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Abstract 
 

 A volumetric image segmentation algorithm has been 
developed and implemented by extending a 2D algorithm 
based on Active Shape Models.  The new technique allows 
segmentation of 3D objects that are embedded within 
volumetric image data.  The extension from 2D involved 
four components: landmarking, shape modeling, gray-
level modeling, and segmentation.  Algorithms and 
software tools have been implemented to allow a user to 
efficiently landmark a 3D object training set.  Additional 
tools were built that subsequently generate models of 3D 
object shape and gray-level appearance based on this 
training data.  An object segmentation strategy was 
implemented that optimizes these models to segment a 
previously unseen instance of the object.  Results of this 
new 3D segmentation algorithm have been generated for 
a synthetic volumetric data set. 
 
 
1. Introduction 
 
 The increasing quality and availability of imaging 
instruments such as magnetic resonance imaging and x-
ray computed tomography (CT), has resulted in more 
prevalent use of these instruments for nondestructive 
industrial evaluation, patient diagnostics, and medical 
research.  Employing these scanning instruments results 
in a tremendous amount of volumetric data.  Analyzing 
these large data sets is both challenging and time 
consuming for the end users.  Therefore, 3D data analysis 
tools are in increasing demand.  Object segmentation is an 
important aspect of such data analysis. 
 Segmentation is one of the most challenging and 
valuable tasks in the field of computer vision and objects 
that display wide variation in shape or appearance pose a 
particular challenge.  While progress in algorithm 
development for 2D image segmentation techniques has 
been considerable [1-3], the progress in successful 3D 
segmentation has been minimal by comparison. 
 Statistical shape modeling techniques, such as Active 
Shape Models [4] (ASM), rely on the statistics of an 

object’s shape and gray-level appearance as gathered 
from a training set of manually landmarked instances of 
the object.  Once the model is derived, image 
segmentation is performed by allowing the model to 
deform until it fits a previously unseen instance of the 
object.  The deformation of the model occurs as it 
searches for nearby edges in the image but is limited to 
shapes that are consistent with those seen in the training 
set.  ASMs are tolerant of faint or missing edges and have 
been successfully used to segment 2D objects that exhibit 
wide shape variation [5-7].  Because of the qualities of 
ASM, it has excellent potential as a method for 
segmenting 3D objects from image volumes.  Therefore, 
the focus of this work is the extension of ASM to 3D, 
involving four components: landmarking, shape 
modeling, gray-level modeling, and segmentation. 
 
1.1. Synthetic data generation 
 
 For the purposes of developing and testing the 3D 
ASM implementation, a synthetic data set was used to 
simulate simple shape variation but avoid the difficulties 
of real data such as noise and indistinguishable features.  
Since existing synthetic data is difficult to find in a 
voxelized form, a procedure was devised to generate 
voxelized volumes from a 3D model.  First, a simple 3D 
model of a kidney was created in AutoCADTM.  Next, this 
model was deformed by stretching the object by varying 
amounts in each of the 3 axes.  A public domain software 
tool was obtained to convert the deformed AutoCADTM 
models to 3D voxelized volumes.  Using this procedure, a 
set of 19 voxelized 3D kidneys was generated (Figure 1). 
 

 
Figure 1. Samples of the synthetic kidney models 



2. Generating a landmarked training set 
 
 To obtain the necessary statistics from the ASM 
training set, there must be point-to-point correspondence 
of the landmark points (LPs) that delineate the surface of 
the object under study.  Although straightforward for 2D 
objects, the landmarking process is especially challenging 
for volumetric data because of the increased number of 
points and the intractable problem of having to directly 
landmark an object that is embedded within another 
image volume.  Therefore, a very challenging and 
important extension task is the development of a 
volumetric landmarking technique.  Previously, this 
problem has been addressed by methods that require an 
initial manual segmentation of the training set and then 
use automatic algorithms to orient those shapes and find 
corresponding point pairs [8, 9].  Our approach, first 
introduced in [10], is novel in that object orientation is 
established first, so that the subsequent segmentation 
directly produces corresponding LPs.  This distributes the 
need for user input throughout the process to maximize 
the efficiency of the user’s contribution rather than 
concentrating it on a tedious a priori manual 
segmentation.  It also leaves the responsibility of 
establishing correspondence to the user, who is often 
better equipped than existing algorithms. 
 
