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Abstract

Because the fatigue lifetime of wind turbine components depends on several factors that
are highly variable, a numerical analysis tool called FAROW has been created to cast the
problem of component fatigue life in a probabilistic framework. The probabilistic
analysis is accomplished using methods of structural reliability (FORM/SORM). While
the workings of the FAROW software package are defined in the user’s manual, this
theory manual outlines the mathematical basis. A deterministic solution for the time to
failure is made possible by assuming analytical forms for the basic inputs of wind speed,
stress response, and material resistance. Each parameter of the assumed forms for the
inputs can be defined to be a random variable. The analytical framework is described and
the solution for time to failure is derived.
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Introduction

The FAROW code numerically estimates the probability of premature failure for wind
turbine components.  It uses parametrically defined load spectrum and fatigue life (S-N)
curves to calculate time to fatigue failure.  If the calculated time falls short of the desired
target lifetime, the failure is deemed premature. By allowing the governing parameters of
the loading, environment, and material properties to be described as random variables,
the issue of fatigue lifetime is cast in a probabilistic framework. FAROW repeatedly
solves for the time to failure using different sets of values of the random variables until it
has determined (using an optimization scheme) the most likely set to produce failure at
the target lifetime. It then integrates over the combination of values of the random
variables that would produce premature failure to calculate the probability of such early
failure. FAROW also outputs the most likely set of random variable values to produce
failure at the target lifetime, together with the importance factors defining the relative
contribution of each variable to the probability of failure. Sensitivity factors are also
estimated by repeatedly solving for probability of failure with slightly perturbed inputs.
The version 1.1 user’s manual [1] describes the inputs and shows how to interpret the
outputs.

FAROW estimates the probability of failure using what are usually called Structural
Reliability Methods, or FORM/SORM (First Order Reliability Methods/Second Order
Reliability Methods). FORM/SORM procedures are efficient means of numerical
probability calculations for multiple random variables. These methods have only become
popular since the advent of inexpensive computing. They are often confused with other
so-called first order methods that may rely on assumptions of normality and/or small
numbers of random variables to achieve closed-form solutions.  FORM/SORM, on the
other hand, can deal with random variables having arbitrary probability distributions and
can estimate reliability results for large numbers of random variables.  Unlike other
methods such as Monte-Carlo simulation, results of FORM/SORM become more
accurate in cases when failures become increasingly rare.  As a result, FORM/SORM can
be considered a useful method to complement Monte-Carlo simulation, which in turn is
more efficient in estimating probabilities of frequently occurring events.

Rackwitz and Fiessler [2] originally developed these methods, and Rackwitz [3] authored
the module used in FAROW. Additional features that aid modeling of correlated random
variables were added by Winterstein et al. [4]. The FORM/SORM methods are briefly
outlined here to give the user a conceptual framework to better understand the results.
However, the details of how the methods work are left to the references; a good summary
of FORM/SORM can be found in Madsen, et al. [5] or Thoft-Christensen [6].

FAROW’s FORM/SORM reliability analysis requires an embedded mathematical model
of the interaction between the environment, the loading response to the environment, and
the cumulative damage process underlying the lifetime calculation. Certain forms for the
governing equations have been assumed here so that the problem can be conveniently
parameterized. Each governing parameter can be defined as a random variable, which
describes its variability and uncertainty. The parameters and the suite of random variable
definitions available in the code are fully defined in the version 1.1 users’ manual [1]. It
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also shows the governing equation derived by integrating over environment, turbine load
response, and material fatigue strength.  The derivation of this equation is the topic of the
Fatigue Life Calculation portion of this report.

