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Improving the Accuracy of Volumetric
Segmentation Using Pre-Processing Boundary

Detection and Image Reconstruction.
Rick Archibald, Jiuxiang Hu, Anne Gelb, and Gerald Farin

Abstract— The concentration edge detection and Gegenbauer
image reconstruction methods were previously shown to improve
the quality of segmentation in magnetic resonance imaging. In
this study these methods are utilized as a pre-processing step to
the Weibull E-SD field segmentation. It is demonstrated that the
combination of the concentration edge detection and Gegenbauer
reconstruction method improves the accuracy of segmentation for
the simulated test data and real magnetic resonance images used
in this study.

Index Terms— 3D Segmentation, Weibull E-SD field, Edge De-
tection, Gegenbauer Reconstruction, Magnetic Resonance Imag-
ing.

I. I NTRODUCTION

V OLUMETRIC data sets, common in many scientific and
medical fields of research, consist of multi-dimensional

discrete points in which each point represents a physical
parameter in a finite region of space. Typically the data
sets are three-dimensional and come from measurements on
uniform grids, although in some applications the dimension is
increased to include time and may be on non-uniform grids.
Of particular interest in the analysis of these types of data
sets is the determination of regions that are homogeneous with
respect to some characteristic, for instance, intensity or texture.
The classification of complete homogeneous regions within
volumetric data sets is called segmentation.

The importance of segmentation in the analysis of volu-
metric data is represented by active and widespread research.
Segmentation is routinely used in satellite-based remote sens-
ing technology, which is capable of acquiring volumetric data
sets of not only the earth’s surface and atmosphere, but also
the sun’s photosphere. In this situation, segmentation is used to
determine features corresponding to geographical landscapes,
physical storms [19], sunspots [4], and more. Volumetric
data sets of geologic deposits are routinely constructed from
seismic data, in which segmentation is performed in order
to recognize subsurface structural features from variational
characteristics [18]. In medicine, a number of technologies

R. Archibald is with the Center for System Science and Engineering
Research (SSERC), Arizona State University, Tempe, AZ 85287. E-mail:
archi@math.la.asu.edu.

J. Hu is with the Department of Bioengineering and Partnership for
Research in Stereo Modelling (PRISM), Arizona State University, Tempe,
AZ 85287. E-mail: hu.jiuxiang@asu.edu.

A. Gelb is with the Department of Mathematics and Statistics, Arizona
State University, Tempe, AZ 85287. E-mail: ag@math.la.asu.edu.

G. Farin is with the Department of Computer Science, Arizona State
University, Tempe, AZ 85287. E-mail: farin@asu.edu.

produce volumetric data sets, which include magnetic res-
onance (MR), X-ray computed tomography (CT), positron
emission tomography (PET), and ultrasound [23]. The amount
and importance of the volumetric data sets collected from these
different medical modalities have inspired much research in
the segmentation of anatomical structures in the human system
[5], [8], [21], [25], [26].

Previous work has demonstrated that the Gegenbauer recon-
struction method, a high order image reconstruction method
first introduced in [15], in combination with the concentration
edge detection method, introduced in [11], is an effective pre-
processing step in medical segmentation [1]. The purpose of
this study is to improve the accuracy of the Weibull E-SD field
segmentation method, which was first developed in [16] as an
effective course-grain approach to volumetric segmentation.
This will be accomplished by effectively pre-processing data
through the concentration edge detection and Gegenbauer
reconstruction methods. The advantage of the Gegenbauer
reconstruction method over other types of reconstruction pro-
cedures lies in its ability to reconstruct an entire image with
exponential accuracy. Its success hinges on the knowledge of
the structural edges [14], and hence edge detection is a critical
first step. Both the concentration edge detection method [2],
[11], [12], and Gegenbauer reconstruction procedure have been
shown to be stable and robust in the presence of noise [3],
and are therefore well suited for volumetric reconstruction and
segmentation.

The fundamental assumption in the Weibull E-SD field
segmentation method, [16], is that regions which are homoge-
neous with respect to some characteristic will have similar
local expectation and standard deviation. The ordered pair
of local expectation and standard deviation for each point
in the volumetric space forms the so-called E-SD field. It
has been demonstrated in [6] that the estimation of the E-
SD field is not stable in the presence of noise and becomes
dependent on the statistical model of the noise. Since noise
is inherent in physical situations, it becomes imperative to
use an appropriate statistical framework in the modelling of
noise in the volumetric data set so that the effects of noise are
minimized and the approximation of the E-SD field is stable.

