
C O M P U T A T I O N A L R E S E A R C H D I V I S I O N

Tools and Techniques for Managing
Large Scientific Software Projects

Keith Beattie, Chuck McParland, Dan Gunter,
Guillaume Egles, Matt Rodriguez

Distributed Systems Department
LBNL

May 13, 2005

Schedule

• Introduction – Keith (10 mins)

• Design – Chuck (30 mins)

• Coding – Dan, Keith & Guillaume (60 mins)

• Break (15 mins)

• Release – Dan & Matt (60 mins)

Software Development
Components

• Design
• Implementation
• Version Control
• QA

• Documentation
• Release Eng.
• Distribution
• User Interaction

Software Pollution

• Write 100% of the code from scratch wherever possible
• Ensure LBNL obtains a proper license for non-LBNL

code or developers before you invest time & money
• Keep a list of all non-LBNL code and developers used
• Keep a copy of all license agreements
• Contact Tech Transfer for a software “check-up” to

ensure code is 100% “clean”
– Tech Transfer will review IP agreements & help resolve IP issues from

non-LBL software or funding.
– Seth Rosen: SBRosen@lbl.gov, http://www.lbl.gov/tt/

Design

• History
• Methodologies
• UML
• State Machines

Software Engineering
The very brief version

• Software development has not always been
considered an engineering activity.
• IBM creates “programmer” job in ’59.
• LBL “calculators” were early programmers at lab.

• Need for engineering formalism grew because:
• Integration with other engineering activities (telecom,

“big” science, avionics, etc.)
• Growth of IT importance in large organizations (how do

we manage all these people?..and what is it they do?)
• Growing experience with which parts of programming

task are most important or difficult (design and
documentation)

Software Project Elements

• Requirements analysis and specification
• Design
• Implementation
• Integration and Test
• Maintenance

Different methodologies distribute these tasks
along the project timeline in very different ways.

Waterfall Methodology

Software Development Methodologies
Waterfall method

Waterfall method (contd.)

• Major steps:
– Requirements analysis
– Design
– Implementation
– Testing
– Integration
– Maintenance

• Good/Bad points:
– Well structured/too inflexible
– Analyze design up front/no chance to revisit design during

implementation (i.e. difficult to swim upstream).
• Somewhat “out of fashion” at present.

Spiral Methodology

Software Development Methodologies
Spiral method

Software Development Methodologies
Spiral method

Software Development
Methodologies
Spiral method

• Iterative approach allows each task to be revisited
each cycle.
– Requirements can be re-assessed.
– Code can be re-implemented.
– Tests can be elaborated and improved.

• Allows “good enough for the moment”
implementations.

• Shortens time between implementations and
releases.

• Believed by many to be closer match to “real life”
programming practice than waterfall model

Software Development Methodologies
Extreme Programming

Software Development
Methodologies

Extreme Programming

• Guiding principles
– Small releases
– Integrated testing
– Continual refactoring and code improvement
– Pair programming / collective code ownership
– Continuous integration (daily)
– On-site customer to elaborate requirements
– 40-hour work week (!)

Software Development
Methodologies

XP variant: Agile

• Guiding principles
– “Travel Light”
– Rapid feedback
– Embrace change
– Quality work
– Incremental and continual change

• In practice:
– VERY customer driven.
– No requirement is beyond change at any point in

the development process.

But, you always need tools.
UML-overview

• Unify notations
• UML is a language for:

– Specifying
– Visualizing and
– Documenting the artifacts of a system under development

• Authors (Booch, Rumbaugh and Jacobsen) agreed
on notation but not able to agree on a single
methodology
– By itself, not a “unified” development environment
– This is probably a “good thing”

UML-Use Cases

• Use Case Name:
• Description:
• Actors:
• Assumptions:
• Steps:
• Variations:

UML State Diagrams

UML-Sequence Diagrams

Software Methodologies
A practical approach

• Just as in other engineering disciplines,
there is no “rote” way to engineer a system.

• Pick a methodology that fits your team and
your schedule.

• Make use of available visual and conceptual
tools (state diagrams, use cases, etc.)

• Don’t confuse the “map” with the “territory”.
– Design diagrams and documents often lag behind

current implementation.

Software State Machines

• Tool for describing behavioral modes of
system operation (“stopped”, “calibrating”)

• Many variants, but basically:
– Systems are in only one state at any given time.
– Transitions between states are instantaneous.
– Deterministic rules for moving between states.

