
Binary-Swap Volumetric Rendering on the T3D

Chuck Hansen, Michael Krogh, James Painter Guillaume Colin de Verdi�ere�

Advanced Computing Laboratory Centre d'Etudes de Limeil-Valenton
Los Alamos National Laboratory CEL-V/DMA/AIM
Los Alamos, New Mexico 87545 94195 Villeneuve-Saint-Georges, France

Roy Troutman
National Energy Research Supercomputer Center

Lawrence Livermore National Lab
Livermore, CA 94550

Abstract

This paper presents a data distributed parallel ray-

traced volume rendering algorithm and its implemen-

tation on the CRI T3D. This algorithm distributes the

data and the computational load to individual pro-

cessing units to achieve fast and high-quality render-

ing of high-resolution data. The volume data, once

distributed, is left intact. The processing nodes per-

form local raytracing of their subvolume concurrently.

No communication between processing units is needed

during this local ray-tracing process. A subimage is

generated by each processing unit and the �nal image

is obtained by compositing subimages in the proper

order by the Binary-Swap algorithm. Performance of

this algorithm on the T3D is presented and compared

to an implementation on the CM-5.

1 Introduction

The visualization of 3D scalar data sets has proven an

enormous boon for scientists. 3D scalar data sets arise

not only from scienti�c simulations but also from high

resolution scanners used for medical imaging and non-

invasive testing. As instrument technology improves,

the resolution of these scanners increases. Likewise,

as the memory capacity of massively parallel comput-

ers increases, we are seeing the resolution of scien-

ti�c models also increase. These advances lead to a

tremendous data visualization problem: how can one

interactively explore these very large data sets?

There are many di�erent methods for exploring 3D

data sets. Among these are slicing and dicing to form

�Author currently at the ACL through a grant from

DGA/DRET

2D data sets and utilizing the plethora of existing 2D

visualization tools. The use of 3D computer graph-

ics techniques is another very useful way to convey

the important information contained within data sets.

Direct volume rendering has proven to be an e�ective

method for examining such data sets. However, the

direct volume rendering is very computationally in-

tensive and therefore often fails to achieve interactive

rendering rates. This is compounded by the large data

set size often seen by modern simulations on massively

parallel computers or from high-resolution scanning

devices. For large datasets1, the computation require-

ments are such that single processor workstations are

incapable of real-time volumetric rendering. In addi-

tion to the intense computational requirements, the

need for high memory bandwidth and fast I/O rates

predominate with this large amount of data. One so-

lution is to utilize massively parallel processors (MPP)

where possible. For sites which already have MPPs,

this provides a cost-e�ective solution for volume ren-

dering.

In this paper, we describe the CRI-T3D implemen-

tation of a volume renderer which was initially de-

veloped for a Thinking Machines Corporation CM-5.

This volume renderer performs a data-space decompo-

sition by dividing the 3D scalar �eld among processing

elements (PEs). Once distributed in a viewpoint inde-

pendent fashion, the volume can be rendered by em-

ploying a local renderer at each PE and compositing

the results. We use a method which we call Binary-

Swap Compositing which keeps all PEs active during

the compositing phase. We provide explanations of

design choices made during the T3D algorithm devel-

1we consider large to be upward from 2563 oating point

data: 67MBytes

opment and describe performance results while com-

paring these to an implementation on the CM-5.

2 Related Work

There are two predominate methods for direct vol-

ume rendering: ray-casting and projection methods

such as splatting or shear/warp [8, 9, 15]. Ray casting

refers to casting multiple rays, typically one from each

pixel, through the data set and performing interpola-

tion at sample points along the ray. These samples

are summed to obtain the color/transparency at each

pixel. Projection methods directly project the scalar

elements onto the image. These can be a polygonal

representation or the element convolved with a func-

tion. The projections are done in a front-to-back or

back-to-front fashion to obtain the �nal image. Since

volume rendering is an inherently parallel task, both

methods can exploit parallelism for accelerated ren-

dering. Indeed, we have seen an increasing num-

ber of parallel algorithms for fast volume rendering

[1, 2, 5, 13]. Both methods for direct volume render-

ing can be parallelized through data space decompo-

sition as well as image space schemes. Ray-casting

methods typically parallelize through data space de-

composition.