The characteristics of physical noise in volumetric data is
dependent upon the particular technology utilized in measure-
ment. Hence physical noise has been modelled by many dif-
ferent distributions, including Rayleigh [9], Gaussian, Gamma,
and Poisson [6]. The Weibull distribution, introduced in1939
by W. Weibull, is inspired by the statistical theory of strength
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materials. It has the ability to approximate all of the above
mentioned distributions by various choices of parameters [24],
and therefore is a flexible distribution for the modelling of
physical noise in volumetric data. The Weibull E-SD field
segmentation method, [16], employs the Weibull distribution
to model physical noise in segmentation and utilizes the theory
of Weibull distributions to denoise estimates of the E-SD field,
thereby dramatically improving segmentation [16].

The paper is organized as follows: In section II the concen-
tration edge detection and Gegenbauer reconstruction methods
are reviewed. Their effectiveness is demonstrated for a one
dimensional reconstruction problem. In section III the Weibull
E-SD field segmentation algorithm is discussed. The edge
detection and reconstruction algorithms are combined to pre-
process the data. The resulting image is then segmented by
the Weibull E-SD field segmentation algorithm. The numerical
results are displayed in section IV.

II. H IGH RESOLUTION IMAGE RECONSTRUCTION

The Gegenbauer reconstruction method, introduced in [15],
is a high order image reconstruction method capable of recon-
structing entire images with exponential accuracy. A critical
first step in any high resolution reconstruction method is
edge detection. In this study, edge detection is achieved by
a combination of the concentration edge detection procedure
designed in [11] and [12], with the minimization procedure
introduced in [2].

The concentration edge detection and Gegenbauer recon-
struction methods are briefly outlined below in sections II-
A and II-B. For ease of presentation, the concentration edge
detection and Gegenbauer reconstruction methods are first
presented in one dimension. Common to both presentations
is the assumption that an arbitrary piecewise smooth function
f(x), considered without loss of generality on the domain
−1 ≤ x ≤ 1, is known only on the uniform grid

f(xj), xj = −1 + j
N , j = 0, . . . , 2N − 1, (1)

for N ∈ N. Based on this sampling, the Gegenbauer recon-
struction method is capable of approximatingf(x) on any
smooth interval with exponential accuracy [14]. Thus, iff(x)
is piecewise smooth, it is possible to approximate the entire
function in each smooth interval with exponential accuracy.

For the sampling in (1), both the concentration edge detec-
tion and Gegenbauer reconstruction methods depend upon the
discrete Fourier coefficients

f̃k =
1

2Nck

2N−1∑

j=0

f(xj)e−iπkxj , k = −N, . . . , N , (2)

where

ck =
{

2, if k = ±N,
1, otherwise,

(3)

which is easily computed using the Fast Fourier Transform
(FFT) algorithm. Since both the concentration edge detection
and Gegenbauer reconstruction methods employ the FFT algo-
rithm, the speed of computation is of the order of the conven-
tional FFT image reconstruction. The Fourier reconstruction

based on the discrete Fourier coefficients (2) is given by

fN (x) =
N∑

k=−N

fkeiπkx, (4)

and computed using the Fast Fourier Transform (FFT) al-
gorithm. As an example consider the following piecewise
function.

Example1:

f(x) =
{ −x sin(πx), if −1 ≤ x ≤ 0,

x3 + 1, if 0 < x ≤ 1.
(5)

The Fourier reconstruction of the piecewise smooth function
(5) leads to spurious oscillations and reduced overall conver-
gence, typically known as the Gibbs phenomenon. Figure 1(b)
demonstrates this effect. High resolution reconstruction aims
to reduce this effect while maintaining the finer features of the
function.
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Fig. 1. (a) Sampling of the function (5) on2N = 64 uniform grid points.
The (b) Fourier reconstruction (4) based on this sampling.

A. Edge Detection

Consider an arbitrary piecewise smooth functionf(x).
Define the jump function[f ](x) := f(x+) − f(x−), where
f(x±) are the right and left side limits of the function atx,
f(x±) = limx→x±f(x). Note that[f ](x) is zero away from
an edge, and is the value of the jump at an edge. In the case
of function (5) of example 1 the jump function is

[f ](x) =
{ −1, if x = 0,

0, otherwise.
(6)

Based on the Fourier coefficients (2), it is shown in [11]
that the concentration edge detection method converges to the
jump function and is easily implemented as

T τ
N [f ](x) := iπ

N∑

k=−N

sgn(k)τ
( |k|

N + 1
2

)
f̃keikπx

−→ [f ](x), asN −→∞.

