Dejan Trbojevic

October 30, 2002
An Update on the FFAG lattice Without Opposite Bends with Distributed RF
D. Trbojevic, Scott Berg, M. Blaskiewicz, E. D. Courant, A. Garren, and Eberhard Keil

The FFAG Workshop 28 October - 8 November 2002
Berkeley National Laboratory

CONTENT:
Update with our lattice design:
o Checking the tools: New SYNCH, COSY, MAD8, MADX, TEAPOT.
o Promising results from COSY Lattice properties - a ring picture.
o Dynamical aperture @ central energy

- Longitudinal simulation of the acceleration with the latest lattice solutions (Mike Blaskiewicz).
o Conclusions

> This is an old slide as a reminder of the the Montauk 99 presentation: a relevance to the minimum emittance lattice and muon acceleration lattice.

- The minimum emittance lattice requires reduction of the function H :
- The normalized dispersion amplitude corresponds to the $\langle\mathrm{H}\rangle{ }^{1 / 2}$!!!

What are the basic parameters?

- Required Range of Energies (or dp / p)
- the "central" energy or momentum p_{o} is in two examples presented later set to 10 GEV . The acceleration would be possible from 10 GeV up to 20 GeV .
- Aperture limitation is defined by the maximum value of the DISPERSION function:
- $\Delta \mathrm{x}<+/-30 \mathrm{~mm}$
- if the $0.5<\mathrm{dp} / \mathrm{p}<1.5$ then:
- $\mathrm{D}_{\mathrm{x}}<\mathbf{6 0} \mathrm{mm}$
- Why is the Minimum Emittance Lattice for the electronic Storage Rings Relevant?
- The normalized dispersion amplitude Corresponds to the $<\mathrm{H}\rangle^{1 / 2}$!!!

What was our promise given at the last meeting (BNL editors meeting):

- Construct a lattice where the dispersion will oscillate between positive and negative values but not exceeding 6 cm without opposite bending magnets.

$$
\Delta \mathrm{x}<\mathrm{D} \mathrm{dp} / \mathrm{p}=0.06 *(+-0.5)=+-0.03 \mathrm{~m}
$$

- Make a change in the circumference smaller to reduce the RF phase change.
- Try to combine the linac with a single arc.
- Or make enough room for the cavities within the ring.
- Longitudinal simulation of the multiple turns (10 - 20 turns)

The major result: reduced change of the circumference the 'SYNCH' result (with Ernie's combined function dipole subroutine correction)

Distributed RF circumference ~ 200 meters

Equation of motion (The first lecture in Accelerator Physics Course 1982 Ernest Courante) :

$$
\begin{align*}
& \frac{\partial^{2} x}{\partial s^{2}}=-\frac{x}{\rho^{2}}+\frac{B_{y}-B_{0}(s)}{B \rho} \cdots(1.6) \\
& \frac{\partial^{2} y}{\partial s^{2}}=-\frac{B_{x}}{B \rho} \tag{1.7}\\
& B_{y}=B_{0}\left(1-\frac{n x}{\rho}+\cdots\right)=B_{0}+G x \\
& B_{x}=B_{0} \frac{n y}{\rho} \tag{1.8}\\
& \left(B_{0}+G x\right)\left(r_{0}+x\right)=p_{0}(1+\delta) \ldots(1.9) \tag{1.9}
\end{align*}
$$

where δ is: $\delta=\frac{d p}{p_{0}}$ where $G=-\frac{n B_{0}}{\rho}$. If $u=\frac{x}{r_{0}}$ then :
$n_{0} u^{2}+\left(1-n_{0}\right) u+\delta=0, \quad$ and the two solutuions of the quadratic equator are :
$u_{1,2}=\lambda \pm \sqrt{\lambda^{2}-\frac{\delta}{n_{0}}}$.
$n \equiv-\frac{\rho}{B_{0}} \frac{d B}{d x}$ where $n_{0}=-\frac{r_{0}}{B_{0}} G_{0}$, and $r_{0}=\frac{B_{0} r_{0}}{B_{0}}=\frac{p_{0}}{B_{0}}$.
The two transverse equations of motion are :
$\frac{\partial^{2} x}{\partial s^{2}}=-\frac{(1-n)}{\rho^{2}} x$
$\frac{\partial^{2} y}{\partial s^{2}}=-\frac{n}{\rho^{2}} y$
$\cdots(1.9) \quad$ with a condition $\quad 0<n<1$.
Solutions for the Courant - Snider parameters are :
Tunes : $\quad v_{x}=\sqrt{1-n}, \quad v_{y}=\sqrt{n}$, betatron funcitons : $\beta_{x}=\frac{\rho}{\sqrt{1-n}}, \beta_{y}=\frac{\rho}{\sqrt{n}}$,
Dispersion function : $\quad D_{x}=\frac{\rho}{1-n}$, Chromatici ties : $\xi_{x(\delta)}=\frac{v_{x}-v_{x 0}}{\delta}, \xi_{y(\delta)}=\frac{v_{y}-v_{y 0}}{\delta}$
EXAMPLE of the Cyclotron - weak foch $\sin g$ synchrotron n
made of five combined function dipoles : $n=0.5, C=100 m, B \rho=50.0, n_{\text {dipoles }}=5$,
$r_{0}=\frac{100}{2 \pi} \quad B_{0}=\frac{50}{r_{0}}$. Solutions for $n_{0}=0.5$ and $\delta=0.001$:
$: u_{1,2}=0.5 \pm 0.49799598392, \quad x_{C 0(\delta=0.01)}=0.03189490652 \mathrm{~m}$