Knowing a system’s state => knowing what a
system is doing.

State machines are everywhere

• Dual heritage:
– Early automata and math. logic. theory (Turing, et.

al.).
– Mechanical and electronic sequencing machine

development.
• Natural fit in early LSI and VLSI electronics

(processors, comm. Interfaces, etc.)
• Practical fit in software took hole with comm.

protocol stacks.

State machines are
everywhere

• TCP/IP comm.
protocol states.
• Provides clear
indication of
protocol operational
state.

Motivation for state machine code
generation tools.

• Separate state machine logic code from
specific application code.

• Automate generation of state machine code
to eliminate coding and debugging errors.

• Automatically generate documentation and
state machine diagrams.

Simple state transitions

Elaborate State Machines

State machines are useful
when...

• Describe program behavior in simple,
partitioned manner (running, calibrating,
etc.).

• Code littered with similar switch/case
constructs based on global “state” variable.

• Need to synchronize distributed software
components to act as single, integrated
system (just what comm. protocols do with
state machines.)

Start with XML description of
system states and actions

<State Name=“Idle">
<Entry>

<Action Cmd="enterIdle()"></Action>
</Entry>
<Transition Name=“StartSig">

<NextState Name=“Running">
<Action Cmd="LoadConfiguration()"/>

</NextState>
</Transition>
<Transition Name=“OfflineSig">

<NextState Name="Offline"> </NextState>
</Transition>

Generate and execute state
machine code

• In this example, we’re using SMC (State Map
Compiler http://smc.sourceforge.net)

• Pick a target language: C++, Java, Tcl, VB.net, C#
• Generate state machine code.
• Implement specific callback routines for your

application.
• Link and execute.
• Give transitions (“events”) to running state

machine and system responds as designed.

Connecting to the state
machine implementation

Application Code();

Application Code();

Benefits

• Simple mechanism for integrating valuable software
engineering tool into you application.

• Auto generated graphics files (using Graphviz)
provide system documentation.

• Code base easier to maintain….only application
specific actions need to be coded.

• Monitor and control of system state more tractable
for real time or long running batch applications.

Coding

• Build Tools
– GNU Autotools (Dan: 10 mins)
– Ant (Keith: 10 mins)

• Version Control (Keith: 20 mins)
• IDE (Guillaume: 20 mins)

GNU “autotools”

• De-facto standard for portably building C,
C++, and Fortran programs

• They support all UNIX platforms as well as
Microsoft Win32

• Installation from source, by the user,
requires only a Bourne shell and a compiler

• The developer requires other tools, such as
Autoconf, Automake, Perl, and GNU m4

Autotools Philosophy

• Instead of enumerating platforms, test for
platform characteristics

• Using this information, build (on each target
system) an appropriate makefile and a
header file, which can be used to build the
package natively

• This is superior than writing various "#ifdef"
for every system out there, or writing a
different makefile for every system

Flowchart for a new Autotools
Project

Automake Autoconf

Libtool

Makefile.am

configure.ac

configure

Makefile.in

= file

Makefile
source code

compiled code

library

compiler

configure.scan

autoscan

Sample project: files

➢ TOP
➢ README
➢ src/

➢ alg.c alg.h fmt.c fmt.h main.c
➢ Makefile.am

1) Run autoscan to generate a
template configure.ac

$ autoscan
autom4te: configure.ac: no such file \

or directory

autoscan: /usr/bin/autom4te failed \

with exit status: 1

Ignore this output, and:
$ cp configure.scan configure.ac

configure.scan

autoscan
source code

configure.ac

2) Edit generated configure.ac

AC_PREREQ(2.59)
AC_INIT(FULL-PACKAGE-NAME, VERSION, BUG-REPORT-ADDRESS)
AM_INIT_AUTOMAKE #add
AC_PROG_LIBTOOL #add
AC_CONFIG_SRCDIR([src/alg.c])
AC_CONFIG_HEADER([config.h])
Checks for programs.
AC_PROG_CC
Checks for libraries.
FIXME: Replace `main' with a function in `-lm':
AC_CHECK_LIB([m], [main])
Checks for header files.
AC_HEADER_STDC
AC_CHECK_HEADERS([stdlib.h])
Checks for typedefs, structures, and compiler characteristics.
AC_C_CONST
Checks for library functions.
AC_CHECK_FUNCS([sqrt])
AC_CONFIG_FILES([Makefile

src/Makefile])
AC_OUTPUT

configure.ac

3) Write Makefile.am's

Automake

Makefile.am
TOP:

SUBDIRS = src

TOP/src:
Build a shared
library

Build a program
that uses this
library

lib_LTLIBRARIES = libsample.la
libsample_la_SOURCES = fmt.c alg.c

bin_PROGRAMS = sample
sample_SOURCES = main.c
sample_LDADD = libsample.la -lm

4) Init “helper” files

• autoheader – Generate “config.h.in”, the template file
for “config.h”, which contains all #ifdefs in one place.
Your programs will then just include config.h

• libtoolize – Copy over scripts needed to run libtool
• aclocal-1.9 – Install system-specific macros for use

by autoconf

Yes, this is a pain. But you only have to do it this once..

5) Run autoconf and automake

• autoconf

• automake-1.9 – Make
sure that the version
matches the “aclocal”
version

Automake Autoconf

configure

configure.a
c

Makefile.in

Makefile.am

6) Build the project!

$./configure

$ make

$ make install

Libtool

Makefile
source code

compiled code

library

compiler

configure

Generated Files

• The contents of your directory will now be
full of generated files

• Don't worry, you won't need to understand
them..

• Some of them are standard spots for
project documentation – use them!
– README - NEWS
– INSTALL - AUTHORS
– ChangeLog - COPYING

defaults to GPL
-- change to
LBNL license!!

The Payoff

• Building on new platforms is simpler
– Many compiler / library characteristics

automatically handled
– Shared library differences handled by libtool

• Also, you can now run:
– make dist – generate .tar.gz file that you users can

download
• Finally, changes in “configure.ac” or

“Makefile.am” are autodetected, so “make”
will reconfigure/rebuild properly

Other languages

• The important point is to use the most
standard build and configuration system for
your particular language
– for C/C++ and probably Fortran, this is autoconf
– for Python, this is distutils
– for Perl, it's Makefile.PL / CPAN
– for Java, it's Ant (see next talk!)

• This allows you to leverage other people's
experience, and provides the best chance of
integrating new people and code in the
project

Ant

Ant

Keith Beattie

Ant

"Ant is a Java-based build tool. In theory, it is kind of like
Make, but without Make's wrinkles."

• Create a build.xml file where tasks (targets) are definied
• Run 'ant [flags] target' to execute tasks
• Ant flags:

– h help with ant usage
– p 'project help' list targets in build.xml
– q 'quiet' no need to tell me everything
– v 'verbose' good for debugging build.xml files

Ant: Hello, World

<project name="hello" default="build" basedir=".">
<property name="src.dir" value="src"/>
<property name="build.dir" value="build"/>

<target name="build" depends="init"
description="build everything">

<javac srcdir="${src.dir}" destdir="${build.dir}"/>
</target>

<target name="init">
<mkdir dir="${build.dir}"/>

</target>

<target name="clean" description="clean up">
<delete dir="${build.dir}"/>

</target>

</project>

Ant: Building

ksb@fuzz[Hello] 12:38:37 (0)$ ant
Buildfile: build.xml

init:
[mkdir] Created dir: /home/ksb/Hello/build

build:
[javac] Compiling 1 source file to /home/ksb/Hello/build

BUILD SUCCESSFUL
Total time: 1 second
ksb@fuzz[Hello] 12:38:39 (0)$

Ant: Jar & run

<target name="dist" depends="build"
description="generate the distribution" >

<jar jarfile="${dist.dir}/hello.jar" basedir="${build.dir}">
<manifest>

<attribute name="Main-Class" value="hello.Hello"/>
</manifest>

</jar>
</target>

<target name="run" depends="dist"
description=”Run the application” >

<java jar="${dist.dir}/hello.jar" fork="true" />
</target>

Ant: run

ksb@fuzz[Hello] 22:05:03 (0)$ ant run
Buildfile: build.xml
init:

[mkdir] Created dir: /home/ksb/Hello/build
[mkdir] Created dir: /home/ksb/Hello/dist

build:
[javac] Compiling 1 source file to

/home/ksb/Hello/build
dist:

[jar] Building jar: /home/ksb/Hello/dist/hello.jar
run:

[java] Hello, world

BUILD SUCCESSFUL
Total time: 3 seconds
ksb@fuzz[Hello] 22:05:10 (0)$

Ant: task library

• Each task is a Java class
• Extensible
• Many, many tasks available

– cvs
– junit
– javadoc
– rpm
– ssh
...