(7)

Hereτ(ξ) is called the concentration factor, and is determined
in [11] to satisfy

τ(ξ)
sin(ξπ)

∈ C2(0, 1),
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and normalized so that

π

2

∫ 1

0

τ(ξ)
sin(ξπ)

dξ = 1.

In [11] it was shown that the concentration factor belongs
to a class of functions that accelerate the rate of convergence
of the concentration edge detection method (7) to the jump
function. The concentration factor used in this study is the
exponential concentration factor,

τ(ξ) =
2c sin(ξπ)e

1
αξ(ξ−1)

π
, (8)

where

c =
∫ 1−ε

ε

e
−1

αη(η−1) dη. (9)

This concentration factor is particularly effective, as it takes
full advantage of the spectral data by rapidly converging away
from the discontinuities. The parameterα is freely chosen,
with a typical valueα = 6.

The concentration edge detection method (7) will have
spurious oscillations in the neighborhood of an edge. In
order to determine the exact intervals of smoothness, which
is imperative for high resolution reconstruction, we adopt a
minimization procedure introduced in [2] given by

min
M,ai,bi

max
x
|T τ

N [h](x)| := min
M,ai,bi

max
x
|T τ

N [f ](x)

+
M∑

i=1

ai

2
T τ

N [g](x; bi)|, (10)

where

h(x) := f(x) +
M∑

i=1

ai

2
g(x; bi) (11)

and

g(x; bi) =
{

x + 1, if −1 ≤ x ≤ bi,
x− 1, if bi < x ≤ 1.

(12)

The minimization procedure (10) is based on the function
h(x), which will be smooth function if all the discontinuities of
f(x) are subtracted through the use of the sawtooth functions
(12). If h(x) is a smooth function,T τ

N [h](x) −→ 0, and
therefore the correct minimization of (10) yields the number
of discontinuities,M , with the associated positions,bi, and
magnitudes,ai, for i = 1, . . . , M , of the functionf .

In order to demonstrate the concentration edge detection
method, consider again the piecewise smooth function (5)
of example 1. Figure 2(a) depicts the concentration edge
detection method (7) of the piecewise smooth function (5).
Clearly the concentration edge detection method converges
to the jump function (6), but has spurious oscillations in
the neighborhood of an edge. Utilizing the minimization
method (10), as depicted in figure 2(b), further improves the
concentration edge detection method.

The edge detection method and minimization process can
be extended to detect the size and position of discontinuities
of a multiple dimensional function by holding all but one
dimension fixed and determining the edges as a function of
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Fig. 2. (a) Concentration edge detection method (7) of the piecewise smooth
function (5). (b) Minimization of the concentration edge detection method
(10). Here2N = 64.

the fixed coordinates. This three dimensional procedure is used
for all images processed in this paper. The employment of the
FFT algorithm for the edge detection procedure ensures high
speed of computation.

B. Gegenbauer Reconstruction Method

The Gegenbauer reconstruction method was developed in
[15] and extended in a litany of articles (consult [14] for ref-
erences). It is a powerful tool that recovers piecewise smooth
functions with spectral accuracy up to the edges in each
smooth interval without blurring features, hence mitigating the
common problem associated with filtering.

The Gegenbauer polynomialCλ
n(x) is an orthogonal poly-

nomial of ordern that satisfies
∫ 1

−1

(1− x2)λ− 1
2 Cλ

k (x)Cλ
n(x)dx =

{
hλ

n, k = n,
0, k 6= n,

(13)

where (forλ ≥ 0)

hλ
n =

√
πCλ

n(1)Γ(λ + 1
2 )

Γ(λ)(n + λ)
, (14)

and

Cλ
n(1) =

Γ(n + 2λ)
n!Γ(2λ)

. (15)

For ease of presentation let us first introduce the Gegenbauer
reconstruction method for a one dimensional piecewise smooth
function f(x), considered without loss of generality on the
domain−1 ≤ x ≤ 1. The Gegenbauer reconstruction method
is performed in each smooth interval[a, b] ⊂ [−1, 1]. Since
the Gegenbauer polynomials are orthogonal on the interval
[−1, 1], a linear transformation from the intervalx ∈ [a, b]
to η ∈ [−1, 1] is applied. Specifically, a local variableη ∈
[−1, 1] is defined such thatx(η) = εη + δ ∈ [a, b], where
ε = b−a