2.1. Object reorientation 
 
 Since 3D objects cannot be precisely oriented during 
imaging, especially when concealed within another body, 
this technique first establishes the actual orientation of the 
object within the volume based on features from the 
transaxial slices.  To that end, a cylindrical coordinate 
system is located on each volume by presenting the user 
with appropriate image slices and annotation tools, as 
dictated by the data under study.  This is demonstrated for 
the synthetic kidney data set in Figures 2 through 4.  The 
user first marks a reference plane through the volume that 
will establish the reference angle in the cylindrical 
coordinate system.  In this case, the line of symmetry of 
the kidney is marked on 3 slices (Figure 2) and the 
position of the reference plane is a best-fit through these 
lines (Figure 3).  Note that the reference plane may be 
rotated in the transaxial plane as well as in the dimension 
orthogonal to it, as indicated by a translation of the lines 
from slice to slice.  Next, the axis of the cylindrical 
coordinate system is marked on the reference plane and 
the volumes are resliced proportionally along their new 
coordinate axis (Figure 4) to form new volumes each 
made up of m corresponding and aligned image slices.  
Thus, the landmarking task has been reduced to m 
training sets of 2D images and tools to streamline 2D 
landmarking can be utilized. 

2.2. Landmarking 
 
 To perform the 2D landmarking, a software tool was 
implemented to allow a user to interactively place and 
adjust LPs.  This tool allows the user to efficiently and 
accurately landmark several members of each training set 
manually.  A second software tool was implemented that 
builds a 2D ASM from these initial members and uses it 
to automatically segment the remaining training set 
images.  During this process, the user may adjust the 
automatically placed points on any subsequently 
landmarked image and add it to the model, hence, 
improving its accuracy.  A separate model can be built for 
each of the m sets of slices or similar slices can be 
grouped together, further streamlining the process. 
 

 

   
 

Figure 2. Three original transaxial slices; lines 
indicate the user’s determination of the reference 

plane for each slice 
 

 
 

Figure 3. The reference plane shown in the 3D space 
with two of the transaxial slices for reference 

 

 
 

Figure 4. : Reference plane with 16 new slices 
equidistantly along, and perpendicular to, the 

reference axis 



3. Extending ASM 
 
 The training process for 3D ASM requires the 
extension of shape model (SM) training and gray-level 
model (GLM) training.  In addition to the training, the 
segmentation process must also be extended. 
 Note that in a 2D application, a shape is represented 
by a one-dimensional (1D) vector whose elements are the 
collection of x- and y-coordinates of the LPs, thus 
  x = [x1, x2, …, xn, y1, y2, …, yn]T (1) 
where n is the number of LPs.  In the extension of ASM 
to 3D, the z-coordinates are simply appended to this same 
shape vector, thus 
  x = [x1, x2, …, xn, y1, y2, …, yn, z1, z2, …, zn]T. (2) 
 
3.1 Shape modeling 
 
 The first step in creating a 3D SM is to align all of 
the shapes gathered in the aforementioned training 
process.  Alignment of any two shapes in the training set 
is accomplished by finding the scale and rotation that 
minimize the sum-of-squared distances between their 
corresponding LPs.  In 2D, this involves only one rotation 
and there is a simple analytic solution for the gradient of 
the distance function.  In 3D, alignment involves 
minimization with respect to scale and three different 
rotations (about the x-, y-, and z-axes).  The function was 
minimized numerically in this case.  Once the alignment 
is complete, the mean 3D shape can be calculated. 
 The principal component analysis (PCA) [4] is used 
in exactly the same way to reduce the shape vector 
dimensionality down to the t most significant modes of 
variation.  The SM consists of the mean shape x, the PCA 
transformation matrix Φ, and the variances corresponding 
to each shape mode λi (i = 1, 2, …, t).  A shape vector x is 
transformed into the t-dimensional PCA space via  
  b = ΦT (x - x) (3) 
where the value of each bi determines the variance of the 
shape in the ith shape mode. 
 
