
 National Centers for Environmental Prediction

 W/NP11, NSC, Room 307

 Camp Springs, MD

 November 20, 2006

MEMORANDUM FOR: NCEP Programmers

 FROM: John Ward

 Chief, Production Management Branch

 NCEP Central Operations

 SUBJECT: Policy for Operational Implementations on the IBM Central Computer

 System

 This memorandum outlines the policy for operational implementations on the IBM SP. Please carefully review and follow the standards outlined here. Any JIFs requesting implementation on the IBM Central Computer System (CCS) that don't adhere to this policy will be rejected. There will be no exceptions. If we determine that parts of this policy should be changed, we will notify programmers of the change.

 When we receive a JIF requesting an implementation on the IBM CCS, and these steps have been followed, we will copy the contents of your directory to our test directory. No work will be done in your directory. We require a minimum of two weeks lead time to prepare and test changes, thus reducing the potential for errors and providing sufficient time to advertise the change. In general, requests for change to operational codes received by noon on Thursday will be scheduled for implementation no earlier than the second Monday after the JIF is received. Do not submit JIF requests until the following steps are completed.

1) All source codes must be placed in a directory that can be accessed by NCO's implementation staff. (Do not put files in HPSS). All of the source code (main program and subroutines) required to execute your program must be included in this directory as separate files (no concatenated files). Please include only the source code required to execute the program. (We will not selectively copy routines from your directory.) We will not include or link source or executables from private libraries. To ensure that the latest version of the source code is used, programmers should modify the operational source codes which they have copied from /nwprod.

2) Your directory must also contain the makefile(s) needed to create executable modules. If different compiler options are needed for each subroutine, then it is the programmer's responsibility to include these options in the makefile. See Attachment I for information regarding makefiles.

3) All programs that do any I/O operations must adhere to the standard unit number conventions listed in Attachment II.

4) The location of the script, necessary to execute the code, must also be listed on the JIF if it is being changed. To ensure that the latest version of the script is used, programmers should modify the operational scripts which they have copied from /nwprod.

5) Your directory must also contain any new or modified parameters or fixed fields needed by the code.

6) DOCBLOCKs must be present in all main programs. If DOCBLOCKS are missing, the JIF will be returned to you.

7) When preparing operational scripts, the following standard must be followed. See

Attachment III for examples and general information which will be helpful in developing

production scripts.

1. Use POSIX Shell (/bin/sh).

2. Obtain the NCEP production dates, using the Y2K compliant dates in

/com/date or by using the setpdy.sh production utility located in

/nwprod/util/ush.

3. Utilize standard production environmental variables. Utilize standard

production file and directory naming conventions.

4. Each block of moves or copies from the scratch directory to /com, /nwges or /pcom must be wrapped with logic testing for the presence of the variable SENDCOM.

5. Each block of dbnet alerts must be wrapped with logic testing for the presence of the variable SENDDBN.

6. Each execution of a C or FORTRAN code must be wrapped with the use

of production utilities prep_step, startmsg and err_chk. The standard error

should be redirected to a file named errfile in the current working directory.

The standard output of each execution should be appended to $pgmout

(standard production variable).

7. In each system of scripts, the top level script sets the standard production

environmental variables and resides in /nwprod/jobs with the standard

naming convention of JXXXX.sms.prod. The top level J-job script called the

main driver script which resides in /nwprod/scripts with the standard naming

convention of exXXX.sh.sms. Any needed sub-scripts to the main driver

script will be located in /nwprod/ush.

8. Production utilizes a centralized cleanup and creation of directories in

/com and /nwges. Production scripts should not remove or create production directories at the /com/$NET/$envir/$RUN.$PDY level.

ATTACHMENT I
Makefiles provide the rules to the make utility. The following makefile shows the preferred format, but programmers are free to create (and test) their own.