2 andδ = b+a
2 . Suppose we are givenf(xj) on equally

spaced points as in (1) or equivalently the discrete Fourier
coefficientsf̃k in (2). We know that the Fourier partial sum
(4) yields a poor approximation tof(x) on [a, b] due to the
Gibbs phenomenon. However, information from the Fourier
data (2) can still be utilized in the Gegenbauer reconstruction
in the following way to approximatef(x) on [a, b]:
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We define the Gegenbauer reconstruction approximation of
f(x) on [a, b] as

gλ
m(x(η)) =

m∑

l=0

g̃λ
ε (l)Cλ

l (η), (16)

where the approximate Gegenbauer coefficients,

g̃λ
ε (l) =

1
hλ

l

∫ 1

−1

(1− η2)λ− 1
2 fN (x(η))Cλ

l (η)dη, (17)

are based on the Fourier approximation off(x) in [a, b],

fN (x(η)) = fN (εη + δ) =
N∑

k=−N

f̃keikπ(εη+δ). (18)

It is demonstrated in [15] that the approximate Gegenbauer
coefficients (16) can be calculated as

g̃λ
ε (l) =

k=N∑

k=−N

c̄λ,l,ε
k eikπδ f̃(k), (19)

where

c̄λ,l,ε
k =

{
1, if k = 0,

Γ(λ)il(l + λ)Jl+λ(πkε)
(

2
πkε

)λ
, if k 6= 0,

(20)

andJl+λ(πkε) is the Bessel function of the first kind. Hence
the poorly performing Fourier approximationfN (18) can be
changed into a highly accurate Gegenbauer reconstruction (16)
of f via the Gegenbauer coefficients (17), or equivalently
(20). We note that in practice there may exist some smooth
intervals that consist of too few points to construct an approx-
imation. The Gegenbauer reconstruction requires a theoretical
minimum of at leastπ points to form an approximation [13].
Therefore, in intervals containing too few points, the values
at each grid point are assumed constant and equivalent to the
values determined at the edges by the edge detection method
[2].

The parametersm andλ depend upon the number of points,
NI , in the subinterval,I = [a, b], that is reconstructed. A spe-
cific requirement is thatm ≤ NI . Recent work demonstrates
how the parametersm andλ can be optimized for a particular
subdomain [10]. For simplicity, we choose the parameters such
that λ = m with

m = max
{

1,min
{

mmax,

⌈
NI

4

⌉}}
, (21)

wheredxe is the minimal integer which is greater than or equal
to x, andmmax = 12.

In order to demonstrate the Gegenbauer reconstruction
method, consider again the piecewise smooth function (5) of
example 1. Figure 3(a) depicts the Gegenbauer reconstruction
method (16) of the piecewise smooth function (5) where it is
evident that the Gegenbauer reconstruction not only removes
the Gibbs phenomenon, but is also exponentially accurate up
to the edges. The accuracy of both the Fourier and Gegenbauer
reconstruction methods are depicted in the log-error plot
in figure 3(b), where it can be seen that the Gegenbauer
reconstruction method is significantly more accurate.

The Gegenbauer reconstruction method can be directly
extended to multiple dimensions by performing reconstruction
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Fig. 3. (a) Gegenbauer reconstruction (16) of the piecewise smooth function
(5). Here the Gegenbauer reconstruction parameters arem = λ = 12. (b)
Log-error plot of the Fourier and Gegenbauer reconstruction, with2N = 64
pseudo spectral Fourier coefficients.

in smooth regions. The reconstruction will have exponential
accuracy up to the edges of each smooth region. Three
dimensional Gegenbauer reconstruction is used for all the
images processed in this paper. The employment of the FFT
algorithm for the Gegenbauer reconstruction procedure ensures
high speed of computation.

III. SEGMENTATION

This study employees the Weibull E-SD field volumetric
segmentation method, which was first introduced in [16]. For
each data point of the discrete volumetric data set the E-
SD field consists of an ordered pair representing the local
expectation and standard deviation. This segmentation method
assumes that homogeneous structures can be characterized by
similar local expectancy and variance. Thus, homogeneous
structures are contained in a tight region of the E-SD field,
enabling segmentation by windowing regions in the E-SD
field.