Ant: JUnit

<property name="junit.dir" value="junit-results"/>
<property name="test.class" value="hello.TestHello"/>

<target name="test" depends="build" description="unit test">
<junit errorProperty="test.failed"

failureProperty="test.failed">
<test name="${test.class}" todir="${junit.dir}" />
<formatter type="brief" usefile="false" />
<formatter type="xml" />
<classpath refid="classpath" />

</junit>
<fail message="Tests failed: check test reports."

if="test.failed" />
</target>

Ant: JUnit run

$ ant test
Buildfile: build.xml

init:

build:
[javac] Compiling 1 source file to /home/ksb/Hello/build

test:
[junit] Testsuite: hello.TestHello
[junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed:

0.006 sec

BUILD SUCCESSFUL
Total time: 2 seconds

Version Control

Version Control

Keith Beattie

Version Control

• Why?
– Backup of source code
– Central repository
– History of changes
– Monitor activity
– Time Machine
– Multiple Current Versions

Version Control Models

Check out, Modify, Commit

• Library Model
– Lock
– Modify
– Unlock

• Concurrent Model
– Copy
– Modify
– Update
– Merge

Library vs. Concurrent

LibraryLibrary

• Pro
– You 'own' the file
– Easy to understand

• Con
– Slow
– Lock might need to be

broken

ConcurrentConcurrent

• Pro
– Scales
– Fast

• Con
– Merge
– Unintuitive at first

Biased for Concurrent Model

• Conflicts
– These are relatively rare
– Not solved by either model
– Some aren’t exposed by the VC system

A VC system is not a replacement for:
– Developer communication
– System Design
– Project management

Tags

• 'Snapshot' in time
– Date
– Name (which may not correspond to a single

point in time)
• Known stable points

– Release candidates
– Certified Releases

• Easily retrieve old 'snapshots'

Branches

• What happens when an existing release needs a
bugfix (and you've already started on the next
one)?
– Branch at release tag (time travel)
– Work on this release branch, creating new point

release
– Merge into (or fix in) Trunk

Rel 2.0?
Rel 1.0

Fix 1.0 bugs

Rel 1.1
Merge / Apply Fix

Rel 1.2?

Branches 2.0

• Release implies Branch
– You might never actually branch but the

implication & ability is there
• Multiple current lines of development

– Powerful to allow both supporting existing
releases and development of next release

– As releases diverge, you'll want to 'end of life' old
releases

• Project Branches
• Experimental Branches

CVS vs SVN

• Subversion is the CVS replacement
– Directories, renames & meta-data are revisioned
– Change sets (rather than file by file)
– Atomic commits
– Constant-time tagging & branching
– Symlinks
– Apache/WebDAV (http, security)

IDE

Integrated Development Environments

Guillaume Egles

The Problem

• Developing a project is not just writing code and
compiling it. It’s…
– Writing
– Debugging
– Compiling
– Testing
– Running
– Archiving/Versioning
– Documenting
– Releasing
– Redesigning
– Maintaining
– …

The manual approach

• Using separate tools
– editor + compiler + debugger + doc tool.

• Advantages:
– Better control
– Flexibility

• Disadvantages:
– Have to be an expert with each tool
– Very hard to get the tools to work together

• Lots of time wasted AROUND the project instead of ON the
project.

The First Generation IDEs

• Visual Studio, CodeWarrior, KDevelop, …
– Commercial ones are pricy
– Free ones are not mature

• Usually only for one/two platform(s)
– VS only on Win. KDevelop only on UNIX.

• Intrusive
– Clutter your project with IDE-specific files.

• Limited
– Provides less than the “separate tools” approach.

• Lack flexibility
– Does not adapt to the need of your project well.

• It either fits your need perfectly or you are stuck !

The next generation IDE

• 3 forces at play: (Chicken or the egg)
– Major increase in computer power.
– New methodologies (XP and Agile) demands for new tools.
– Java’s popularity.

• Characteristics:
– Cross-platform (usually in Java itself)
– Comfortable GUI
– Full-Featured
– Highly configurable
– More powerful than separate tools

• Refactoring, Syntax Highlighting, dynamic documentation.