Hsu described a data distributed volume renderer

which was designed for the SIMD massively parallel

MP-1 [5]. He distributes the volume based upon a

block decomposition. Each PE gets a portion of the

data and renders a local subimage. The locally ren-

dered subimage pixels, which he calls segments, are

routed to the PE which is responsible for that pixel

in the �nal image. There, the segment is stored until

all segments making up a ray are gathered after which

the �nal compositing can be accomplished.

Camahort uses a similar method with block decom-

position of the volume with a volume renderer de-

signed for the CM-5 [1]. However, the segments are

passed from PE to PE, in a systolic fashion, as they

cross sub-volume boundaries. As the segments exit the

data volume, they form a �nal pixel in the resulting

image since the compositing is done on the y.

Johnson and Genetti describe a volume renderer

implemented on a CRI T3D [6]. They distributed the

data in slices over the PEs. The slices are then individ-

ually rendered and then composited in parallel result-

ing in a �nal image. Their algorithm di�ers from ours

in both the data distribution and compositing phase.

As Johnson points out, the local rendering algorithm

employed is independent of the data distribution and

the compositing. Thus, this software framework pro-

TOP

Left Right

Bottom

Figure 1: k-D Tree Subdivision of a Data Volume

vides an excellent platform for exploring di�erent ren-

dering techniques.

3 Binary-Swap Volume Ren-

dering

The algorithmdescribed here has previously been pub-

lished in two di�erent papers [10, 11]. Here we de-

scribe a brief overview of the algorithm.

The basic idea behind our algorithm, like other sim-

ilar methods, is very simple: divide the data up into

smaller subvolumes distributed to multiple processors,

render them separately and locally, and combine the

resulting images in an incremental fashion. The mem-

ory demands on each processor are modest since each

processor need only hold a subset of the total data set.

3.1 Data Subdivision

There are many ways to partition the data over the

PEs with the only requirement being the ability to

determine an unambiguous front-to-back ordering for

the subvolumes. The distribution of the subvolumes

determines a static load balancing of the data set. Ide-

ally, we would like each subvolume to require about

the same amount of computation. In practice, this

is di�cult to obtain since the amount of computation

depends on the selected opacity transfer function. A

commonmethod is to partition the data into slices [6]

or into blocks [5]. We use a k-D tree subdivision of the

data. This performs alternating binary subdivision of

the coordinate axes at each level in the tree as indi-

cated in Figure 1. When the number of processors is

a power of two, the volume is divided equally among

all three dimensions like the block subdivision. The

advantage of the k-D tree is the hierarchical structure

which is advantageous for image composition.

Once the volume is subdivided, it is useful to repli-

cate the boundary of points along each face of the

subvolume. This avoids message tra�c for computing

the gradients and interpolation operations.

3.2 Parallel Rendering

The rendering phase of our algorithm is based upon

volume ray-casting as described by Levoy [9]. An im-

age is constructed by casting rays from the eye through

the image plane and into the volume of data. One ray

per pixel is generally su�cient though we allow cast-

ing multiple rays per pixel. The 3D scalar �eld is sam-

pled at evenly spaced points along the ray, usually at a

rate of one or two samples per voxel. The volume data

is interpolated to these sample points typically using

a trilinear interpolant. Color and opacity are deter-

mined by applying a transfer function to the values.

Shading can be accomplished by approximating the

surface normal with the gradient of the data volume.

Sampling continues until the data volume is ex-

hausted or until the accumulated opacity reaches a

threshold cut-o� value. The �nal image value corre-

sponding to each ray is formed by compositing, front-

to-back, the colors and opacities of the sample points

along the ray. The color/opacity compositing is based

on Porter and Du�'s over operator [14]. It is easy to

verify that the over is associative; that is,

a over (b over c) = (a over b) over c:

The associativity of the over operator allows us to

break a ray up into segments, process the sampling

and compositing of each segment independently, and

combine the results from each segment via a �nal com-

positing step. This is the basis for our parallel volume

rendering algorithmas well as recent methods by other

authors [1, 5, 12, 13].

Local rendering is performed on each processor in-

dependently; that is, there is no data communication

required during the subvolume rendering. All subvol-

umes are rendered using an identical view position and

only rays within the image region covering the corre-

sponding subvolume are cast and sampled.