Makefile example, where progname=the name of your code:

SHELL= /bin/sh

#

#

SRCS = progname.f subroutine.f subroutine2.f

OBJS = progname.o subroutine.o subroutine2.o

Tunable parameters

#

FC Name of the Fortran compiling system to use

LDFLAGS Options of the loader

FFLAGS Options of the compiler

LIBS List of libraries

CMD Name of the executable

#

FC = Xlf_r

LDFLAGS =

LIBS = -L/nwprod/lib -lw3_4

CMD = progname

FFLAGS = -O3

Lines from here down should not need to be changes. They are

the actual rules which make uses to build CMD.

#

all: $(CMD)

$CMD): $(OBJS)

 $(FC) $(LDFLAGS) -o $(@) $(OBJS) $(LIBS)

clean:

 -rm -f $(OBJS)

clobber: clean

 -rm -f $(CMD) $(CMD).prof

void: clobber

 -rm -f $(SRCS) makefile

ATTACHMENT II
1) Units 1 through 4, 7 through 10, and 50 are reserved for future use.

2) Use units 5, 11-49 for all INPUT files; i.e., all files containing data created prior to the execution of the program.

3) Use units 6, 51-79 for all OUTPUT files; i.e., all files containing data for subsequent programs to use.

4) Use units 80-94 for all WORK files; i.e., all files that are written and read in the same program but have no further use.

Note:Units 95-99 can now be used as work files.
Except for work files, the same unit number should NEVER be used for both input and output by the same program.

Note:

Users should associate filenames to unit numbers in the shell script prior to program execution. On the IBM CCS, users should us the environmental variable XLFUNIT_#.

Example:

 export XLFUNIT_16="inputfilename"

 export XLFUNIT_60="outputfilename"

ATTACHMENT III

1.1 Overview
1.2 Directory Structure
Table 1-1 shows an overview of the directory structure necessary to run production.

Table 1-1 Production Directories
	Directory
	Description

	/nwprod
	Production Applications

	/nwtest
	Test Applications

	/nwpara
	Parallel Applications

	/nwbkup
	Backup of Production Applications

	/nwges
	Model Spin-Up Data

	/com
	Data and Application Output

	/dcom
	Incoming Data

	/pcom
	Outgoing Data

1.2.1 Structure of Application Directories

Table 1-2 shows an overview of the application directories. The directory names are the sub-directories within /nwprod, /nwtest and /nwpara.

Table 1-2 Application

	Directory
	Description

	jobs
	Wrapper Scripts (J-Jobs)

	scripts
	Main Driver Scripts (ex-scripts)

	fix
	Static Input Data

	parm
	Static Input Data

	exec
	Executables

	sorc
	Source Code

	util
	Utilities spanning multiple applications; contains scripts, fix, parm, exec and sorc subdirectories.

1.2.2 Structure of /nwges Directory

Several of the weather forecast models running in production produce output to be used later as input for subsequent model runs. This select set of critical output data used to begin model runs is often referred to as model guess fields. The model guess fields are stored in /nwges. Table 1-3 shows the directory stucture of /nwges.

Table 1-3 /nwges Directory Structure
	Directory
	Description

	prod/model_name.YYYYMMDD
	Production Spin-up data for model

	test/model_name.YYYYMMDD
	Test Spin-up data for model

	para/model_name.YYYYMMDD
	Parallel Spin-up data for model

1.2.3 Structure of /com Directory
The /com directory contains output data, stdout and stderr from production jobs. The default resident time for data in /com is ten days. Table 1-4 shows the directory structure of /com.

Table 1-4 /com Directory Structure
	Directory
	Description

	model_name/prod/net_name.YYYYMMDD
	Production Model Output for a day

	model_name/test/net_name.YYYYMMDD
	Test Model Output for a day

	model_name/para/net_name.YYYYMMDD
	Parallel Model Output for a day

	output/prod/YYYYMMDD
	Job stdout/stderr for a day

	output/test/YYYYMMDD
	Job stdout/stderr for a day

	output/para/YYYYMMDD
	Job stdout/stderr for a day

	logs
	Log Files

1.3 Standard Environmental Variables
Inside of the production scripts there are environmental variables reserved for production use. A majority of the production utilities rely on the use of these standard variable. These variables are set inside of the production wrapper scripts. Unsetting or programing around these variables inside of driver and supporting scripts may result in an undesired job outcome making it difficult to troubleshoot. Table 1-5 shows the list of the standard environmental variables used in production.

