
Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Titanium: A High Performance
Dialect of Java

U.C. Berkeley
Computer Science Division

Kathy Yelick
http://www.cs.berkeley.edu/projects/titanium

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Titanium Group

• Susan Graham
• Katherine Yelick
• Paul Hilfinger
• Phillip Colella (LBNL)
• Alex Aiken

• Greg Balls
• Peter McQuorquodale

(LBNL)

• Andrew Begel
• Dan Bonachea
• David Gay
• Arvind Krishnamurthy
• Ben Liblit
• Carleton Miyamoto
• Chang Sun Lin
• Geoff Pike
• Luigi Semenzato (LBNL)
• Siu Man Yau

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

A Little History

• Most parallel programs are written using explicit
parallelism, either:

• Message passing with a SPMD model
• Usually for scientific applications with C++/Fortran
• Scales easily

• Shared memory with a thread C or Java
• Usually for non-scientific applications
• Easier to program

• Take the best features of both for Titanium
• Builds on ideas in Split-C, AC, and UPC
• Safer language and more sophisticated implementation

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Titanium
• Take the best features of threads and MPI

• global address space like threads (programming)
• SPMD parallelism like MPI (performance)
• local/global distinction, i.e., layout matters (performance)

• Based on Java, a cleaner C++
• classes, automatic memory management
• compiled to C and then assembly (no JVM)

• Optimizing compiler
• communication and memory optimizations
• synchronization analysis
• cache and other uniprocessor optimizations

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Summary of Features Added to Java
• Scalable parallelism:

• SPMD model of execution with global address space
• Multidimensional arrays with iterators
• Checked Synchronization
• Immutable classes

• user-definable non-reference types for performance
• Operator overloading
• Zone-based memory management
• Libraries

• Global communication
• Distributed arrays
• Fast bulk I/O

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Lecture Outline

• Language and compiler support for
uniprocessor performance
• Immutable classes
• Multidimensional Arrays
• foreach

• Language support for parallel computation
• Applications and application-level libraries
• Summary and future directions

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Java: A Cleaner C++
• Java is an object-oriented language

• classes (no standalone functions) with methods
• inheritance between classes

• Documentation on web at java.sun.com
• Syntax similar to C++

class Hello {
 public static void main (String [] argv) {
 System.out.println(“Hello, world!”);
 }
}

• Safe: strongly typed, auto memory management
• Titanium is (almost) strict superset

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Java Objects
• Primitive scalar types: boolean, double, int, etc.

• implementations will store these on the program stack
• access is fast -- comparable to other languages

• Objects: user-defined and standard library
• passed by pointer value (object sharing) into functions
• has level of indirection (pointer to) implicit
• simple model, but inefficient for small objects

2.6

3
true

r: 7.1

i: 4.3

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Java Object Example
class Complex {
 private double real;
 private double imag;
 public Complex(double r, double i) {
 real = r; imag = i; }
 public Complex operator+(Complex c) {
 return new Complex(c.real + real,
 c.imag + imag); }
 public double getReal {return real; }
 public double getImag {return imag; }
}
Complex c = new Complex(7.1, 4.3);
c = c + c;

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Immutable Classes in Titanium

• For small objects, would sometimes prefer
• to avoid level of indirection
• pass by value (copying of entire object)
• especially when immutable -- fields never modified

• extends the idea of primitive values to user-defined values

• Titanium introduces immutable classes
• all fields are final (implicitly)
• cannot inherit from or be inherited by other classes
• needs to have 0-argument constructor

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Example of Immutable Classes

• The immutable complex class nearly the same
 immutable class Complex {
 Complex () {real=0; imag=0; }
 ..…
 }

• Use of immutable complex values
 Complex c1 = new Complex(7.1, 4.3);
 Complex c2 = new Complex(2.5, 9.0);
 c1 = c1 + c2;

Similar to structs in C in terms of performance

Zero-argument
constructor required

new keyword

Rest unchanged. No assignment to
fields outside of constructors.