TEST data for different tools: Cyclotron

TEST data for different tools: Cyclotron

	δ	x (mm)	\C (m)	vx	Bx	7^{x}		yt/vx	Dx/Dp	Dq/Dp	$\Delta C / 2 \mathrm{pix}$		By
COSY	-0.01	31.76776		0.708163	22.45192							0.706048	22.51917
	0.051	1834.812		0.638889	26.46188							0.769257	21.95733
Mathematica	-0.001	-31.7676	-0.1996	0.708163	22.4295	31.6727	-1.05276	1			1.000001		
MAD	-0.001	-31.7676	-0.02582	0.708164	22.42946	31.67271	-1.05492	1.000998			0.129376		
	0.051	1833.461	13.57585	0.639653	27.75055	43.39639	-1.5387	0.946652			1.178461		

TEST data by different tools: Cyclotron

						¢\＆LZE¢［．0	
	8†0 ${ }^{\circ} 9^{\circ} 0$	6\＆¢LIcz＇£	0819200		69LL80＇ちて	9\＆Z6I0000	XSOP 9＊0
†I6II「0	9LLt900	¢16¢＊9て	L90L＊0	$\varsigma \subseteq \varepsilon 60^{\circ} ¢ \mathcal{E}$	t0＇tて	26000＊0	HONXS $9^{\circ} 0$
てE8¢¢100	¢9L9900	$8 L 6 L^{\circ} \mathrm{SI}$	EI6LE＊0		I86E69 \％0	t¢ 1000^{-}	XSOP ¢ ${ }^{\circ}$
カカIてI「0	96LS900	LIL0．92	LZ99＊0	9L976＊6Z	¢E：0Z	$89000{ }^{\circ}$	HONXS ¢ ${ }^{\circ}$
て¢¢6ZI「0	てヵてL9 0	EL08t＊LI	I \downarrow－で・ 0		£¢L＇9I	$880100^{\circ} 0^{-}$	XSOP t＊0
てLてZI「0	18L99＊0	8Z0¢｀¢て	9 9\％9＊0	6 6Z\＆s「カて	¢¢＇9I	Lt000 0	HONXS t＊ 0
\＆Z69Zİ0	9t6L9 0	¢88L＊${ }^{\text {I }}$	EStt＇0		L899L＇ZI	099000＊0－	Ksoo ع 0
88てZI「0	969 $9^{\circ} 0$	¢\＆z0＊¢Z	¢68¢ ${ }^{\circ} 0$	0tI88＊8I	ャ9＊てI	$82000{ }^{\circ}$	HONXS E＊0
カ¢ちてI「0	ZI989＊0	8LL0．0Z	L9E9t＊ 0		9Lt9＊8	Z0LOE000＊${ }^{-}$	גSOP で0
¢6IZI「0	¢ $8+89^{\circ} 0$	¢00¢＇ャて	［199．0	02686 I	$85^{\circ} 8$	£ 10000°	HONXS で00
99IZI「0	$86069^{\circ} 0$	UIItがIて	てI68t 0		$\pm \varepsilon ¢ 6 \varepsilon^{\circ} \mathrm{t}$	L690000＊ 0^{-}	XSOD［ ${ }^{\circ} 0$
£と0ZI「0	$09069^{\circ} 0$	$628 L^{\circ} \mathrm{C}$ \％	$96 £ \varsigma^{\circ} 0$	6LSL9＊9	$8 \varepsilon^{\circ} \mathrm{t}$	E0000 ${ }^{\circ}$	HONXS［ 0
¢26II＊0	$06769^{\circ} 0$	$9 \varepsilon ¢ \varsigma^{\circ}$ ¢て	ZILZS．0	0.0	00	0.0	$0 \cdot 0$
¢Z6II「0	$06769^{\circ} 0$	$9 ¢ ¢ ¢{ }^{\circ}$ ¢	てILZS ${ }^{\circ} 0$	00	00	0.0	00°
ZLIOZI「0	St069 0	EtE8＊てZ	sct8s．0		$9 \mathrm{LtS} \mathrm{S}^{\circ} \mathrm{t}^{-}$	081000 ${ }^{-}$	XSOO［ ${ }^{\circ} 0^{-}$
8LIZI「0	†8689 0	Iてもで0て	0LZS ${ }^{\circ} 0$	¢8E81＊L－	$L S^{\prime} \dagger^{-}$	L0000＊0	HONXS［ 0^{-}
E06II00	1826900	S691＊IZ	0 OL9 0		$96 L 99 \pm$ で6－	99EL000＊0－	入SOO ${ }^{\circ} 0^{-}$
†0も¢1．0	9L8L9 0	St8で9I	$6 \mathrm{Et} \mathrm{S}^{\circ} 0$	ZSS86 ${ }^{\circ}{ }^{-}$	LE＇6－	LZ000＊0	HONXS で0$^{-}$
2692I＊0	976L9 0	¢S88L＇8I 6ZSttio			0ZS90 ${ }^{\circ}{ }^{-}$	881000^{-}	$\begin{array}{r} \text { XSOJ } \varepsilon^{*} 0^{-} \\ \text {HONXS } \varepsilon^{-} 0^{-} \\ \text {ddp } \end{array}$
89¢91＊0	LE9¢900	8060 ${ }^{\circ}$ I	0 E8S ${ }^{\circ}$			$99000{ }^{\circ}$	
Knu	xnu	u！${ }^{-} \mathrm{q} q$	u！${ }^{-19}$	хвu09x	（uxu） 00 x	○p	