The Weibull E-SD field segmentation method [16] is briefly
described below. Section III-A develops the concept of E-SD
fields, section III-B introduces the Weibull distribution and the
data set noise model, and section III-C describes the denoising
procedure.

A. E-SD Fields

In order to preserve continuity with the previous image
reconstruction presentation, we model a given volumetric
discrete data set as a three-dimensional functionf(x, y, z),
considered without loss of generality on the domain−1 ≤
x, y, z ≤ 1, sampled on the uniform grid

U =

��
2i−Nx

Nx
,
2j −Ny

Ny
,
2k −Nz

Nz

� ���� i = 0, . . . , Nx

j = 0, . . . , Ny

k = 0, . . . , Nz

�
,

(22)

for Nx, Ny, Nz ∈ N+. The local data orκ-voxel, which is a
cube of grid points, is defined as

∆ ⊂ U,
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such that the dimensions of∆ is κ× κ× κ.
In order to characterize homogeneous structures within the

discrete volumetric data set, it is necessary to define the
random variable

X∆(υ) = #{(x, y, z) ∈ ∆ ⊂ U|f(x, y, z) = υ}. (23)

ThusX∆(υ) is the number of data points inκ-voxel, ∆ ⊂ U,
which have the valueυ. The density distributiond∆(υ) of the
random variableX∆(υ) is defined as

d∆(υ) =
X∆(υ)
|∆| . (24)

where |∆| denotes the number of elements in∆. In general,
the expressions of local expectancy and standard deviation of
a κ-voxel are given as follows [7], [17], [22]:

E[X∆] =
1
|∆|

∑

(x,y,z)∈∆

f(x, y, z), (25)

and

SD[X∆] =

√√√√ 1
|∆|

∑

(x,y,z)∈∆

f2(x, y, z)− E2[X∆]. (26)

Definition 1 describes a spatially distributed object, which
is based on the above random variable (23). It is assumed for
the Weibull E-SD field volumetric segmentation method that
homogeneous structures are spatially distributed objects.

Definition 1: A region Ω is called a spatially distributed
object (SDO), if the expectancy (25) and standard deviation
(26) for eachκ-voxel,∆ ∈ Ω, are relatively constant, i.e.,

E[X∆] ∈ (e1, e2) and SD[X∆] ∈ (d1, d2), (27)

wheree1, e2, d1 andd2 denote predefined constants withe1 <
e2 and d1 < d2. HereX∆ is a random variable as defined in
(23).

If noise is present, then (25) and (26) will not give accurate
values [7], [20]. It is therefore necessary to model the noise
in the data and use denoising procedures in order to stabilize
the approximation of the E-SD field.

B. Weibull Distribution

Weibull distribution, first introduced in 1939 by W. Weibull,
is defined by the following probability density function (pdf)
[24],

p(υ) =
a

b

(
υ − υ0

b

)a−1

exp

[
−

(
υ − υ0

b

)a]
, (28)

whereυ ≥ υ0, a > 0 is the shape parameter,b > 0 is the
scale parameter, andυ0 is the shift parameter (the minimum
possible value of the random variable). The s-moment of a
Weibull distributed random variableX is given by

E[Xs] = bsΓ
(

1 +
s

a

)
, (29)

whereΓ(x) =
∫∞
0

tx−1e−tdt is the gamma function.
One particular strength of the Weibull distribution is the

number of other distributions that it can approximate [24].

When the shape parameter of the Weibull distribution is given
by a = 1.0, it approximates the Poisson pdf. Whena = 2.0 it
approximates Rayleigh pdf, and whena = 3.0 it approximates
Gaussian pdf. The Weibull pdf (28) is depicted in figure 4 for
a range of shape parameter values.

 p(v)

 O
 v

 a=0.75

 a=3

 a=10

Fig. 4. Weibull Distribution (28) for different shape parameters withb = 2
andυ0 = 0.

Weibull E-SD field volumetric segmentation method utilizes
the Weibull distribution as a model for the physical data noise.
This model for noise is local in the sense that the method
assumes that each SDO will have constant Weibull distribution
parameters.

Finally, it is noted that the approximation of the s-moment
for a Weibull distributed random variable is possible by the
following property.