This report starts by describing the difference between FAROW version 1.1 and the later
development contained in version 2.0.  Structural reliability analysis is then briefly
outlined.  A short section on some properties of the Weibull distribution is included to
help with later derivations.  Then the assumptions inherent in version 1.1 are enumerated
along with the defining parameters that result from the assumptions.  The closed-form
solution for the time to failure based on the above assumptions and included in version
1.1 is included last.
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Note on Version 1.1 and Later Developments

The release and user’s documentation on FAROW version 1.1 was completed in late
1994.  The publication of this theory manual was nearly complete at that time.  In fact, it
existed as part of the user’s manual [1] but was excised at the last minute in an effort to
alleviate the theoretical burden on potential readers.  Because version 1.1 has seen little
industrial application, immediate publication of the theoretical background was not seen
as a high priority, and publication of this manual languished.  However, recent
improvements in FAROW embodied in version 2.0 have led to the need for an updated
user’s manual and therefore, the publication of the theoretical underpinnings.  Before
version 2.0 can be fully explained, it is necessary to document the fundamental theory
behind the FAROW software in general.  This document is intended to fill that need.

One of the greatest drawbacks in implementation of version 1.1 lay in the restrictive
definition of the stress response of the turbine.  As stated elsewhere in this document, it
was assumed that the stress response had a Weibull distribution (often an adequate
assumption) that could be described by the same two parameters independent of wind
speed (an often inadequate assumption).  Research in the interim has focussed on the
loads definition issue and has come up with a more comprehensive method for describing
loads as a function of both wind speed and turbulence. This leads to a method of
describing the uncertainty in the distribution parameters based on analysis of loads data
[7, 8, 9, 10].  There has also been substantial progress in the area of reliability-based
fatigue design for wind turbines centered in Denmark and published by Ronold, et al. [11,
12].

The yet-to-be-released FAROW version 2.0 is based on substantial research into wind
turbine fatigue loads. The loads distribution model in version 2.0 matches the first three
statistical moments of the measured rainflow-counted range distribution.  Generalized
Weibull distributions are used to create analytical load distributions capable of matching
all three statistical moments at a particular wind condition.  Each of the moments is then
described as a function of both wind speed and turbulence level.  Finally, correlation
between the moments and uncertainty in parameter estimates are determined through
preprocessing statistical analysis software.  The generalized Weibull distributions are
generally better able to match the measured load distributions, and the definition of the
moments as functions of wind speed and turbulence permits great flexibility in modeling
even quite complex turbine response behavior.  Because of the more complicated loading
definition and expanded choices of distribution types in version 2.0, the closed-form
solution is replaced by a numerical integration scheme.
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Structural Reliability Analysis

In general each problem in structural reliability can be defined in terms of a failure state
function, g(x), which compares a calculated result with a desired outcome. The failure
state function depends on a set of governing parameters, which includes a vector of
random variables, x. The random variables may represent inherent randomness,
parameter uncertainty, or a combination of both. A common application has been to
compare a calculated load level with a component strength, such as the load in a beam
compared with the beam’s load carrying capacity. In equation form, g is the failure state
function (or safety margin function), R is the resistance or strength, and L is the load:

LRg −= . (1)

Both load and strength may be uncertain and thus may contain several random variables
(e.g., beam dimensions, yield strength, plasticity model, applied load magnitude and
location, stress concentrations, etc.). When g is negative, failure is predicted.

In the FAROW case, the failure state function compares a calculated time to failure Tf
with a desired, or target, lifetime TT:

Tf TTg −= . (2)

We need to define failure in a reliability sense as the condition that the calculated time to
failure is less than the target time to failure, Although this perhaps requires double duty
of a single word, failure, the meaning should be clear from context.

The n random variables form an n-space of all possible combinations of values. Each
point in the space can be deterministically mapped to a resulting value of the failure state
function. The task that remains is to estimate the amount of probability that lies in the
portion of the space with a negative g function. It should be clear before starting the
reliability analysis that the conditions resulting in failure (negative g function) are rare, or
the reliability calculation would not be of interest. In other words, the analyst should
already know that when average values for the random variables are used, an acceptable
result is obtained (i.e., failure is avoided). Therefore, the portion of space over which to
integrate, which denotes failure, is generally far removed from the mean.  This leads to
simplifications of the problem, which are exploited by the FORM/SORM procedure.

FORM/SORM may be explained by dividing the process into four steps: formulation,
transformation, approximation, and computation.