Table 1-5 Standard Environmental Variables
	Variable Name
	Description

	PDY
	Today’s Date formatted YYYYMMDD

	PDYm1-7
	Date 1-7 days ago formatted YYYYMMDD

	PDYp1-7
	Date 1-7 days ahead formatted YYYYMMDD

	DATA
	Temporary Scratch Directory

	jlogfile
	Logfile of start and end time of all jobs

	outid
	Job id appearing in jlogfile

	jobid
	Jobid appearing in scratch directory name

	pgmout
	Name of stdout file for all programs in a job

	cycle
	Model Cycle time formatted tHHz

	cyc
	Model Cycle time formatted HH

	SENDCOM
	Enable/Disable file copying to /com

	SENDDBN
	Enable/Disable DBNet Alerts

	SENDSMS
	Enable/Disable SMS hooks

	NET
	Model Name

	RUN
	Type of Model Run

	pcom
	Directory for copies to /pcom

	COMIN
	/com directory for data input

	COMOUT
	/com directory for data output

	GESdir
	/nwges directory for read and write

	utilities
	Directory containing utility scripts

	utilexec
	Directory containing utility executables

	EXECmodel_name
	Directory containing model executables

	FIXmodel_name
	Directory containing model fix files

	PARMmodel_name
	Directory containing model parameter files

	USHmodel_name
	Directory containing supporting model scripts

	SMSBIN
	Directory containing SMS executables

1.4 Standard File Naming Conventions
In production the file name should represent the name of the model run, the cycle of the model run, the type of data the file contains and the forecast hour the data represents. Filenames should not contain the date as the directory in which it resides already represents the date. Filenames should not contain uppercase characters.

Example:

 gfs.t${cyc}z.pgrbf${fhr} where cyc is the cycle and fhr is the forecast hour.
2.1 Basic Production Utilities

There are several utilities available in production to help you incorporate the basic job functionality required to meet operational standards. This section is intended to introduce you to the basic utilities used by most production jobs.

2.1.1 Date Utilities
finddate.sh
Given a date, finddate.sh will return date a specified number of days before or after the provided date. finddate.sh will also provide a sequence of dates leading to the specified number of days before or after the provided date.

Example 2-1.

Example 2-1 Script Using finddate.sh

#!/bin/sh

utilscript=/nwprod/util/ush

today=20020101

Single Date Example

ten_days_ago=`sh $utilscript/finddate.sh $today d-10`

ten_days_ahead=`sh $utilscript/finddate.sh $today d+10`

Sequence Example

last_four_days=`sh $utilscript/finddate.sh $today s-4`

next_four_days=`sh $utilscript/finddate.sh $today s+4`

echo “Today’s Date is $today”

echo

echo “The date ten days ago was $ten_days_ago”

echo “The date in tens days will be $ten_days_ahead”

echo

echo “The last four days where $last_four_days”

echo “The next four days are $next_four_days”

Example 2-1 Output

Today's Date is 20020101

The date ten days ago was 20011222

The date in tens days will be 20020111

The last four days where 20011231 20011230 20011229 20011228

The next four days are 20020102 20020103 20020104 20020105

setpdy.sh
setpdy.sh is a shell script to help you set the variables PDYm1-7, PDY and PDYp1-7. This utility will output a file PDY in the current working directory which can be sourced in the parent script to set the PDY variables. setpdy.sh expects to environmental variable cycle to be set when executed. The default centered date is the current days date. If the environmental variable PDY is set when executed, the centered date will be the value of PDY.