Property1: If X1, X2, . . . , Xn are independent identically
distributed (iid) random variables with Weibull distribution
(28), then

lim
n→∞

1
n

n∑

i=1

Xi = E
[
Xs

]
, for 1 ≤ s < ∞. (30)

C. Weibull Noise Index

As mentioned before, the calculations of (25) and (26)
for the E-SD field are not reliable in the presence of noise
[7], [20]. However, by modelling the noise with a Weibull
distribution, it is possible to use the properties of the Weibull
distribution to denoise or improve the signal-to-noise ratio
(SNR) in the volumetric data set, and thereby stabilize the
approximation of the E-SD field. This section briefly describes
the procedure for denoising and stabilizing the approximation
of the E-SD field.

Assume that the noise in each SDO of the volumetric data
set follows a Weibull distribution with constant parameters.
For eachκ-voxel, define an auxiliary functiong(s) as

g(s) =

(∑
(x,y,z)∈∆ fs(x, y, z)

)2

κ3
∑

(x,y,z)∈∆ f2s(x, y, z)
, (31)

where s ∈ (−∞,∞). As discussed in [16], the auxiliary
function is a convex function with maximum atg(0) = 1.
Using (29) and property 1, the auxiliary function has the
following approximation

g(s) ≈
(
E

[
Xs

])2

E
[
X2s

] =
ts
2

B(ts, ts), (32)
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wherets = s
a andB(x, y) =

∫ 1

0
tx−1(1− t)y−1dt is the Beta

function. Thus, the auxiliary function is dependent on only one
Weibull distribution parameter, namely the shape parametera
in (28).

As demonstrated in [16], the auxiliary function (31) is
capable of identifying noise in eachκ-voxel. Since the max-
imum of the functionts

2 B(ts, ts) is near0.72, noise may be
detected and systematically removed in theκ-voxel by solving
the equationg(s) = 0.72. The complete Weibull E-SD field
volumetric segmentation algorithm, which is presented in [16],
is simple and efficient with average complexity ofO(L log L),
whereL := NxNyNz

κ .

IV. N UMERICAL RESULTS

In this section, we will look at two examples illustrating the
proposed methods for image reconstruction and segmentation.
The first example examines artificial volume data with local
Weibull distributed random noise. The second example uses
T2 weighted MRI scans of a mouse head provided by the
Southwest Small Animal Imaging Resource1, where the field
of view for the MRI scan is2.56×1.92×1.52 cm, 100 microns
isofield.

A. Controlled Experiment

We validate the use of the concentration edge detection
and Gegenbauer reconstruction methods as a pre-processing
segmentation step by using simulated volumetric data. The
following simple objects are included in the simulated volu-
metric data; a torus, an ellipsoid, and two deformed cubes.
The size of the data set is100×100×100 and normalized so
that the minimum value is0 and maximum value is255. The
noise added to every image point has a Weibull distribution
and takes the form

Y = min
{

255, C

[
− b ln(1−X)

1
a

]}
,

whereX is a random variable that is uniformly distributed in
[0, 1], the shape parametera and parameterC are constants
within each homogeneous object, i.e.

a =





0.75, for torus,
1.2, for ellipsoid,
3, for cubes,
10, else,

(33)

and

C =





100, for torus,
150, for ellipsoid,
200, for cubes,
250, else.

(34)

The scale parameterb is constant throughout each simulated
volumetric data set and incremented as displayed in figure 6.
It is noted that the parameterC has the effect of modifying
the scale parameterb in each homogeneous object, and thus
for this experiment both Weibull distribution parameters can

1Located at the University of Arizona. http://www.swair.arizona.edu/oct/

(a) (b)

(c) (d)

(e) (f)

Fig. 5. (a) The slice(53, y, z) of the simulated volumetric data. (b)
Reference segmentation. (c) The slice(53, y, z) of the simulated volumetric
data with Weibull distributed noise-added data with scale parameterb = 10.
(d) Segmentation without pre-processing. (e) The slice(53, y, z) of the
Gegenbauer reconstruction of the simulated volumetric data. (f) Segmentation
with pre-processing.

be considered local parameters with respects to each homoge-
neous object.

DenoteSn as the support function of the segmentation of
any simulated volumetric data set with added noise, and define
the support function of the segmentation of the simulated
volumetric data set without added noise, denoted asSr, to be
the reference segmentation which is depicted in figure 5(b).
A numerical comparison is performed based on segmented
volume as measured by the volume deviation (error),

δ(Sr, Sn) =
∑

x∈V |Sr(x)− Sn(x)|∑
x∈V Sr(x)

. (35)
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Fig. 6. Volume error (35) in the segmentation of the simulated test data,
with and without Gegenbauer pre-processing, for various values of the scale
parameterb.