• Can be a huge gain of time:
– Lets you focus on your project and not on the tools.
– Lets you do things you could not do before (at lighting speed).

Side Note: Refactoring

• What is refactoring?
• Martin Fowler: “Refactoring is a disciplined

technique for restructuring an existing body
of code, altering its internal structure without
changing its external behavior.”

• Formalized so tools (and IDEs) can
implement it.

• Major part of XP

State of the Art

• IntelliJ IDEA
– $499
– Leading IDE
– Being passed by eclipse
– Supports only JAVA

• Eclipse
– Free
– Large community (majorly adopted)
– Building momentum
– Java has priority but C/C++, XML, python are following

• NetBeans
– Free
– Sun’s default IDE

A Good example:
The Eclipse Platform

• Quote: “Eclipse is a kind of universal tool
platform - an open extensible IDE for
anything and nothing in particular”

• This is good and bad:
– Allows for a lot of flexibility and creates interest

for a wider community.
– Creates a bit of confusion for beginners

Eclipse Features

• CVS/Subversion integration
• Very smart editor

– Syntax-highlighting
– Refactoring
– Dynamic documentation

• Hooks to outside programs
• Ant support / Gnu Make support
• GUI Builder
• Very powerful plugin-system

– XML / Python / CruiseControl … and 800 more
• Quality software

Eclipse Demo (5-10 mins)

• Check-out a project
• Play with the code
• Write a Unit Test
• Document
• Launch / debug
• Release
• Check-in

Links

• Eclipse:
– www.eclipse.org

• IntelliJIDEA:
– www.jetbrains.com/idea

• Refactoring:
– www.refactoring.com

http://www.eclipse.org/
http://www.jetbrains.com/idea
http://www.refactoring.com/

Break & Release

• Break: 15 Mins
• Logging, Debugging, Tuning (Dan: 20 mins)
• Unit testing (Matt: 20 mins)
• Software Maintenance, Communication,

Documentation (Matt: 20 mins)
• Release Engineering (Keith: 5 mins)

Logging, Tracing, and
Debugging

• The Problem:
– Bugs happen, no matter how much we plan to

avoid them
• The Corollary:

– Debugging is an essential part of the software
lifecycle

• The Solution:
– Ha! We can only really talk about tools...

What is a bug?

• Traditional definition of “bug” is something
that makes the program halt or go obviously
haywire
– segmentation fault, hangs indefinitely, etc.

• But distributed computing leads us to
recognize other types of “soft failures”,
where things work – just more slowly – as
bugs

• Detecting these types of failures requires
something more than just firing up gdb

Example of “soft failure” bug

GridFTP Parallel Streams

time(s)

e
v
e
n
t
s

turned out to be a select() bug!

The Lesson

• Instrumentation (logging) should be part of
programs, even if they seem to work

• Debuggers are an incomplete solution
– Debuggers don't work well with distributed

programs
– Communicating debugging results is harder:

• “debugging statements stay with the program;
debugging sessions are transient” - The Practice of
Programming, Brian W. Kernighan & Rob Pike

Types of Debug Statements

• Logging: Low-volume, readable messages
intended for browsing

• Instrumentation:
– Tracing: Any-volume, timestamped messages

intended for automated analysis
– Profiling: Sampled OS/HW/interpreter/program

statistics, intended for automated analysis

Death to printf() !

• Typical debug statement:
#ifdef DANS_DEBUG

printf(``Got to end of routine!\n``);

#endif

• What's wrong with this?
– hard to turn on/off (requires recompile!)
– non-structured, provides almost no context
– can't be easily redirected elsewhere
– completely ad-hoc!

Modern Logging APIs

• Most languages now have at least one de
facto standard API that can simplify, unify,
clarify logging
– Typically not also good for tracing or profiling,

but more on that later
• Feature-rich
• Documented, maintained by someone else!