This utility script uses date files in /com/date set by production jobs /prod00/ncepibm00/j100_00 and /prod12/ncepibm12/j100_12 run at 2330 UTC and 1130 UTC respectively. At 2330 UTC the date files for cycles 00-11 UTC are set ahead to the next day. At 1130 UTC the date files for cycles 12-23 UTC are set ahead to the next day. Therefore, if you were to set cycle to t12z and run setpdy.sh between 2230 and 1130 UTC, you would get a PDY file centered on the previous days date. This is because the 12 UTC cycle has not started. This has been done by design to allow 12 UTC production jobs to be run late into the 00 UTC cycle.

Example2-2.

Example2-2 Script Using setpdy.sh

#!/bin/sh

export utilscript=/nwprod/util/ush

If PDY is not set, the dates would be centered based off the current cycle date.

Try running with PDY not set to see what happens.

export PDY=20020101

export cycle=t12z

$utilscript/setpdy.sh

. PDY

Example2-2 Contents of File PDY

export PDYm7=20011225

export PDYm6=20011226

export PDYm5=20011227

export PDYm4=20011228

export PDYm3=20011229

export PDYm2=20011230

export PDYm1=20011231

export PDY=20020101

export PDYp1=20020102

export PDYp2=20020103

export PDYp3=20020104

export PDYp4=20020105

export PDYp5=20020106

export PDYp6=20020107

export PDYp7=20020108

2.1.2 Logging and Error Checking Utilities
setup.sh
To properly execute a program inside of a production script you must use runtime compiler options to pass the program its unit assignments, log its start and stop time, check its return code and execute appropriate SMS hooks respective to the return code. This all sounds daunting but setup.sh will assist you in meeting these standards by gathering the needed utilities into your scratch area. After running this script, the utilities prep_step, err_chk, err_exit, postmsg and startmsg will be available for use. These five utilities are described below.

prep_step

In production you must use the runtime compiler options and variables to pass a FORTRAN program its unit assignments. For the IBM SP, the environmental variable XLFUNIT_numberi is used to pass unit assignments to the program. Since there may be multiple FORTRAN programs running inside of a job, these variables must be reset before each program execution. Running prep_step before each program execution will set the variable XLFRTEOPTS to enable the use of the variable XLFUNIT_number, and will unset all XLFUNIT_number variables currently set in the environment.

postmsg
postmsg simply writes a message to a log file. The first argument is the log file name and the second argument is the message. You should use the log file named /com/logs/jlogfile when using postmsg in a production job.

err_chk

The script err_chk is used to check for a non-zero return code of a program execution and run a series of commands based on this return code. If a program executes with a return code of zero the end time is logged and job execution continues. If a non-zero return code is found stdout/stderr are written to the job output log, the time of the error is logged, an abort flag is sent back to SMS and the job is cancelled. The return code is passed into err_chk by setting the environmental variable err.
err_exit
The script performs the same tasks as a non-zero return code passed to err_chk

startmsg

startmsg simply posts the start time of the program to be executed to a log file. The name of the log file is set through the standard environmental variable called jlogfile.

Example2-3.

Example2-3 shows you how to create a simple job script to execute a FORTRAN program using the utilities described above. A majority of the environmental variables set are standard variables used by these production utilities as listed in Table 1-5. To run this example script as a batch job yon must use the llsubmit command on the IBM SP. This example will create a job output file, jlogfile and subdirectory in your current working directory. The file called jlogfile is a log of the start and end times of the job and FORTRAN executable. Inside of the subdirectory will be all the utilities discussed above plus the input and output files created by the script and executable. Try to run this script as listed and review the output files and subdirectory. Then, try running the script with the input file to the FORTRAN program missing and review the output.