Formulation

The problem is formulated by defining a failure state function that delineates between
safe and failed states.  In this case, Equation 2 provides the formulation, comparing the
calculated life with the desired target. The derivation of the expression to calculate Tf is
shown in the section titled Derivation of Time to Failure.
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The formulation can be best illustrated using only two random variables. A two-
dimensional plot can then show the g function.  Figure 1 shows the physical space of the
random variables, x = (x1,x2), along with an example failure state function in the upper
left quadrant. One could imagine that x1 is a strength variable, x2 is a load variable and
the safe region is some arbitrarily complicated relationship between the two (e.g., it could
come from a non-linear finite element calculation). Because x1 and x2 can have arbitrary

Figure 1:  The failure domain in physical space, standard-normal space, and with both
first-order and second-order approximations [14, 15].
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distributions, calculating the probability in the failure region in this physical space could
be quite difficult. Therefore, it is expedient to take the next step.

Transformation

Each random variable can be transformed (mapped) into a standard normal random
variable (i.e., with a Gaussian probability distribution that has zero mean and unit
variance).  The mapping, as illustrated in Figure 2, matches the physical value of each
random variable, x, with a standard normal variable, u, by matching probability levels of
the cumulative distribution function (cdf).  For example, the median value of x is mapped
to u=0 (the median value for a standard normal variable), the .84 percentile value of x is
mapped to u=1 (its .84 percentile), and so forth.

The result is the transformation of the problem of calculating the probability of failure
into standard-normal space (u-space) where the calculations become simple.  The
generality of the procedure should be obvious from the figure – the distribution of x need
not follow any specific analytical distribution type, but could also be empirical.
Transforming a single random variable is simple, and transforming a set of statistically
independent random variables can be done sequentially and independently.  However, the
process for transforming correlated variables is somewhat more involved and is not
covered here. For more information see Winterstein, et al. [4].

The result of the transformation is illustrated schematically in the upper right quadrant of
Figure 1.  Notice that the failure state function has been transformed as well.  The failure
region lies away from the origin in the standard normal space.

Approximation

The upper right quadrant of Figure 1 indicates a point called the design point, designated
as u*.  Formally, the design point is defined as the point in the failure domain that is most
likely to occur (i.e., has highest value of probability density).  In u-space, the mean of all
random variables lies at the origin, and the probability drops off symmetrically in all

directions as 2/2ue− .  Therefore, the design point is equivalently defined as the point on
the failure surface boundary that lies nearest to the origin. The location of this design

ΦU(u)

FX(x)

xu

1

cdf (probability)

u,x
Figure 2  Transformation between a standard normal variate U and the physical
variate X.  (ΦU(u) is the standard normal cdf, and FX(x) is the cdf in physical units.)
x and u have equal probability levels.
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point is found with an optimization routine that uses gradient search methods.  This
gradient search procedure is the main numerical expense of the FORM calculation.  The
vector from the origin to the design point is called ββββ. The direction cosines of ββββ indicate
the relative importance of each random variable.

The first-order approximation to the failure probability is illustrated in the lower left hand
part of Figure 1.  A tangent line is fit to the failure boundary at the design point. Because

of the 2/2ue−  nature of the drop-off in probability in any direction from the origin, a fit
that is good near u* may yield a good reliability approximation even if the fit is poor
elsewhere.

A second order approximation (SORM) fits the curvature of the surface at the design
point for an improved estimate of the failed region and is illustrated in the lower right
quadrant of Figure 1.  Calculating the curvature of the g = 0 boundary at the design point
requires many more evaluations of g.  Thus, the SORM estimate is much more
numerically expensive than the simple FORM result.  It is often the case that the two
estimates agree within a few percent, indicating a small curvature and an adequate FORM
estimate.