In principle, any volume rendering algorithm could

be used for local rendering. We have implemented

several di�erent ray-casting algorithms for local ren-

dering. The slowest, yet most accurate, is based upon

Phong shading. The gradient is tri-linearly interpo-

lated along with the data value. These are used for

:::::
:::::
:::::
:::::

5555
5555
5555
5555
5555

@@@@@
@@@@@
@@@@@
@@@@@

""""
""""
""""
""""

::::
::::
::::
::::

::
::
::
::

555
555
555
555
555

55
55
55
55
55

@@@@
@@@@
@@@@
@@@@

@@
@@
@@
@@

""""
""""
""""
""""

""
""
""
""

:
::::
::::

::
::

::::
::::
::::

::
::
::55

55
55

555
555
555

555
555
555@@@@ @@@

@@@@
@@@@
@@@@
@@@@

@@
@@
@@
@@

55
55
55"" """

""
""
""
""

""""
""""
""""
""""

L1 R1 L2 R2 L3 R3 L4 R4

L1+L2 R1+R2 L3+L4 R3+R4

T1

B1

T2

B2

T3

B3

T4

B4

T1+T3 T2+T4

B1+B3 B2+B4

(a)

(b)

(c)

(d)

:
:::
:::
5
5
5

@@@"":::
:::
5555
5555
5555

@@@@""""

:::
:::
:::

@@@
@@@
@@@
@@@

5
5
5

""
""
""
""

:::
:::
:::

5555
5555
5555

@@@
@@@
@@@
@@@

"""
"""
"""
"""

Upper−Left Upper−Right

Lower−Left Lower−Right

Figure 2: Parallel Compositing Process

shading at each sample point. The fastest method

preshades the volume and interpolates the shaded in-

tensity and data value. This saves two tri-linear inter-

polations per sample with minimal image degradation.

3.3 Image Composition

The �nal step in our algorithm is to merge the lo-

cal images into a �nal image. As described earlier,

the rule for merging is based on the over composit-

ing operator. When all subimages are ready, they are

composited in a front-to-back order. For a straightfor-

ward one-dimensional data partition, this order is also

straightforward. When using the k-D tree structure,

this front-to-back image compositing order can then

be determined hierarchically by a recursive traversal

of the k-D tree structure, visiting the \front" child be-

fore the \back" child. This is similar to well known

front-to-back traversals of BSP-trees [4]. In addition,

the hierarchical structure provides a natural way to

accomplish the compositing in parallel: sibling nodes

in the tree may be processed concurrently.

The compositing scheme, which we call Binary-

Swap, fully parallelizes the compositing phase. At

each compositing stage, the two processors involved

in a composite operation split the image plane into

two pieces and each processor takes responsibility for

one of the two pieces. In the early phases, each pro-

cessor is responsible for a large portion of the image

area. In later phases as we move up the compositing

tree, the processors are responsible for a smaller and

smaller portion of the image.

Figure 2 illustrates the Binary-Swap compositing

algorithm graphically for four processors. When all

four processors �nish rendering locally, each processor

holds a partial image, as depicted in (a). Each partial

image is subdivided into two half-images by splitting

along the X axis. In our example, as shown in (b), Pro-

cessor 1 keeps only the left half-image and sends its

right half-image to its immediate-right sibling, which

is Processor 2. Conversely, Processor 2 keeps its right

half-image, and sends its left half-image to Proces-

sor 1. Both processors then composite the half image

they keep with the half image they receive. A similar

exchange and compositing of partial images is done

between Processor 3 and 4.

The key thing to note is that the Binary-Swap algo-

rithm sends more data than other parallel composit-

ing algorithms but can exploit the fast interconnection

network of MPPs [11].

4 T3D Implementation

The focus of this research was to implement a fast,

hopefully interactive, volume renderer on the CRI

T3D. We will not describe the T3D architecture in

this paper. The reader is referred to the wealth of

documentation from CRI and other CUG papers[6, 3].

As noted, the initial algorithm was developed for

a Thinking Machines CM-5. As one might imagine,

the hardware/software environment of the T3D is dif-

ferent enough from the CM-5 to require substantial

algorithmic changes. In this section, we describe what

was required for the CRI T3D implementation.

The original publication of the Binary-Swap algo-

rithm described not only the CM-5 implementation

but also an implementation on a cluster of worksta-

tions under PVM [10]. This was the starting point for

the T3D implementation since the T3D has a PVM en-

vironment. Like the CM-5, the T3D can be viewed as

a host-node message passing machine with the YMP

serving as the host and the T3D serving as the nodes.

The steps of the algorithm are as shown in Figure 3.

