identifying and
communicating this information is required.

Vendors and potential users were involved in
defining the requirements for and in the development of
the models since their beginning. Their domain expertise
has been invaluable for ensuring that the models would be
useful not only for research but also for supporting the
development of real applications attempting to solve the
problems of today’s manufacturers. Vendor involvement
had the potential to introduce several model development
risks. Care had to be taken to keep the requirements for
the models from being tailored as just extensions to the
vendors’ current products. Having multiple vendors and
potential users involved, and developing the models as
conceptual models has mitigated this risk.

CONCLUSION

The Factory Status and Status Message information
models provide support for the development of reactive
scheduling systems. These conceptual models allow for
the communication of factory status information while not

limiting implementation choices. These models are a
work in progress, but several implementations have
already been developed based on these models.
Continued vendor and user involvement in development
of these models should lead to reactive scheduling systems
that aid manufacturers in increasing the efficiency of their
shop floor operations.

ACKNOWLEDGMENTS

Work described in this paper was sponsored by the U.S.
Navy Manufacturing Science and Technology Program
and the NIST Systems Integration for Manufacturing
Applications (SIMA) Program. The work described was
funded by the United States Government and is not
subject to copyright.

REFERENCES

[1]P. Timmermans, “Modular Design of Information
Systems for Shop Floor Control”, Ph.D. dissertation,
Eindhoven University of Technology, 1993)
[2]D. Bedworth, M. Henderson, P. Wolfe, “Computer-
Integrated Design And Manufacturing”, (New York:
McGraw-Hill, 1991)
[3]ISO 10303-11:1994, Product Data Representation and
Exchange -- part 11: Express Language Reference
Manual, International Organization for Standardization,
(Geneva, 1994)
[4]A. Jones, F. Riddick, L. Rabelo, “Development Of A
Predictive-Reactive Scheduler Using Genetic Algorithms
and Simulation-based Scheduling Software”, Advanced
Manufacturing Processes, Systems, and Technologies
Conference Proceedings, AMPST96, 1996, 589 - 598.

(ABS)
Create_
Message

(ABS)
Attribute_Value

_Pair

(ABS)
Delete_

Message

(ABS)
Factory_Status

_Message

(ABS)
Change_
Message

*Change_
Load

_Message

*Change_
Resource_
Message

*Resource
AV_Pair

Affected_Element Timestamp

Attributes_to_Change S[1:?]

Attribute_New_Value

Attribute_Name

*Load
AV_Pair

Factory.Mutable
_Attribute_Type

Factory.Factory
_Element

*Create_
Load_

Message

*Create_
Resource_
Message

FIGURE 3: STATUS MESSAGE INFORMATION MODEL