Example API: log4j

• Log4j, which came out of the Jakarta project,
is the de facto standard logging package for
Java; similar APIs for C, Python

• Basic concepts:
– Arrange multiple logging object instances in a

hierarchy so properties can be inherited from the
root (instead of specified every time)

– Separate the policy, destination, and format
– Allow configuration to be serialized into a file

log4j example

import org.apache.log4j.Logger;

import org.apache.log4j.PropertyConfigurator;

public class MyApp {
static Logger

logger = Logger.getLogger(MyApp.class.getName());

public static void main(String[] args) {

PropertyConfigurator.configure(args[0]);

logger.info("Entering application.");

for (int i=0; i < 100; i++) {

if (logger.isDebugEnabled())

logger.debug(“i=”+i);
}

logger.info("Exiting application.");

}

}

log4j example (annotated)

import org.apache.log4j.Logger;

import org.apache.log4j.PropertyConfigurator;

public class MyApp {
static Logger

logger = Logger.getLogger(MyApp.class.getName());

public static void main(String[] args) {

PropertyConfigurator.configure(args[0]);

logger.info("Entering application.");

for (int i=0; i < 100; i++) {

if (logger.isDebugEnabled())

logger.debug(“i=”+i);
}

logger.info("Exiting application.");

}

}

Configure from file

Logger instance named for class

extra if/then for efficiency

log4j configuration file

• Java “properties” format (also has XML
format)

Set root logger level=DEBUG and only appender to 'A1'

log4j.rootLogger=DEBUG, A1

A1 is set to be a ConsoleAppender.

log4j.appender.A1=org.apache.log4j.ConsoleAppender

A1 uses PatternLayout.

log4j.appender.A1.layout=org.apache.log4j.PatternLayout

log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p
%c %x - %m%n

Sample log4j output

• With “log4j.rootLogger=DEBUG,A1”
0 [main] INFO MyApp - Entering application.
4 [main] DEBUG MyApp - i=0
5 [main] DEBUG MyApp - i=1
...
31 [main] DEBUG MyApp - i=99
32 [main] INFO MyApp - Exiting application.

• With “log4j.rootLogger=INFO,A1”
0 [main] INFO MyApp - Entering application.
4 [main] INFO MyApp - Exiting application.

• All that had to change was the config file!

Beyond “logging” to
performance analysis

• When an application gets large and complex,
“eyeballing” logs becomes unfeasible

• Free-form user defined log formats make
analysis difficult

• In a distributed application, just collecting
logs into one place is a pain

• Our solution to this problem, for distributed
applications, is called NetLogger

NetLogger Methodology

• NetLogger is both a methodology, and a set of tools
– You can use the NetLogger methodology without using any of our

tools.

• Methodology:
1. All components must be instrumented to produce monitoring. These

components include application software, middleware, operating
system, and networks. The more components that are instrumented
the better.

2. All monitoring events must use a common format and common set of
attributes and a globally synchronized timestamp

3. Log all of the following events: Entering and exiting any program or
software component, and begin/end of all IO (disk and network)

4. Collect all log data in a central location
5. Use event correlation and visualization tools to analyze the monitoring

event logs

NetLogger API Sample

• Log API (Python):
import sys
from gov.lbl.dsd.netlogger import nllite

log = nllite.LogOutputStream(sys.argv[1])
size = 999.99
log.info("EVENT.START",{"TEST.SIZE":size})
for i in xrange(100):

if log.debugging():
log.debug("EVENT.I.START",{"VAL":i})

perform the task to be monitored
if log.debugging():

log.debug("EVENT.I.END",{"VAL":i})
log.info("EVENT.END",{"TEST.SIZE":size})

NetLogger “config file” Sample

• Just a log level in a file whose name is placed
in an environment variable (NL_CFG)

• Example usage:
$ export NL_CFG=myapp.config

$ echo 5 > $NL_CFG

NetLogger Output Sample

t DATE: 2005-05-12T07:00:13.57873
s LVL: INFO
s EVNT: EVENT.START
d TEST.SIZE: 999.99

t DATE: 2005-05-12T07:00:13.698969
s LVL: DEBUG
s EVNT: EVENT.I.START
i VAL: 1

t DATE: 2005-05-12T07:00:13.698969
s LVL: DEBUG
s EVNT: EVENT.I.END
i VAL: 1

...

t DATE: 2005-05-12T07:00:13.698971
s LVL: INFO
s EVNT: EVENT.END
d TEST.SIZE: 999.99

datatype

name
value

NetLogger Analysis Concepts

• NetLogger visualization tools are based on time-
correlated and object-correlated events.

• If applications specify an “object ID” for related
events, this allows the NetLogger visualization tools
to generate an object “lifeline”

• To associate a group of events into a “lifeline”, you
must assign each an “object ID”

• Sample Event IDs: file name, block ID, frame ID, Job
ID, etc.