The main functions, as described in the previous

section, are steps 3 through 9. Several of these steps

needed to be modi�ed to obtain high performance on

the T3D.

One of the initial algorithmic modi�cations in-

volved how the image was transferred from the nodes

to the host. With the CM-5, each individual PE sent

the sub-image to the host for display. This was ideal

for the CM-5 yet the worst possible scheme for the

T3D. When any node on the T3D communicates with

HOST NODE

1 send data

2 receive data

3 send view and

transfer function

4 receive view and

transfer function

5 render sub image

6 composite sub images

7 send result to host

8 receive image

9 display image

10 repeat steps 3 to 9

Figure 3: Host and Node Algorithm Steps

1514131211109876543210

0 2 4 6 8 10 12 14

12840

0 8

0

Figure 4: 16 Node Broadcast Tree Localizing Commu-

nication

the YMP, agents on the YMP-side �eld the request.

Therefore, as each PE sent its subimage, the load on

the YMP went from quiescent to overloaded as the

agents fought for YMP resources to �eld the numer-

ous simultaneous requests. This lead to a tremendous

degradation of performance of the renderer. A better

method is for a single PE to communicate with the

YMP.

To accomplish this, we perform a tree based gather

of the sub images to PE0. A broadcast tree, shown

in Figure 4, is traversed in the reverse order copying

the sub-image to the parent at each level. Data copies

are performed only on the links indicated by the bold

lines. Once we have the �nal image in the PE0 mem-

ory, we can either send it to the YMP through PVM,

use the /proc method for transferring the image from

a PE to the YMP memory2, or display directly with

HIPPI by writing to the proper device. By utilizing

2This involves having a process on the PE to write into the

memory of a process on the YMP by writing to the /proc �lesys-

tem. Details can be found in the CRI documentation.

/proc, or an asynchronous write to HIPPI, and send-

ing the next viewing transformation and transfer func-

tion before displaying the image, we can overlap the

rendering with the image display. In the host-node

diagram, step 9 is moved to step 4 on the host-side.

Sending the viewing transformation and transfer

function to each PE requires a broadcast. On the CM-

5, this broadcast was e�ciently handled by the na-

tive message passing library. On the T3D, once again,

we found that using the YMP as the host leads to

performance problems when doing PVM style broad-

casts. With the X11-based GUI, we are required to

employ the YMP as the host since the T3D nodes do

not support X11. In the naive approach, the YMP

must communicate to each PE causing a bottleneck

at the host. A better approach is to send the data to

a single PE and let that PE broadcast to the others.

A PVM broadcast from a single PE to the other PEs

with a pvm recv(-1) leads to an ine�ciency. Since the

YMP is part of the PVM group it still impacts the per-

formance even though it does not participate in the

broadcast and all communication takes place on the

T3D. The solution is to specify the sending PE in the

receive call. As seen in Table 1, this leads to a 7 fold

performance increase when scaling to a large number

of nodes. Additionally, we have found that for large

messages the broadcast tree previously de�ned gives

much better performance than the pvm bcast com-

mand even if one uses a pvm recv(PE0) which would

seem to indicate that pvm bcast is ine�ciently imple-

mented.

We also made some rendering enhancements to the

original algorithm. The addition of supersampling al-

lows for denser sampling along a ray which results

in smoother images. As mentioned earlier since we

were striving for interactive frame rates, we added a

faster rendering algorithm which only shades at the

data points rather than the sample points. Thus, the

rendering algorithm then only needs to tri-linearly in-

terpolate the data value and the shading information

rather than the data volume and the three compo-

nents of the gradient resulting in two rather than four

trilinear interpolations per sample. Additionally, the

illumination equation is modi�ed to drop the specu-

lar term which saves a power-function call. We refer

to this as Gouraud shading since the shaded value is

interpolated. Conversely, by interpolating the normal

and using that for local shading at the sample point, a

superior image is generated at a greater computational

expense.

The addition of an X11-interface for controlling the

parameters and transfer functions assists in the inter-

activity of render. Since the PEs already have the data

set in memory, the X-11 GUI impacts only step 3 in

the diagram above, leading to interactive modi�cation

of the rendering parameters.

In addition to the X11-based interface, an AVS in-

terface was created for the renderer. The user has

the ability to modify parameters, such as the num-

ber of processors and the resolution through a set

of AVS widgets. When the user connects the ren-

dering module to the colormap generator and display

tracker modules, the transfer function and the trans-

formation matrix can be easily and intuitively manip-

ulated with a mouse. The output from the rendering

module is simply an AVS image. The output can be

passed through additional modules to magnify the im-

age through bilinear interpolation to create an image

which is larger and easier to view without requiring

extensive computation.