3.2 Gray-level modeling 
 
 The extension of GLM to 3D requires a new profile 
sampling strategy.  In the 2D case, GLM for each LP is 
formed by extracting gray-level samples from all images 
in the training set along the profile that passes through 
each LP and is normal to the object boundary.  This same 
idea has been extended for the 3D case in that the GLMs 
are formed by sampling all training volumes along the 
profile that is normal to the object surface.  Once these 
profiles are extracted, the GLM for each LP consists of 
the objective function  

  f(gs) = (gs - gd)T Sd
-1 (gs - gd) (4) 

where gd and Sd are the mean profile and covariance 
matrix of all the profiles across the training set.  The 
value of this function is the Mahalanobis distance 
between a candidate profile gs and the mean profile gd. 
 There were two significant new developments in the 
gray-level modeling process.  Since the objects were 
landmarked after the reorientation process, the LPs had to 
be mapped back to the original 3D space before the gray-
level profiles could be obtained.  This mapping involved 
inverting the x, y, and z translations and the rotations in 
each of the three dimensions. 
 The second new development was that of estimating 
the normals to the surface.  In 2D, the normal through an 
LP is defined to be perpendicular to a line joining the two 
neighboring points.  In 3D however, the neighbors of an 
LP are not automatically known.  The eight nearest 
neighbors for each LP were found and ordered so that a 
triangulation of the points provided an approximation to 
the surface of the object.  The normal was taken as the 
mean of the normals to each triangle in the surface. 
 
3.3 Segmentation 
 
 After SM and GLMs are formulated, they work 
together to guide the process of searching for the surface 
of a new 3D object within a volumetric data set.  The role 
of SM during segmentation is to constrain the 
deformation of the model within the shape limits imposed 
by the training set.  The role of GLM for each LP is to 
guide the search for a new position in the volume that 
most likely corresponds to the surface of the object of 
interest.  As is the case with 2D ASM, the 3D shape 
vectors are represented as 1D vectors in PCA space and 
the gray-level model is based on a 1D profile; hence, the 
deformation and search scheme implemented here is very 
similar to that used in the 2D application. 
 To implement the model deformation and search 
process, software was written to perform the following 
functions: 
• Given an initial location of 3D LPs within the new 

volume, update the position of all LPs by minimizing 
the objective function (Equation 4) generated during 
GLM training. 

• Adjust the set of LPs to comply, in a statistical sense, 
with the SM generated during training by adjusting 
the shape parameters in the PCA space. 

During segmentation, these two functions are called 
iteratively until the set of LPs (i.e. shape) settles into a 
consistent position within the volume.  This process will 
be described in more detail as it pertains to the results 
presented in Section 4.3. 
 The development of visualization tools was crucial to 
validate the segmentation results.  Note that visualization 
is not an issue for 2D images – the entire image and 



segmentation can be viewed at once.  However, in image 
volumes the segmentation must be evaluated relative to 
the image data by viewing 2D slices through the volume.  
This was made possible by the development of a software 
tool that allows the user to scroll through the image slices 
in each of the orthogonal directions while a boundary 
approximation based on the locations of the LPs is 
superimposed on each slice. 
 
4. Results 
 
 The synthetic kidney volumetric image data 
described in Section 1.1 was used to develop and verify 
each component of the algorithm.  Using the leave-one-
out method, the completed algorithm was applied to the 
members of this training set.  This section discusses the 
resulting 3D model and its ability to deform to fit the 
shape variations in this training set. 
 
4.1. Landmarking the data 
 
 The 19-volume synthetic kidney training set was 
oriented and landmarked via the new procedure described 
in Section 2.  The orientation and reslicing was 
performed, as shown in Figures 2 through 4, using 16 
slices per volume.  Landmarking was performed slice-by-
slice using 2D ASM to help guide and accelerate the 
process.  Generally, 4 to 5 manually landmarked instances 
were needed before the 2D model could sufficiently 
segment the subsequent slices.  In two cases, a model 
derived from one set of slices was used to 
segment/landmark the next set of slices.  A total of 224 
LPs (4 to 18 per slice) were used to delineate the synthetic 
kidney in each image volume.  Figure 5 shows the 
complete sets of 224 LPs for three of the volumes. 
 