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Arrays in Java

• Arrays in Java are objects
• Only 1D arrays are directly supported
• Array bounds are checked

• Safe but potentially slow

• Multidimensional arrays
as arrays-of-arrays
• General, but slow

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Multidimensional Arrays in Titanium

• New kind of multidimensional array added
• Subarrays are supported (unlike Java arrays)
• Indexed by Points (tuple of ints)
• Constructed over a set of Points, called Domains
• RectDomains (rectangular domains) are a special case
• Points, Domains, RectDomains are immutable classes

• Support for adaptive meshes and other
mesh/grid operations
• e.g., can refer to the boundary region of an array

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Point, RectDomain, Arrays in General
• Points specified by a tuple of ints

• RectDomains given by 3 points:
• lower bound, upper bound (and stride)

• Array declared by # dimensions and type

• Array created by passing RectDomain

double [2d] a;

Point<2> lb = [1, 1];
Point<2> ub = [10, 20];

RectDomain<2> r = [lb : ub];

a = new double [r];

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Simple Array Example
• Matrix sum in Titanium

Point<2> lb = [1,1];

Point<2> ub = [10,20];

RectDomain<2> r = [lb,ub];

double [2d] a = new double [r];

double [2d] b = new double [1:10,1:20];

double [2d] c = new double [lb:ub:[1,1]];

for (int i = 1; i <= 10; i++)

 for (int j = 1; j <= 20; j++)

 c[i,j] = a[i,j] + b[i,j];

No array allocation here

Syntactic sugar

Optional stride

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Naïve MatMul with Titanium Arrays

public static void matMul(double [2d] a,
 double [2d] b, double [2d] c) {
 int n = c.domain().max()[1]; // square
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 for (int k = 0; k < n; k++) {
 c[i,j] += a[i,k] * b[k,j];
 }
 }
 }
}

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Array Performance Issues
• Array representation is fast, but access methods

can be slow, e.g., bounds checking, strides
• Compiler optimizes these

• common subexpression elimination
• eliminate (or hoist) bounds checking
• strength reduce: e.g., naïve code has 1 divide per

dimension for each array access

• Currently +/- 20% of C/Fortran for large loops
• Future: small loop and cache optimizations

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Unordered iteration

• All of these optimizations require loop analysis
• Compilers can do this for simple operations,

e.g., matrix multiply, but hard in general
• Titanium adds unordered iteration on

rectangular domains -- gives user more control
 foreach (p within r) { ... }

• p is a Point new point within the foreach body
• r is a previously-declared RectDomain

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Laplacian Example

• Simple example of using arrays and foreach

 Domain<2> interior = A.domain().shrink(1);
 Point<2> dx = [1,0];
 Point<2> dy = [0,1];
 foreach (p in interior) {
 L[p] = 4*a[p] - a[p+dx] - a[p-dx]
 - a[p+dy] - a[p-dy];
 }

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Better MatMul with Titanium Arrays

public static void matMul(double [2d] a,
 double [2d] b, double [2d] c) {
 foreach (ij within c.domain()) {
 double [1d] aRowi = a.slice(1, ij[1]);
 double [1d] bColj = b.slice(2, ij[2]);
 foreach (k within aRowi.domain()) {
 c[ij] += aRowi[k] * bColj[k];
 }
 }
}
Current performance: comparable to 3 nested loops in C

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Sequential Performance
C/C++/
FORTRAN

Java
Arrays

Titanium
Arrays Overhead

DAXPY
3D multigrid
2D multigrid
MatMul

1.4s
12s

5.4s
1.8s 2.2s 22%

15%
83%
7%

6.2s
22s

1.5s6.8s

Ultrasparc:

C/C++/
FORTRAN

Java
Arrays

Titanium
Arrays Overhead

DAXPY
3D multigrid
2D multigrid

1.8s
23.0s
7.3s -25%

-13%
27%

5.5s
20.0s
2.3s

Pentium II:

Compares to naïve C code; neither compiler does
cache blocking (yet).