Although AVS is available for the YMP front end of

the T3D, it was felt that the highly interactive nature

of AVS made this a poor place to run the interface.

As a result the slave processes of the renderer were

started up remotely through PVM from an HP 9000

via a HIPPI connection. Since the HP and the Alpha

both use IEEE oating point representation, in some

cases reading in oating point numbers on the HP

and transmitting them through PVM to the back end

of the T3D is faster than reading in YMP oating

point numbers, converting them to IEEE and then

transmitting the results.

The AVS interface provides a local module, within

the AVS framework, which uses PVM to interact with

the T3D. Thus, the T3D volume rendering module

looks just like any other AVS module. The disad-

vantage to this approach is that should another AVS

module on the T3D interact with the volume render-

ing module, such as data preprocessing, the volume

data would get passed from the �rst AVS module to

the AVS-kernel on the HP9000 and back to the AVS

volume rendering module since the T3D lacks the nec-

essary AVS system libraries for remote module execu-

tion.

Remotely controlling the renderer through even a

high speed network slows down the rendering process.

Rendering data interactively was found to be advan-

tageous, however. Interesting sections of the dataset

can be found in only a few iterations. AVS also made

interface design trivial.

method 2 4 8 16 32 64 128

pvm bcast recv(-1) 0.0020 0.0035 0.0083 0.0170 0.0330 0.0901 0.2264

pvm bcast recv(PE0) 0.0016 0.0023 0.0026 0.0066 0.0070 0.0164 0.0309

Table 1: Broadcast Times for on the T3D Without the YMP Sending/Receiving

1283 2562 2 4 8 16 32 64 128

update 0.0016 0.0023 0.0026 0.0066 0.0070 0.0164 0.0309

render 2.8678 1.4657 0.8556 0.4929 0.2490 0.1343 0.0747

composite 0.0463 0.0520 0.0607 0.0649 0.0673 0.0689 0.0705

1283 5122

update 0.0016 0.0019 0.0028 0.0065 0.0124 0.0438 0.0464

render 11.4777 5.8508 3.4155 1.9905 1.0121 0.5293 0.2903

composite 0.1821 0.2213 0.2296 0.2546 0.2498 0.2500 0.2565

Table 2: Rendering Times in Secs. for 1283 Data Set Rendered with the Phong Renderer and the Opaque Transfer

Function

1283 5122 2 4 8 16 32 64 128

Phong 59.0891 29.5250 16.4777 11.0566 7.0924 4.0365 1.9779

Gouraud 33.2535 16.5976 8.6021 4.5614 2.3388 1.2653 0.6935

Speedup 1.777 1.779 1.915 2.424 3.032 3.19 2.85

Table 3: Di�erence Between Gouraud and Phong Shading for the Transparent Transfer Function

5 Experiments

In this section, we present performance results of the

T3D Binary-Swap volume renderer and compare the

performance to the Thinking Machines CM-5. All the

times were gathered with optimization level O3. We

ran several tests with di�erent sized data volumes,

643, 1283, and 2563, of a MRI scanned head. Fig-

ure 5 shows the rendered data set with the transfer

function set to isolate the skin. We also timed the

rendering of di�erent image sizes: 256x256, 512x512,

1280x1024. All tests were performed on a variety of

partition sizes to determine scalability. We used two

di�erent transfer functions in these tests: opaque, as

seen in Figure 5 and transparent. The transparent

transfer function was chosen as a worst-case exam-

ple since the rays never terminate early whereas the

opaque transfer function terminates most rays early.

Figure 5: Human Head Data Set Rendered with

Opaque Skin

Table 2 gives the time in seconds for the various

rendering phases for a 1283 volume at image resolu-

tions of 256x256 and 512x512. Figure 6 shows a graph3

of the sum of the rendering phases at various image

sizes. The times are named with the convention: [ma-

chine].[volumesize].[imagesize].[transferfunction]. As

described above, the opaque transfer function took ad-

vantage of early ray termination thus was much faster

for a given image size. As one would expect, the larger

pixel coverage slows down the renderer since more rays

3All graphs are given in loglog scales.

1

10

100

2 4 8 16 32 64 128

T
i
m
e

i
n

S
e
c
s
.