(a) (b)

Fig. 7. E-SD fields of the segmented simulated volumetric data (a) without
and (b) with Gegenbauer pre-processing. Here the scale parameter for the
Weibull distributed noise-added to the data isb = 10.

Several levels of noise have been added to the simulated
volumetric data to test the concentration edge detection and
Gegenbauer reconstruction methods as a segmentation pre-
processing step. Depicted in Figure 6 is the volume error, with
and without Gegenbauer pre-processing, for various values
of the scale parameterb. In every instance, Gegenbauer pre-
processing significantly lowers the volume error. Depicted
in figures 5(d) and 5(f) are segmentations of the test data,
with and without Gegenbauer pre-processing, where the scale
parameter of the Weibull noise distribution isb = 10. Upon
close examination of the surfaces of the segmented test data,
it can be observed that the surfaces of the segmented test
data with Gegenbauer pre-processing are smoother while the
contours and the edges of the original homogeneous objects
are preserved.

Also worth noticing is the Weibull E-SD fields of both
the original and Gegenbauer pre-processed volumetric data as
depicted in figure 7(a) and 7(b). It can be seen that homoge-
neous objects in the Weibull E-SD field have lower variance
and a greater compact representation with Gegenbauer pre-
processing. Therefore homogeneous objects are better repre-
sented in E-SD field with Gegenbauer pre-processing, which
aids in the segmentation process.

B. MRI Data

The segmentation method with Gegenbauer pre-processing
is applied to seven differentT2 weighted MRI scans of the
heads of mice provided by Southwest Small Animal Imaging
Resource. For each scan the field of view is2.56×1.92×1.52
cm, 100 microns isofield.

(a) (b)

(c) (d)

(e) (f)

Fig. 8. (a) Top and (b) bottom view of the segmentation of a particular mouse.
(c) Top and (d) bottom view of the segmentation of a particular mouse with
Gegenbauer pre-processing. (e) The(x, y, 1.0 cm) cross section of the mouse
head data, provided by the Southwest Small Animal Imaging Resource, and
(f) the (x, y, 1.0 cm) cross section of the Gegenbauer reconstructed mouse
head data.

Figure 8(a-d) depicts the original and Gegenbauer pre-
processed segmentation of one particular MRI scan, where a
difference in the surface of the segmented brain is visible.
In fact, based on the volume deviation (35), there is an
average8.7% difference between original and Gegenbauer pre-
processed segmentation of all seven MRI scans. Upon close
examination of the surface of the segmented mouse brain in
figure 8(a-d) it can been observed that the surface of the
segmented mouse brain with Gegenbauer pre-processing is
smoother while the contours and edges are preserved. Fea-
tures that are noticeably improved through Gegenbauer pre-
processing include the shape of the frontal lobe and brain stem.
The definition of the contours of the lower brain boundary
is another feature that is enhanced through Gegenbauer pre-
processing.

Also worth noticing is the E-SD fields of both the original
and Gegenbauer pre-processed volumetric data in figure 9,
where it is clear that the E-SD field has a greater compact
representation of the mouse brain when Gegenbauer recon-
struction is used as a pre-processing step. Although difficult
to observe in these E-SD fields, there is a reduction of variance
when Gegenbauer reconstruction is used as a pre-processing
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step. Furthermore, the peak of E-SD field occurs at a variance
of 1 when Gegenbauer pre-processing is employed and3 when
it is not. Reduction of variance aids in Weibull E-SD field
segmentation.

(a) (b)

Fig. 9. E-SD Field of segmented mouse (a) without and (b) with Gegenbauer
pre-processing.

V. CONCLUDING REMARKS

It has been demonstrated that using the combination of the
concentration edge detection and Gegenbauer reconstruction
methods as a preprocessing step benefits the Weibull E-SD
field segmentation method. The volume error is reduced, the
boundaries of segmented homogeneous objects are more accu-
rate, and the representation of homogeneous objects is better
constrained in the E-SD field. Additionally, the combination
of these methods is a viable approach for segmentation of
volumetric data due to their low computational cost and robust
nature in the presence of various types of noise.
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