NetLogger Analysis Example

Performance/Debugging
Process

Identification Localization

Repair

Verification

Validation!

Resources

• log4j
– http://logging.apache.org/log4j/
– http://jakarta.apache.org/commons/logging/

• NetLogger
– http://dsd.lbl.gov/netlogger/

• NERSC Performance Eval. Research Center
– http://perc.nersc.gov/main.htm

http://logging.apache.org/log4j/
http://jakarta.apache.org/commons/logging/
http://dsd.lbl.gov/netlogger/

Unit Test, Software Maintenance
& Communication

Matt Rodriguez

Software Maintenance

Techniques for maintaining and
developing a software system

Overview

• Techniques for testing your code. (unit
testing)

• Using a bug tracking system
• Using automated build and test systems.
• Essential documentation practices for

interacting with users

Different Testing
Techniques

• Unit testing
• Integration Testing
• Systems Testing
• Regression Testing

Unit Testing

• What is unit testing?
• Tests individual components in a software

system.
• Provides a status report of the health of a

project
• Unit testing framework can be helpful in

discovering problems quickly

Motivation for unit testing

• Unit testing will make your code more stable
• Unit testing will facilitate refactoring and

further development
• Unit testing will give you more confidence in

your code
• Unit testing will save you TIME.

Unit testing Strategies

• Start from the bottom up, first test classes in
isolation, then test instances working
together to do common tasks

• Consider writing the tests first or having
another developer write the tests after the
system has been designed

More unit testing strategies

• Use “mock objects” that pretend to be
results from 3rd party services

• Use of drivers and stubs
• A Driver directly tests the software
• A stub is a placeholder that mimics a

subsystem that the driver uses

What to unit test?

• Ideally, test each class in isolation
• Practically, test each important method
• Test common tasks
• Test for exceptions
• Test for failures

What not to unit test

• Code that relies heavily on third party
services (ie DB)

• Code that gives an non deterministic answer

• Code that requires active user input

Use existing unit test APIs

• Java: JUnit
• C++: CppUnit
• Python: PyUnit, unittest

Most languages have a library that will help
you organize and aggregate your test suite.

Build and Test Systems

• Automated systems that routinely build and
run the tests in the testing suite

• Can be triggered by cvs commits, or via a
web interface

• Can test on all the platforms that your project
supports

• Generates html pages to organize and
display the results

Motivation

• Testing your software is important but can
be tedious

• Catches the introduction of new bugs quickly
• Enables communication between developers

When to use an ABTS

• When you are developing on multiple
platforms (not in java)

• When you are working with multiple
developers

• When you must ensure that your software
works with multiple versions of different
software libraries

Cruise Control

• Uses ant
• Well supported
• Works with 3rd party tools: cvs, eclipse
• Generates html pages, can send email
• Trigger a build interactively

Tinderbox

• Developed by the mozilla project
• Written in perl
• Not supported very well, not documented

very well
• Typically projects use the collection of

scripts that come with Tinderbox and tailor
them to their needs

Other Build systems

• Dart
• Dart is supported better, written in TCL
• Open source build systems are not as

mature as the open source bug tracking
systems

Bug tracking systems

• Maintains a history of bug submissions,
proposed steps to fix the problem, and
resolution

• Enables communication between developers
working on the project

• Facilitates interaction with the user
community

• Useful tool for managing a project

Free Bug Tracking Systems

• Bugzilla, mantis
• Bugzilla is more widely used today
• From the mozilla project
• Written in perl, uses a MySQL backend DB
• Complaints: People have dislike its user

interface, in particular when making queries

Bugzilla features

• Browser user interface
• Interacts with 3rd party tools
• End users can submit attachments when

filing a bug report
• Multiple projects can use on bugzilla

instance

Configuring your project

• Products- your project
• Components – aspects of your project
• Versions – releases of your project
• Milestones – releases by when certain bugs

will be fixed
• Voting – Allows users to pick which bug they

want fixed

Filing a Bug Report

• Summary, expected behavior/observed
behavior

• Specifically explain how to reproduce the
bug

• One bug per report
• Include as much information as possible,

(OS, version information of relevant
tools/components, stack traces)