Computation

Because of the symmetry of probability in u-space, the calculation of the probability
lying outside both the first and second order approximations is quite simple. For the first
order approximation, the nth dimensional calculation is the same as for one variable. The
probability of failure is 1-Φ(|ββββ|).  (Φ is the symbol used for the standard normal
distribution cdf, as in Figure 2.)  The second order approximation is similarly done, but is
based on a corrected length of ββββ based on the local curvatures of the g = 0 boundary.
Thus when the FORM and SORM estimates of the probability of failure are compared,
one can obtain a sense for how well the failure surface is approximated. A large
difference implies a highly curved surface at the design point and inaccuracy in the
approximations.  However, close agreement implies the failure surface has been well
approximated even with the FORM solution.
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The Weibull Distribution

The Weibull probability distribution is a very commonly occurring function in natural
processes related to dynamic response of elastic systems.  This is especially true of wind
turbines, which are aeroelastic systems driven by the random excitation of the
atmospheric turbulence.  In addition, the Weibull distribution is quite flexible in
representing the distribution of many single-sided random variables (i.e., positive valued
variables such as speed, amplitude, cycles to failure, etc.) whether or not the source is one
particularly expected to be of Weibull form from the physics of the process.

The mathematical form of the Weibull distribution is simplest when viewed from the
perspective of the cumulative distribution function (cdf) FX(x).  The cdf is the integral of
the probability density function (pdf) fX(x). It therefore shows the probability that the
random variable is less than x:
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The more complicated, but in many ways more useful form is the pdf described in Eq.
(4), shown using two common groupings of parameters.
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There are two parameters of the distribution that fully describe it and govern its statistical
properties.  The relative variance of the distribution is controlled by α, also known as the
Weibull shape factor.  The other parameter β is related to the mean as shown below.
With specific values of the shape factor, the Weibull distribution reduces to special cases.
When α== 1 the Weibull becomes the exponential distribution.  When α== 2 the special
case of the Rayleigh distribution results.

It is also useful to note a general result for Weibull distributions.  The expected value of a
Weibull distributed random variable raised to an arbitrary power is

!][E �
�
�

�=
α

β zX zz   . (5)

Two special cases for the mean (z = 1) and mean square (z = 2) of the Weibull variable
can be noted for later use.

)!/1(][E1 αβ=== XXz   , (5.1)

)!/2(][E2 22 αβ== Xz   . (5.2)
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Notice that the scale parameter β  can thus be substituted for in terms of the shape
parameter α  and the mean X :

)!/1( α
β X=   . (6)

It is often useful to approximate the variance of the Weibull directly from the shape
factor.  A useful approximation for coefficient of variation (cov), the ratio of the standard
deviation divided by the mean, in the range of 0.5 < α  < 2 is 1/α .  Both exact and
approximate solutions are given in Eq. (7):

αα
α 11
)!/1(
)!/2(][E

][E
])[(Ecov

2/1

2

2/1

2

222/12
≅

�

�
�
�

�
−=

�
�
�

�
�
�

� −=−=
X

XX
X
XX   . (7)

The approximation is exact when α = 0 and α = 1 and deteriorates in between and as you
move above 1.
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Assumptions and Resulting Parameters

The failure state function implicit in FAROW version 1.1 compares the calculated fatigue
life with the target life.  The fatigue lifetime is governed by five related inputs:

1. The wind environment,

2. the magnitude of the stress response to a given wind environment,

3. the distribution of stress cycle amplitudes defined by the magnitude of the response,

4. the fatigue strength properties of the material at a given stress amplitude, and

5. the cumulative damage rule used to assess the damage due to the full distribution of
stress amplitudes.

Each of these inputs has been assumed to follow a form that can be defined by some
governing parameters. All or some of the governing parameters may be defined as
random variables. The forms and resulting parameters are described below. From the
equations that define the inputs, an expression for the time to failure is derived in the
following section.

The assumptions and parameters are as follows:

1. The wind speed, V, is assumed to have a Weibull probability distribution, f(V):
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The average wind speed V is related to the Weibull parameter Vβ  by )!/1( VVV αβ=  .

Resulting uncertain parameters: VV α,  = mean wind speed, Weibull shape factor.