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Lecture Outline
• Language and compiler support for

uniprocessor performance
• Language support for parallel computation

• SPMD execution
• Barriers and single
• Explicit Communication
• Implicit Communication (global and local references)
• More on Single
• Synchronized methods and blocks (as in Java)

• Applications and application-level libraries
• Summary and future directions

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

SPMD Execution Model
• Java programs can be run as Titanium, but the

result will be that all processors do all the work
• E.g., parallel hello world
 class HelloWorld {
 public static void main (String [] argv) {

 System.out.println(‘’Hello from proc ‘’ +

 Ti.thisProc());

 }

 }

• Any non-trivial program will have
communication and synchronization

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

SPMD Execution Model

• A common style is compute/communicate

• E.g., in each timestep within particle simulation
with gravitation attraction

 read all particles and compute forces on mine

 Ti.barrier();

 write to my particles using new forces

 Ti.barrier();

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

SPMD Model

• All processor start together and execute same
code, but not in lock-step

• Basic control done using
• Ti.numProcs() total number of processors
• Ti.thisProc() number of executing processor

• Sometimes they take different branches
 if (Ti.thisProc() == 0) { ….. do setup ..… }
 System.out.println(‘’Hello from ‘’ + Ti.thisProc());

 double [1d] a = new double [Ti.numProcs()];

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Barriers and Single
• Common source of bugs is barriers or other

global operations inside branches or loops
 barrier, broadcast, reduction, exchange

• A “single” method is one called by all procs
 public single static void allStep(..…)

• A “single” variable has same value on all procs
 int single timestep = 0;

• Single annotation on methods (also called
“sglobal”) is optional, but useful to
understanding compiler messages.

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Explicit Communication: Broadcast

• Broadcast is a one-to-all communication
 broadcast <value> from <processor>
• For example:
 int count = 0;

 int allCount = 0;

 if (Ti.thisProc() == 0) count = computeCount();

 allCount = broadcast count from 0;

• The processor number in the broadcast must be
single; all constants are single.

• The allCount variable could be declared single.

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Example of Data Input

• Same example, but reading from keyboard
• Shows use of Java exceptions
 int single count = 0;

 int allCount = 0;

 if (Ti.thisProc() == 0)

 try {

 DataInputStream kb = new DataInputStream(System.in);

 myCount = Integer.valueOf(kb.readLine()).intValue();

 } catch (Exception e) {

 System.err.println(``Illegal Input’’);

 allCount = myCount from 0;

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Explicit Communication: Exchange

• To create shared data structures
• each processor builds its own piece
• pieces are exchanged (for object, just exchange pointers)

• Exchange primitive in Titanium
 int [1d] single allData;

 allData = new int [0:Ti.numProcs()-1];

 allData.exchange(Ti.thisProc()*2);

• E.g., on 4 procs, each will have copy of allData:

0 2 4 6

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Exchange on Objects
• More interesting example:
• class Boxed {
• public Boxed (int j) {

• val = j;

• }

• public in val;

• }

• Object [1d] single allData;

• allData = new Object [0:Ti.numProcs()-1];

• allData.exchange(new Boxed(Ti.thisProc());

allData

P0P0 P1

allData allData

val: 0 val: 1 val: 2

P2

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Distributed Data Structures
• Build distributed data structures with arrays:

 RectDomain <1> single allProcs = [0:Ti.numProcs-1];

 RectDomain <1> myParticleDomain = [0:myPartCount-1];

 Particle [1d] single [1d] allParticle =

 new Particle [allProcs][1d];

 Particle [1d] myParticle =

 new Particle [myParticleDomain];

 allParticle.exchange(myParticle);

• Now each processor has array of pointers,
one to each processor’s chunk of particles

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

More on Single

• Global synchronization needs to be controlled
• if (this processor owns some data) {
• compute on it
• barrier
• }