Integration with 3rd Party Tools

• Bonsai: Web based CVS
• CVS
• Perforce
• Tinderbox

Mantis

• Written in php, supporters feel that it has as
better UI than bugzilla

• The Query interface is regarded to be better
• Allows for cvs integration
• Widely used but not as prevalent as bugzilla

Documentation

• API docs
• Project webpage
• Email lists
• README, INSTALL, CHANGELOG

Goal of these practices

• Facilitates development and maintenance of
the project

• Discover problems quickly
• Effective communication between your

developers and users
• Allows people to use your software without

too much hassle

Release Engineering

Intersection of the 4 areas in software dev.
• Engineering

– Version control
• QA

– Testing & Certification
• Operations

– System Administration
• Project Management

– Scheduling, branch management

Summary

• Documentation
• Release Eng.
• Distribution
• User Interaction

• Design
• Implementation
• Version Control
• QA

C O M P U T A T I O N A L R E S E A R C H D I V I S I O N

Tools and Techniques for Managing
Large Scientific Software Projects

Keith Beattie, Chuck McParland, Dan Gunter,
Guillaume Egles, Matt Rodriguez

May 13, 2005

	
	Schedule
	Software Development Components
	Software Pollution
	Design
	Software EngineeringThe very brief version
	Software Project Elements
	Waterfall Methodology
	Software Development MethodologiesWaterfall method
	Waterfall method (contd.)
	Spiral Methodology
	Software Development MethodologiesSpiral method
	Software Development MethodologiesSpiral method
	Software Development MethodologiesSpiral method
	Software Development MethodologiesExtreme Programming
	Software Development MethodologiesExtreme Programming
	Software Development Methodologies XP variant: Agile
	But, you always need tools.UML-overview
	UML-Use Cases
	UML State Diagrams
	UML-Sequence Diagrams
	Software MethodologiesA practical approach
	Software State Machines
	State machines are everywhere
	State machines are everywhere
	Motivation for state machine code generation tools.
	Simple state transitions
	Elaborate State Machines
	State machines are useful when...
	Start with XML description of system states and actions
	Generate and execute state machine code
	Connecting to the state machine implementation
	Benefits
	Coding
	GNU “autotools”
	Autotools Philosophy
	Flowchart for a new Autotools Project
	Sample project: files
	1) Run autoscan to generate a template configure.ac
	2) Edit generated configure.ac
	3) Write Makefile.am's
	4) Init “helper” files
	5) Run autoconf and automake
	6) Build the project!
	Generated Files
	The Payoff
	Other languages
	Ant
	Ant
	Ant: Hello, World
	Ant: Building
	Ant: Jar & run
	Ant: run
	Ant: task library
	Ant: JUnit
	Ant: JUnit run
	Version Control
	Version Control
	Version Control Models
	Library vs. Concurrent
	Biased for Concurrent Model
	Tags
	Branches
	Branches 2.0
	CVS vs SVN
	IDE
	The Problem
	The manual approach
	The First Generation IDEs
	The next generation IDE
	Side Note: Refactoring
	State of the Art
	A Good example:The Eclipse Platform
	Eclipse Features
	Eclipse Demo (5-10 mins)
	Links
	Break & Release
	Logging, Tracing, and Debugging
	What is a bug?
	Example of “soft failure” bug
	The Lesson
	Types of Debug Statements
	Death to printf() !
	Modern Logging APIs
	Example API: log4j
	log4j example
	log4j example (annotated)
	log4j configuration file
	Sample log4j output
	Beyond “logging” to performance analysis
	NetLogger Methodology
	NetLogger API Sample
	NetLogger “config file” Sample
	NetLogger Output Sample
	NetLogger Analysis Concepts
	NetLogger Analysis Example
	Performance/Debugging Process
	Resources
	Unit Test, Software Maintenance & Communication
	Software Maintenance
	Overview
	Different Testing Techniques
	Unit Testing
	Motivation for unit testing
	Unit testing Strategies
	More unit testing strategies
	What to unit test?
	What not to unit test
	Use existing unit test APIs
	Build and Test Systems
	Motivation
	When to use an ABTS
	Cruise Control
	Tinderbox
	Other Build systems
	Bug tracking systems
	Free Bug Tracking Systems
	Bugzilla features
	Configuring your project
	Filing a Bug Report
	Integration with 3rd Party Tools
	Mantis
	Documentation
	Goal of these practices
	Release Engineering
	Summary
	