2. Stresses are described in terms of the root mean square (RMS) of the
instantaneous stress variations about the mean value.  The RMS of the
instantaneous (global) stress, σ g , is assumed to be of the form σ char char

pV V( / ) ,
i.e., increasing in power law fashion with the wind speed V.  The local stress at
the fatigue-sensitive detail is further scaled by a stress concentration factor K. The
resulting RMS at a point, σ, is then

gKσσ =   ;  
p

char
charg V

V �
��
�

�
=σσ . (9)

Resulting uncertain parameters: KpV charchar ,,,σ  = characteristic levels of
wind speed and resulting RMS stress, power-law exponent, and stress
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concentration factor.  Remember that charσ  is the RMS of the instantaneous time
varying stress, not the root mean square of the stress cycle amplitude distribution.

3. The probability density of stress amplitude S for a given wind speed V, f(S|V), is
also assumed to have a Weibull distribution.

Resulting uncertain parameter: α S  = Weibull shape parameter of stress
distribution f (S|V).  Typical range: between α S = 1 (exponential distribution) and

Sα = 2 (Rayleigh distribution).  Note that the other parameter, Sβ , of the Weibull
model of f (S|V) is assigned from random vibration theory, assuming mean-square
value 22 2]E[ σ=S ,with σ from Eq. 9.

4. The S-N curve is taken here as a straight line on log-log scale, with an effective
intercept C

0
 that includes the Goodman correction for mean stress effects:

b
b

um
f SC

SSK
SCSN −

−

=��
�

��
�

�

−
= 0/||1

)(   ;  b
um SSKCC )/||1(0 −= . (10)

Resulting uncertain parameters: C, b = S-N curve parameters; Sm, Su = mean
stress and ultimate strength levels:

5. The mean damage rate per unit time, D , is estimated from Miner's rule:

dSdV
SN

VfVSfVFD
cV

V S f=

∞

=

=
0 0 )(

)()|()( . (11)

The upper cutoff wind speed, Vc, is the highest wind speed for which the turbine
is assumed to operate.  F(V) is the mean rate of stress cycles as a function of mean
wind speed V.  The cycle rate has been included as a power series in wind speed
defined by constant, linear, and quadratic coefficients, f0, f1, and f2:
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char
0 V

Vf
V

VffVF . (12)

Equation (12) can also be written in summation form:

k
char

k
k VVfVF )/()(

2

0=
= . (12.1)

After the many cycles that contribute to high-cycle fatigue, the actual damage
varies negligibly from its average value of D  per unit time.

We introduce two additional factors: ∆ = the actual level of Miner's damage at
which failure occurs, and A = the fraction of time for which the turbine is
available ( 1≤A ).  The failure time is then
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DA
T f

∆=   . (13)

If Miner's rule is correct we would assign ∆ = 1.  More generally, variability in ∆
would reflect uncertainty in Miner's rule; e.g., due to load sequence effects.

Resulting uncertain parameters: Vc, f0, f1, f2, ∆, A.

From the foregoing five assumptions, the fatigue life Tf is given in terms of a total of
2+4+1+4+6=17 uncertain parameters.  The target lifetime Tt is the last parameter in the
version 1.1 reliability analysis (making a total of 18) and is treated the same as the other
governing parameters even though it may not be used as an uncertain input in most cases.
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Derivation of Time to Failure

The above assumptions are here used to produce a closed-form relation for the time to
failure of a component.  This is the equation used in FAROW version 1.1 to evaluate the
time to failure given realizations of the random variables in the failure state function.

Recall that the general fatigue formulation requires information on three distinct aspects:

1. The loading environment;

2. The gross level of structural response given the load environment; and

3. The local failure criterion given both load environment and gross stress response.

These aspects lead directly to three specific functional inputs:  1) the probability density
f(V) of wind speed V;  2) the conditional probability density f(S|V) of applied stress S
given wind speed V ;  and 3) the mean number of cycles, Nf(S), to fatigue failure at stress
amplitude level S.

We first use the assumptions above to develop specific functional forms for these three
quantities. We then show how these functions are combined to estimate the mean damage
rate under Miner's rule and finally the fatigue life as in Abramowitz and Stegun [13].

The probability density f(V) of wind speed V.

Our first assumption was that V follows a Weibull probability distribution, with mean V
and shape parameter αV .  The density f(V) is then

�

�
�

�

�

��
�

�
��
	



−=

− V

V

V

VV

V VVVf
α

α

α

ββ
α

exp)(
1

 . (14)

The conditional probability density f(S|V) of applied stress amplitudes S
given wind speed V.