The major result: reduced change of the circumference the 'MAD' file result

Picture of the 'MAD' ring

Betatron functions within the two cells

FFAG lattice without opposite bends

A part of the ring

The FFAG lattice without opposite bends

Two CELLS:

The FFAG lattice without opposite bends

Betatron tunes during acceleration

FFAG lattice without opposite bends -distributed RF

Chromaticities during acceleration - Corrected to zero at the central muon energy of 15 GeV

FFAG lattice without opposite bends -distributed RF

The slipping factor η during acceleration

All previous results have a ~1m dipole divided into 100 pieces and quadrupoles divided into 26 and 46 pieces, as well they include the first attempt to include the end of the quadrupole field

At negative $\Delta \mathrm{p} / \mathrm{p}$ lattice is 'imaginary γ_{t} '

Maximae of the betatron functions during acceleration

Maximum of the dispersion function during acceleration

FFAG lattice without opposite bends -distributed RF

A picture tells a story: particle path in the basic cell during acceleration

Transverse offsets along the basic cell for all Δp

Particle path in one of the recent examples:

Muons paths along the basic cell for different momenta

Simulation of the acceleration

RF considerations for FFAG rings M. Blaskiewicz, BNL

660 ns lattice from D. Trbojevic and 900 ns lattice from E. Courant. Assume negligible energy input to the RF system during acceleration[1] 1-D update equations are

$$
\begin{align*}
\tau_{n+1} & =\tau_{n}+T\left(E_{n}\right) \tag{1}\\
\left(\frac{R}{Q}\right) I(t) & =\frac{1}{\omega_{r f}} \frac{d V(t)}{d t}+\omega_{r f} \int_{0}^{t} d t_{1} V\left(t_{1}\right) \tag{2}\\
E_{n+1} & =E_{n}+q V\left(\tau_{n+1}\right) \tag{3}
\end{align*}
$$

$I(t)$ smoothed by $0.5 \mathrm{ps} . \mathrm{V}(\mathrm{t})$ updated with $\Delta t=0.15 \mathrm{ps}$.

20 turn acceleration, $0.2 \mathrm{eV}-\mathrm{s}, 900 \mathrm{~ns}$ lattice

Energetics of the RF system

For 6.25×10^{12} muons the total charge is $1 \mu \mathrm{C}$.
Assuming a factor of 2 voltage drop the initial stored energy in the RF cavities is

$$
U=10 \mathrm{GV} \times 1 \mu \mathrm{C} \times \frac{4}{3}=13 \mathrm{~kJ}
$$

The stored energy is related to the voltage and impedance by

$$
U=\frac{V^{2}}{2 \omega_{r f}\left(\frac{R}{Q}\right)}
$$

Taking a total voltage of 500 MV and $\omega_{r f}=2 \pi \times 200 \mathrm{MHz}$ one obtains $(R / Q)=7.6 \mathrm{k} \Omega$.
The simulations used this impedance and $V=600 \mathrm{MV}$ so the voltage dropped to 400 MV at the end of the cycle.
Taking 10 MV per cavity the requisite R / Q per cavity is 126Ω.
The stored energy per cavity is 300 J .
For $E=10 \mathrm{MV} / \mathrm{m}$ the volume is $0.7 \mathrm{~m}^{3}$.
With 60 cavities some extra straight sections may be required but, since $10 \mathrm{GeV} \gg 106 \mathrm{MeV}=m_{\mu} c^{2}$, the straights will have a negligible effect on $d T / d E$.

References

[1] N. Holtkamp, D. Finley eds., "A feasibility study of a neutrino source based on a muon storage ring", FNAL 2000.

Conclusions:

- The latest results in the FFAG lattice without opposite bends with distributed RF are very encouraging.
- Present codes MAD and SYNCH should be checked by either other codes or by an analytical calculation.
- If it is shown that the presented idea is really possible the whole muon acceleration should be redone.