Example2-3 Script Using Utilities from setup.sh

@ job_name = j242_12

@ output = ./WW0242_12.o$(jobid)

@ error = ./WW0242_12.o$(jobid)

@ initialdir = ./

@ class = 1

@ min_processors = 1

@ max_processors = 1

@ notification = never

@ shell = /bin/sh

@ queue

export outid="example2‑3"

export jobid="${outid}.o$$"

export pgmout="OUTPUT.$$"

#

Set cycle time for setpdy.sh to figure out the date

#

export cyc=12

export cycle=t${cyc}z

#

Set Name of stdout/stderr file for executables

#

export pgmout="OUTPUT.$$"

#

Set Temporary Scratch Directory

#

export DATA=`pwd`/${jobid}

mkdir ${DATA}

#

Run inside of Scratch Directory

#

cd ${DATA}

#

Disable SMS Hooks

#

export SENDSMS=NO

#

File to log job information

#

export jlogfile=../jlogfile

#
Run setup.sh to copy utilities into scratch directory

#

export utilscript=/nwprod/util/ush

sh $utilscript/setup.sh

msg="Beginning of Example Job Sucessfully"

postmsg "$jlogfile" "$msg"

#

Set the Date Variables

#

sh $utilscript/setpdy.sh

. PDY

#

Try running with the line below commented out to change the

outcome of the script

#

echo $PDY > date_file_in

#

Set Standard Variable pgm for use by utilities then

source prep_step to set XLFRTEOPTS and unset XLFUNIT vars

#

export pgm=example2‑3

. prep_step

export XLFUNIT_20="date_file_in"

export XLFUNIT_51="date_file_out"

#

Log start of program execution

#

startmsg

../example2‑3 >> $pgmout 2>errfile

#

Check the return code of example2‑3

#

export err=$?;err_chk

msg="Got to End of Example Job Sucessfully"

postmsg "$jlogfile" "$msg"

exit

Example2-3 Source of FORTRAN code example2-3

 PROGRAM EXAMPLE2_3

C$$$ MAIN PROGRAM DOCUMENTATION BLOCK

C

C MAIN PROGRAM: EXAMPLE2_3

C PRGMMR: MICHAUD ORG: NP11 DATE: 2002‑01‑24

C

C ABSTRACT: PROGRAM READS ONE LINE OF FILE AND WRITES IT BACK OUT

C

C PROGRAM HISTORY LOG:

C 02‑01‑24 D.L.MICHAUD

C

C USAGE:

C INPUT FILES:
C 21 ‑ INPUT FILE

C

C OUTPUT FILES:

C 51 ‑ OUTPUT FILE

C

C EXIT STATES:

C

C REMARKS:

C

C ATTRIBUTES:

C LANGUAGE: FORTRAN 90

C MACHINE: IBM SP

C

C$$$

 CHARACTER * 8 PDY

 INTEGER IOS

 READ(20,IOSTAT=IOS,FMT='(A8)')PDY

 IF (IOS.NE.0) THEN

 CALL ERREXIT(IOS)

 END IF

 WRITE(51,FMT='(A8)')PDY

 END

Example2-3 Makefile for example2-3

FC = xlf

CMD = example2‑3

LIBS = /nwprod/w3lib90/w3lib_4

LDFLAGS =

PROFLIB =

FFLAGS =

OBJS = example2‑3.o

all: $(CMD)

$(CMD): $(OBJS)

 $(FC) $(LDFLAGS) ‑o $(@) $(OBJS) $(LIBS)

 rm ‑f $(OBJS)

clean:

 rm ‑rf $(OBJS)

Example2-3 Sample Output of jlogfile with Successful and Unsuccessful Runs

01/24 22:29:21Z example2‑3.o21036‑Beginning of Example Job Successfully

01/24 22:29:22Z example2‑3.o21036‑example2‑3 started

01/24 22:29:22Z example2‑3.o21036‑example2‑3 completed normally

01/24 22:29:22Z example2‑3.o21036‑Got to End of Example Job Successfully

01/24 22:30:21Z example2‑3.o24088‑Beginning of Example Job Successfully

01/24 22:30:22Z example2‑3.o24088‑example2‑3 started

01/24 22:30:22Z example2‑3.o24088‑ERROR PROGRAM example2‑3 RETURN CODE 255

01/24 22:30:22Z example2‑3.o24088‑ FAILED example2‑3.o24088 ‑ ABNORMAL EXIT