4.2. Building the models 
 
 The process of building the SM first involved 
aligning the 18 training shapes (where the 19th shape has 
been held out for testing) and calculating the mean shape.  
PCA is used to reduce the shape vector dimensionality 
down to the most significant modes of variation.  For this 
data, the shape vectors were reduced from 672 
dimensions down to 8.  This number of shape modes was 
chosen to capture 98% of the total variance in the training 
set.  During segmentation, the shape of the model will be 
constrained to fall within ±3 standard deviations of the 
mean for each shape mode.  The mean shape is shown in 
Figure 6 (center) along with new shapes created by 
varying the first mode by ±3 standard deviations from the 
mean (right and left, respectively). 
 A GLM was formed for each of the 224 LPs by 
sampling all 18 training volumes along a normal profile 

through the LP.  Twelve samples were taken in each 
direction (at one pixel intervals) forming profiles of 25 
intensity values. 
 
4.3. Segmenting new objects 
 
 The mean shape establishes the initial locations of the 
LPs in the iterative ASM segmentation process.  The first 
step in each iteration is to fit the GLM.  For this process, 
testing profiles, sampled with 10 additional values in each 
direction, were taken from the test volume.  By shifting 
the training profile along the longer testing profile, the 
Mahalanobis distance could be calculated at 21 positions.  
Thus, fitting the GLM involved moving the LP to the 
position along the testing profile for which the objective 
function (Equation 4) was minimized.  Figure 7 shows an 
example of one of the LPs in the first iteration being 
adjusted to fit its GLM. 
 Completing an iteration of the segmentation process, 
the new candidate LP locations are then sent to the SM 
where they are adjusted to constrain the shape.  This is 
done by transforming the candidate shape into the SM’s 
PCA space and adjusting any of the 8 mode parameters 
that fall outside of the allowable range. 
 Figure 8 shows the progress of the segmentation 
process on three orthogonal image planes through the test 
volume.  The intersection of each plane and a surface 
formed by the current LPs is shown by a white boundary.  
Since the surface is formed by a simple triangulation of 
the LPs, this boundary is just an approximation to the 
actual boundary of the object between LPs.  Therefore, 
only the LPs (shown by white dots) accurately represent 
the location of the model.  The 1st row of Figure 8 shows 
views of the test volume with the initial location of the 
model superimposed.  Note that the volume has been 
altered by adding noise and translating it 5 pixels in each 
dimension to further test the performance of the model.  
The 2nd and 3rd rows of Figure 8 show the results of the 1st 
and 5th iterations, respectively.  The LPs along the outer 
boundary of the object on these image planes indicate that 
the model has successfully deformed to segment the 
synthetic kidney in this volume. 
 

 
 

Figure 5. Complete LP sets for the objects in Figure 1 
 



 
Figure 6. Variation of the first shape mode; (from left 

to right) - 3σ, mean shape, + 3σ 
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Figure 7. Example of GLM fit: test profile (dashed line), 

training profile (dotted line), and training profile 
shifted to indicate new location of LP (solid line) 

 

   

   

   

Figure 8. Results of the segmentation process: model 
initial position (1st row), result of first iteration (2nd 

row), result of 5th iteration (3rd row) 
 
5. Conclusions 
 
 A volumetric segmentation algorithm has been 
developed and implemented by extending the 2D ASM 

methodology.  A unique approach was taken to generate 
the necessary training sets and several new developments 
were required in the modeling and segmentation 
processes.  For the computer-generated synthetic image 
volumes, the new algorithm successfully segments the 
object of interest.  This paper is one of the first to present 
final segmentation results of a 3D ASM implementation. 
 Current work is focused on applying this algorithm to 
real image volumes.  A set of CT image volumes of 
laboratory mice has been obtained and the process of 
training a 3D kidney model for that data is underway.  
There are two notable limitations in the current algorithm 
that will be addressed in future research.  First, the 
landmarking scheme can only handle a limited class of 
simple shapes.  A solution under consideration is to apply 
the scheme to individual components of more complex 
shapes.  Second, if the model is not well initialized, it will 
diverge.  As in the 2D case, a multi-resolution 
implementation is needed to prevent this by allowing the 
entire model to travel farther at course resolutions and 
make smaller adjustments at fine resolutions. 
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