Here we again adopt a Weibull model (assumption 3, above). In terms of the parameters
α S  and βS , its form follows Eq. 6:
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Note that from random vibration theory, the stress amplitude process may be
approximated by a slowly varying envelope, 2/122 )]()([)( tstste �+= , in which s(t) is the
instantaneous stress process (with its mean value removed) and �s t( )  its Hilbert
transform.  The envelope process defines the bounds between which the stress is
oscillating in the cyclic loading.  It follows that
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222222 )(2]ˆ[E][E][E Vsse σσσ =+=+= (16)

in which σ is the RMS stress at wind speed V, which should therefore be written σ ( )V .
We assume that the amplitudes of the stress process, and therefore its envelope as well,
are Weibull distributed.  Then, by applying Eq. (5.2), E[e2] can be seen to be

( )! /2][E 22
SSe αβ=   . (17)

Equating Equations (16) and (17), and solving for βS  results in a definition of βS  in terms
of α S  and σ ( )V :

)!/2(
)(2

S
S

V
α

σβ =  . (18)

Therefore, either the RMS of the instantaneous stress process or the scaling parameter of
the Weibull distribution of the amplitude process can be used to define the distribution of
peaks and ranges.

The mean number of cycles, Nf(S), to failure

The form of the S-N curve is exactly as previously stated in Eq. (10).

Derivation

Equation 11 is the expression into which the various assumed functional forms must be
substituted and which must be integrated to come to the solution for the damage rate and
hence the time to failure.  First, it should be noted that the inner integral is really an
expectation operation because it is the integral of the stress pdf over all stress amplitudes.

dVVf
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1E)(  . (19)

Equation (10) is substituted for Nf inside the expectation operator and Eq. (5) is applied to
solve for the average value of a Weibull variable raised to the b power.  Equation (18) is
also used to cast the solution in terms of the RMS stress level as a function of wind
speed, σ=(V).
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Using the assumed general form of stress increase with wind speed from Eq. (9),
( ) ( )p

charchar VVKV /σσ = , substitute Eqs. (20) and (8) for f(V) into Eq. (19).
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Case 0: Constant cycle rate and no cut-out wind speed

It simplifies the derivation to consider some special cases first.  Let the cyclic frequency
be constant, F(V)=f0,  and remove the cut-out wind speed so the upper limit of integration
goes to infinity.  Equation (21) then simplifies to
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From Eq. (5) for the expected value of a Weibull distributed variable V raised to an
arbitrary power bp, and keeping Eq. (6) in mind, the result becomes
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which is the source, after substitution into Eq. (13), of the final result cited in Veers, et al.
[1] for the time to failure.

Case 1:  Cycle rate as a function of wind speed

For the case where the cyclic frequency is not fixed, substitute Eq. (12.1) into Eq. (21).
Equation (23) then generalizes to produce the following solution including the power
series in wind speed that defines a variable frequency.
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Case 2:  Finite cut-out wind speed

To reinstate the finite cut-out wind speed while reverting to a constant cyclic frequency,
it is convenient to define a change of variables, ( ) V

VVx αβ/= , VV
VV dVVdx αα βα /1−=

and Vbpbp
V

bp xV αβ /= .  Eq. (21) then becomes
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The upper limit of integration is written as

VV

V
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)!/1(
. (25.1)

(The limit of integration was printed in Veers et al. [1], Eq. (2.8), with a typographical
error in which V  was replaced with Vchar.  The expression in Eq. (25.1) is the correct
one.)

The solution to the integral in Eq. (25) is the incomplete Gamma function:
( )cV xbp ),/(1 αγ +  [13].
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General Case: Variable cycle rate and finite cut-out wind speed

Putting both generalizations together (for frequency as a function of wind speed and for a
finite cut-out wind speed) gives the following result.
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Again, the solution for time to failure is obtained by substituting the average damage rate
into Eq. (13).

Equation (27) is the form implemented in FAROW version 1.1.
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