• Hence the use of “single” variables in Titanium
• If a conditional or loop block contains a barrier,

all processors must execute it
• conditions in such loops, if statements, etc. must contain

only single variables

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Single Variable Example

• Barriers and single in N-body Simulation
 class ParticleSim {
 public static void main (String [] argv) {
 int single allTimestep = 0;
 int single allEndTime = 100;
 for (; allTimestep < allEndTime; allTimestep++){
 read all particles and compute forces on mine
 Ti.barrier();
 write to my particles using new forces
 Ti.barrier();
 }
 }
 }

• Single methods inferred; see David Gay’s work

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Use of Global / Local

• As seen, references (pointers) may be remote
• easy to port shared-memory programs

• Global pointers are more expensive than local
• True even when data is on the same processor
• Use local declarations in critical sections

• Costs of global:
• space (processor number + memory address)
• dereference time (check to see if local)

• May declare references as local

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Global Address Space

• Processes allocate locally
• References can be passed

to other processes
Class C { int val;.. }
C gv; // global pointer
C local lv; // local pointer

if (thisProc() == 0) {
lv = new C();

}
gv = broadcast lv from 0;
gv.val = ..; // full
.. = gv.val; // functionality

Process 0
Other

processes

lv

gv

lv

gv

lv

gv

lv

gv

lv

gv

lv

gv

LOCAL
HEAP

LOCAL
HEAP

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Local Pointer Analysis
• Compiler can infer many uses of local

• See Liblit’s work on Local Qualification Inference

• Data structures must be well partitioned

Effect of LQI

0

50

100

150

200

250

cannon lu sample gsrb poison

applica tions

ru
n

n
in

g
 t

im
e

 (
s

e
c

)

Original

After LQI

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Region-Based Memory Management
PrivateRegion r = new PrivateRegion();

For (int j = 0; j < 10; j++) {

 int[] x = new (r) int[j + 1];

 work(j, x);

}

try { r.delete; }

catch (RegionInUse oops) {

 system.out.println(“failed to delete”);

 }

}

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Lecture Outline

• Language and compiler support for
uniprocessor performance

• Language support for parallel computation
• Applications and application-level libraries

• AMR overview
• AMR and uniform grid algorithms in Titanium
• Several smaller benchmarks

• MatMul, LU, FFT, Join, Sort, EM3d

• Library interfaces
• PETSc, Metis,

• Summary and future directions

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Block-Structured AMR
• Algorithms for many rectangular, grid-based

computations are
• communication intensive
• memory intensive

• AMR makes these harder
• more small messages
• more complex data structures
• most of the programming effort

is debugging the boundary cases
• locality and load balance trade-off is hard

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Algorithms for AMR
• Existing algorithms in Titanium

• 3D AMR Poisson solver
• 3D AMR Gas dynamics
• Domain-decomposition MLC Poisson

• Under development
• Self-gravitating gas dynamics (3D AMR)

• For stellar collapse, etc.

• Immersed boundary method (3D, non-adaptive)
• Peskin and MacQueen’s method for heart model, etc.

• Embedded boundaries
• Simulation of bio-MEMs devices and cellular level modeling

• Project Idea:
• Multiblock Java code with self-scheduling. Contact me, yelick@cs.
• Evaluation of and proposal for general domains.

• All joint with Colella’s group at LBNL

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

3D AMR Gas Dynamics

• Hyperbolic Solver [McCorquodale and Colella]
• Implementation of Berger-Colella algorithm
• Mesh generation algorithm included

• 2D Example (3D supported)
• Mach-10 shock on solid surface

at oblique angle

• Future: Self-gravitating gas dynamics package

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

3D AMR Poisson
• Poisson Solver [Semenzato, Pike, Colella]

• finite domain
• variable

coefficients
• multigrid

across levels

• Currently synthetic grids, no grid generation
• Under construction

• reengineered to interface with hyperbolic solver
• including mesh generation

Level 0

Level 2

Level 1

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

MLC for Finite-Differences

• Poisson solver with infinite domains [Colella, Balls]
• Uses a Method of Local Corrections (MLC)
• Currently non-adaptive and 2D
• Supports only constant coefficients

