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This study uses TCSP airborne radar 
and radiometer data to evaluate the 
performance of a numerical model 
with advanced microphysics for 
simulating cloud fields of Hurricane 
Dennis (2005) at 3 different stages 
of evolution: Tropical depression, 
tropical storm, and cat. 1 hurricane 
after Cuban landfall 
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1. Motivation

2. Simulation Overview

4. Simulated and Observed Tb

6. Summary

7. Future Work

The Advanced Research 
Weather Research and 
Forecasting (WRF-ARW) model, 
version 2.2 is used with the 
following options:

NCEP GFS initial, boundary data

Simulation times: 00Z 4 July, 
2005 to 00Z 10 July, 2005. 

Three grids: dx = 27, 9, and 3 
km. Nests placed July 5, 00Z or 
July 5, 12Z

Vertical levels: 54

Cumulus parameterization: 
Kain-Fritch, outer grid only

Explicit microphysics: Thompson 
(2006) with 2007 updates

Hurricane intensity forecasts have shown minimal 
improvement in last 20 years (Franklin 2007)

Many factors limit our understanding of hurricanes. 
Methods of improving understanding include:

Incorporating more detailed representation of 
microphysics in numerical models

Quantifying temporal and spatial distribution of latent 
heating and how it impacts hurricane evolution

Observed
July 5, 00Z
July 5, 12Z

5. Tb Sensitivity to N0

Fig 3. Observed and modeled 
min. central pressure. Purple 
boxes: TCSP observation 
times. Blue boxes: simulation 
times used for comparison 
(focusing on July 5, 00Z case). 
Circles: Cuban landfall.

Fig 2. Observed and modeled 
hurricane tracks

Fig 6. AMPR Tb with features of hurricane structure

Fig 7. Normalized frequency histograms of and Tb at 10, 19, 37 and 85 GHz 
for observation (black), model (blue) and model with graupel effects 
removed (red) for comparison at tropical storm stage

To extent presence of supercooled water does not affect 
interpretation of data, over-prediction of rain and 
graupel noted in past studies not present at later, more 
intense stages.

TCSP ER-2 measurements were compared to simulated 
reflectivity, Tb to assess WRF results for 2 stages of 
Dennis (tropical storm and cat. 1 hurricane)

Over-prediction of graupel, rain not noted for later 
observation of Dennis (cat. 1 hurricane)

Model fields change little between tropical storm and 
cat.1 stages, unlike observations

Analysis tools for model data need to be consistent with 
model assumptions

Fig 9. 85 GHz Tb for observation, 
control (N0gr = 8x106), and sensitivity 
test (N0gr = 8x108)

Fig 10. Same as figure 7, but for snow 
control (N0sn = 1.6x107) and sensitivity 
(N0sn = 1.6x105)

Conduct 1 km simulations utilizing moving nest

Incorporate highly-detailed microphysical 
parameterization (Straka Gilmore 2008)

Compare modeled, EDOP wind fields

Introduce variable N0 into Kummerow RT Model
for consistency with microphysics 

Improve reflectivity algorithm to improve comparison 
with EDOP

Kummerow
radiative transfer 
model assumes 
fixed intercept 
parameter (N0)
for snow, graupel

N0 dependent on 
mixing ratio in 
Thompson 
microphysics

Lack of variable N0
can affect 
model/observed 
comparison

Range of N0 chosen 
to match ranges 
expected in 
modeled fields

3. Simulated and Observed Reflectivity

Model fails to capture differences seen in observed dBZ
for observations made at 2 different intensities Model 
does not capture changes in hydrometeor fields
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Modeled
Modeled, qg = 0

Fig 8. Same as fig. 7, but for comparison at category 1 stage
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Observed
Modeled
Modeled, qg = 0

Fig 4. CFAD of dBZ from EDOP (left) and model (right) for 
comparison at tropical storm stage

Fig 5. Same as fig. 4, but for comparison at category 1 
stage

Fig 1. Model grid layout

Pressure vs. Time
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Statistically compare observed and modeled Z using 
contoured frequency by altitude diagrams (CFADs) (Yuter
and Houze 1995) at 2 different stages of development

Model over-
predicts 

largest dBZ
compared to 
ER-2 Doppler 
radar (EDOP)

Tb computed from modeled fields using Kummerow
radiative transfer model

Additional calculation  (qg = 0) removes graupel 
contribution to Tb to determine if over-prediction of 
graupel noted in previous studies (e.g. McFarquhar et al. 
2006) exists

Clear pixels removed from observed and modeled Tb
data using mask based on Hood et al. (2006) 
classification 
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Clear pixels not removed by mask

Model over-
predicts heavy 

rain

Model exhibits enhanced scattering caused 
primarily by graupel

Model under-predicts heavy rain

Model under-predicts graupel
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Higher N0gr less scattering

Higher N0sn higher frequency of high Tb
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