Partition Size

Various image sizes for 128**3

"t3d.128.256x256.O"
"t3d.128.512x512.O"

"t3d.128.1280x1024.O"
"t3d.128.256x256.T"
"t3d.128.512x512.T"

"t3d.128.1280x1024.T"

Figure 6: 1283 Volume at Di�erent Image Resolutions

are cast. The slight uctuation in speedup is due to

di�ering loads on the YMP.

Table 3 gives the rendering times of Phong shad-

ing and Gouraud shading for the transparent transfer

function at an image resolution of 512x512. As one

would expect, Gouraud shading is much faster; about

3 times faster for large numbers of nodes.

1

10

100

2 4 8 16 32 64 128

T
i
m
e

i
n

S
e
c
s
.

Partition Size

Various dataset size for 512x512 image

"t3d.64.512x512.T"
"t3d.128.512x512.T"
"t3d.256.512x512.T"

Figure 7: E�ects of Scaling the Volume

The algorithm scales extremely well with the vol-

ume size as shown by Figure 7. The three curves are

for volumes sizes of: 643, 1283, and 2563. The 2563

volume would not �t on a partition smaller than 16

nodes. The scaling is roughly a factor of 2 for a fac-

tor of 8 increase in the volume size. The times are

the sum of the rendering phases (update + render +

composite) for the Phong renderer.

1283 5122 32 64 128

T3D

Update 0.0124 0.0438 0.0464

Render 1.0121 0.5293 0.2903

Composite 0.2498 0.2500 0.2565

CM-5

Update 0.0109 0.0106 0.0321

Render 13.4987 7.0119 3.8126

Composite 0.2523 0.2855 0.2091

Table 4: Phases of the Volume Renderer on the CM-5

and T3D

When running the volume renderer in interactive

mode with a 1283 data set rendering into a 256x256

image, we can achieve about 4 fps to the HIPPI frame

bu�er from a 128 node partition. The compositing

and rendering take about the same amount of time.

Figure 8 shows the rendering time, for Phong shad-

ing, of the T3D compared to the CM-5. As can be

seen in Table 4, the update and compositing phase

were similar on the two machines while the rendering

phase was an order of magnitude faster on the T3D.

The primary reason for this is due to the problems

of trying to access the vector units on the CM-5. A

large portion of the CM-5 rendering kernel still runs

on the Sparc-2 scalar processor which is much slower

than the DEC Alpha processor.

0.1

1

10

2 4 8 16 32 64 128

T
i
m
e

i
n

S
e
c
s
.

Partition Size

Comparison TMC CM5 - CRI T3D

"t3d.128.256x256.O"
"t3d.128.512x512.O"
"cm5.128.256x256.O"
"cm5.128.512x512.O"

Figure 8: Rendering Times for the CM-5 and T3D

6 Conclusions

This paper presented an algorithm for fast volume ren-

dering on a CRI T3D. The rendering framework al-

lows for experimentation with di�erent rendering tech-

niques.

We believe that the performance of the algorithm

can be improved in several ways. The message pass-

ing environment is de�nitely slow. If we move to

shmem put/get then the communication should be

dramatically improved. A di�erent rendering algo-

rithm would improve the interactivity of the volume

renderer. Moving to a model which only uses the YMP

for displaying the image would de�nitely help with

performance. We anticipate exploring these as well as

merging the volume renderer with a polygon renderer

in the near future.

Perhaps because we are used to the MPP environ-

ment of the CM-5, we found that the programming

environment on the T3D to be lacking in several as-

pects. The tools provided on the T3D were inadequate

for large code development and did not scale well. In

fact, we found that by debugging the PVM code on

an SGI and moving the debugged version to the T3D,

the development cycle was greatly enhanced. We were

greatly disappointed to �nd that MPP tools, such as

Apprentice, do not work with the C++ programming

environment. The lack of robustness of the debugger,

Totalview, meant that debugging on the T3D was a

very painful experience4.

The implementation of the PVM library on the

T3D is less than optimal. For example, the PVM re-

duce instruction scales linearly rather than logarithmi-

cally as one would expect. The performance of PVM

on the T3D nodes requires careful programming so

as not to involve the YMP. Also, the black-art of the

MPP environment variables is less than satisfying. In

some cases, one must tune these variables just to get

the program to run which we �nd unacceptable. We

would like to see CRI support a fast native message

passing environment such as FM[7].