• Uses 2-level, domain decomposition approach
• Fine-grid solutions are computed in parallel
• Information transferred to a coarse-grid and solved serially
• Fine-grid solutions is computed using boundary conditions from the

coarse grid

• Future work includes 3D Adaptive version

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

MLC for Finite-Differences

• Features of the method
• Solution is still second-order accurate
• Accuracy depends only weakly on the coarse-grid spacing

• Scalability
• No communication during fine-grid solves
• Single communication step (global all-to-all)
• coarse grid work is serial (replicated), but relatively small

• Future work: extend to 3D and adaptive meshes
• Project idea: extension to 3D: see Greg Balls, gballs@cs

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Error on High-Wavenumber Problem
• Charge is

• 1 charge of
concentric waves

• 2 star-shaped
charges.

• Largest error is
where the charge
is changing
rapidly. Note:
• discretization error
• faint

decomposition
error

• Run on 16 procs

-6
.4

7
x1

0
-9

0

1

.3
1

x1
0-9

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Scalable Poisson Solver (MLC)

• Communication performance is low (< 5%)
• Scaled speedup experiments are nearly ideal

(flat)

 IBM SP2 at SDSC Cray t3e at NERSC

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Unstructured Mesh Kernel

• EM3D: Relaxation on a
3D unstructured mesh

• Speedup on Ultrasparc
SMP

• Simple kernel: mesh not
partitioned.

0

1

2

3

4

5

6

7

8

1 2 4 8

em3d

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Calling Other Languages

• We have built interfaces to
• PETSc : scientific library for finite element applications
• Metis: graph partitioning library

• Two issues with cross-language calls
• accessing Titanium data structures (arrays) from C

• possible because Titanium arrays have same format on inside

• having a common message layer
• Titanium is built on lightweight communication

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Lecture Outline

• Language and compiler support for
uniprocessor performance

• Language support for parallel computation
• Applications and application-level libraries
• Summary and future directions

• Implementation

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Implementation
• Strategy

• Titanium into C
• Solaris or Posix threads for SMPs
• Lightweight communication for MPPs/Clusters

• Status: Titanium runs on
• Solaris or Linux SMPs and uniprocessors
• Berkeley NOW
• SDSC Tera, SP2, T3E (NERSC and NPACI)
• SP3 (and IBM SP Power3) port underway

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Titanium Summary
• Performance

• close to C/FORTRAN + MPI on limited class of problems

• Portability
• develop on uniprocessor, then SMP, then MPP/Cluster

• Safety
• as safe as Java, extended to parallel framework

• Expressiveness
• easier than MPI, harder than threads

• Compatibility, interoperability, etc.
• no gratuitous departures from Java standard

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Using Titanium
• On machines in the CS Division

 /srs/titanium/*/bin/tcbuild file.ti
• Solaris 2.6 and Linux supported; need to mount this filesystem

• On NERSC t3e use:
 /u/mp215/miyamoto/tc-1.44/tcbuild/tcbuild file.ti

• On SP2 contact: cjlin@cs.berkeley.edu
• For documentation, source code, see the home page

• http://www.cs.berkeley.edu/projects/titanium

• Documentation includes
• Language reference, terse but complete
• Tutorial, incomplete

• For problems or questions:
 titanium-group@cs.berkeley.edu

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Future Plans

• Improved compiler optimizations for scalar code
• large loops are currently +/- 20% of Fortran
• working on small loop performance

• Packaged solvers written in Titanium
• Elliptic and hyperbolic solvers, both regular and adaptive

• New application collaboration
• Peskin and McQueen (NYU) with Colella (LBNL)
• Immersed boundary method, currently use for heart

simulation, platelet coagulation, and others

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Backup Slides

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Other Language Extensions

Java extensions for expressiveness &
performance

• Operator overloading
• Zone-based memory management
• Foreign function interface

The following is not yet implemented in the
compiler

• Parameterized types (aka templates)

Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Consistency Model

• Titanium adopts the Java memory consistency
model

• Roughly: Access to shared variables that are not
synchronized have undefined behavior.

• Use synchronization to control access to shared
variables.
• barriers
• synchronized methods and blocks