On the positive side, the data network is much

faster than on other MPPs; most notably the CM-5.

Also, oating point performance was easier to obtain

with the DEC Alpha processors than with the CM-5

vector units when programming in MIMD model. In

general, vector unit memory management problems

are traded for cacheing problems on the T3D. How-

ever for the volume rendering code the cacheing prob-

lems impact performance far less than the vector-unit

4We have been informed that the next release of Totalview

should address the stability problems.

management on the CM-5.

The T3D is still an early massively parallel proces-

sor. As such, we expect the software environment to

greatly improve over the next year.

7 Acknowledgements

We would like the thank the Advanced Comput-

ing Laboratory for providing an outstanding environ-

ment for performing this research. We also thank

DGA/DRET for providing the grant which has al-

lowed Guillaume Colin de Verdi�ere to spend a year

with our group. David Rich, as always, provided good

response to our T3D problems as well as critical com-

ments on this paper. Mark Dalton, CRI Los Alamos,

listened to many complaintswith good humor and pro-

vided much needed assistance time and again.

References

[1] Emilio Camahort and Indranil Chakravarty. Inte-

grating Volume Data Analysis and Rendering on

Distributed Memory Architectures. In Proceed-

ings 1993 Parallel Rendering Symposium, pages

89{96, 1993.

[2] Brian Corrie and Paul Mackerras. Parallel Vol-

ume Rendering and Data Coherence. In Proceed-

ings 1993 Parallel Rendering Symposium, pages

23{26, 1993.

[3] Jerry Delapp David Rich and Stephen Pope. Ac-

cepting the T3D. In Proceedings of '94 Fall CUG,

pages 225{233, 1994.

[4] H. Fuchs, G.D. Abram, and E. D. Grant. Near

Real-Time Shade Display of Rigid Objects. In

Proceedings of SIGGRAPH 1983, pages 65{72,

1983.

[5] William M. Hsu. Segmented Ray Casting for

Data Parallel Volume Rendering. In Proceedings

1993 Parallel Rendering Symposium, pages 7{14,

1993.

[6] Greg Johnson and Jon Genetti. High Resolution

Interactive Volume Rendering on the Cray T3D.

In Proceedings of '94 Fall CUG, pages 119{126,

1994.

[7] Vijay Karamcheti and Andrew Chien. A Com-

parison of Architectural Support for Messaging

on the TMC CM-5 and the Cray T3D. In Pro-

ceedings of ISCA, 1995.

[8] Philippe Lacroute and Mark Levoy. Fast Volume

Rendering Using a Shear-Warp Factorization of

the Viewing Transformation. In Proceedings of

SIGGRAPH 1994, pages 451{458, 1994.

[9] Marc Levoy. Display of Surfaces from Volume

Data. IEEE Computer Graphics and Applica-

tions, pages 29{37, May 1988.

[10] K.L. Ma, J.S. Painter, C.D. Hansen, and M.F.

Krogh. A Data Distributed, Parallel Algorithm

for Ray-Traced VolumeRendering. In Proceedings

1993 Parallel Rendering Symposium, pages 15{

22, 1993.

[11] K.L. Ma, J.S. Painter, C.D. Hansen, and M.F.

Krogh. Parallel Volume Rendering using Binary-

Swap Compositing. IEEE Comput. Graphics and

Appl., 14(4):59{68, July 1993.

[12] Kwan-Liu Ma and Jamie S Painter. Parallel Vol-

ume Visualization on Workstations. Computers

and Graphics, 17(1), 1993.

[13] Ulrich Neumann. Parallel Volume-Rendering Al-

gorithm Performance on Mesh-Connected Multi-

computers. In Proceedings 1993 Parallel Render-

ing Symposium, pages 97{104, 1993.

[14] T. Porter and T. Du�. Compositing Digital Im-

ages. Computer Graphics (Proceedings of SIG-

GRAPH 1984), 18(3):253{259, July 1984.

[15] Lee Westover. Footprint Evaluation for Volume

Rendering. In Proceedings of SIGGRAPH 1990,

pages 367{376, 1990.

	Abstract
	1 Introduction
	2 Related Work
	3 Binary-Swap Volume Rendering
	3.1 Data Subdivision
	3.2 Parallel Rendering
	3.3 Image Composition

	4 T3D Implementation
	5 Experiments
	6 Conclusions
	7 Acknowledgements
	References

