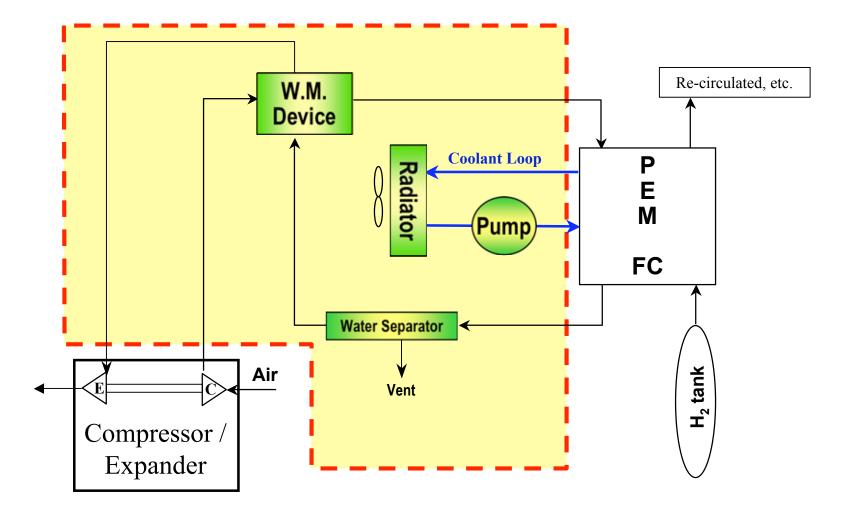
Honeywell

2004 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review Presentation

Development of a Thermal and Water Management (TWM) System for PEM Fuel Cells

Chung Liu Honeywell International, Inc. May 26, 2004; Philadelphia, PA


This presentation does not contain any proprietary or confidential information.

Project Objectives

To assist DoE in developing a humidification and cooling system for PEM Fuel Cells in transportation applications

- To focus on cathode humidification for a 50 kW FC power system
- To study pressurized TWM system performance
- To analyze steady-state automotive operation conditions for comparison of concept schematics
- To establish TWM system / component specifications
- To demonstrate the performance of a breadboard TWM system with research hardware

Thermal and Water Management System

Budget

FY	\$Total	\$DOE Share	\$Honeywell Share
2004	\$1.23M	\$982K	\$248K
2005	\$1.87M	\$1.5M	\$370K
2006	\$1.00M	\$768K	\$232K
Total	\$4.1M	\$3.25M	\$850K
			ļ
		DoE: 80%	HON: 20%

Technical Barriers and Targets

Technical Barriers:

HFCIT Program Multi-Year Program Plan

- C. Thermal Management (Transportation system)
- R. Thermal and Water Management (Component)
- Capacity to reject low temperature FC stack waste heat
 - Utilize Honeywell core technology of aerospace heat exchangers
- Water balance (humidification & exhaust water recovery)
 - Evaluate different water management concepts and devices
- Current Development Priority
 - Size: 5 (most critical)
 Reliability: 4
 Cost: 3
 Power consumption: 2
 Weight : 1

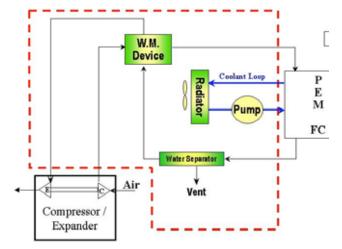
Targets to be established based on DoE fuel cell power system requirement

Approach

Analytical system simulation

- Compare 4 different schematics using
 (1) adsorbort wheel
 - (1) adsorbent wheel,
 - (2) membrane humidifier,
 - (3) porous plate, and
 - (4) cathode recycle respectively

Water management development

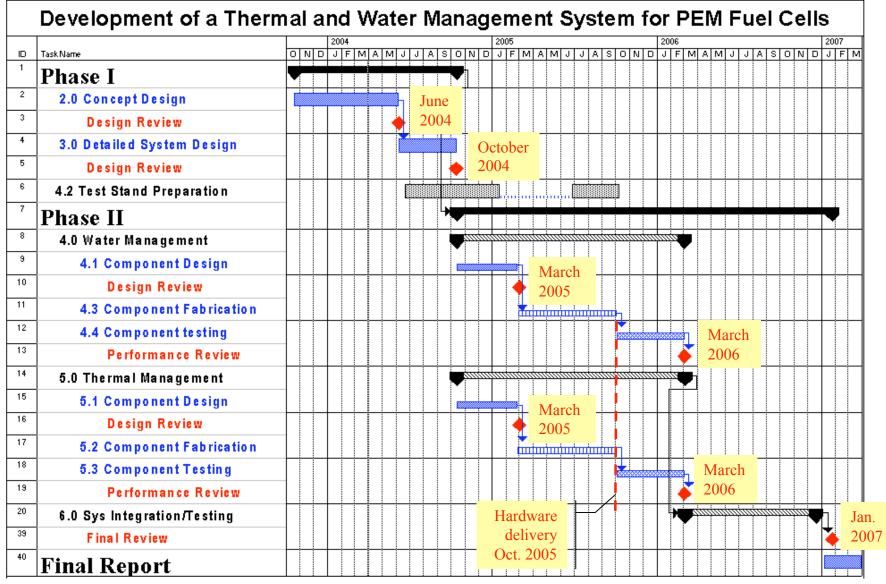

- Balance water vapor and heat transport
- Avoid (or minimize) H_2O phase change for air humidification

Thermal management component

- Utilize aerospace designs and automotive manufacturing processes
- Evaluate other advanced heat exchanger technologies

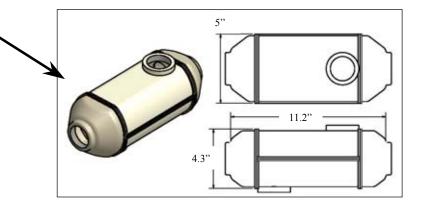
System integration and demonstration

Demonstration tests with fuel cell simulator



Project Safety

Facility Related (Honeywell Safety Standard)


- The Honeywell Torrance site utilizes a variety of safety techniques in the design of equipment and analysis of potential hazards such as Hazard & Operability Study (HAZOP), FMEA and What If analysis.
- Hazardous Materials, Processes and Operation practice (Form 3134) applies to the use of hazardous materials at Torrance. The New Chemical Approval Request Form is used to assure a knowledgeable Honeywell Safety & Environment person reviews each new chemical.
- All Torrance personnel receive Cal-OSHA regulatory compliance training each year. Additional specialized safety training is also given to certain technicians or crafts.

Project Timeline

Next 6 slides:

- FC and compressor interfaces
- Concept analysis
 - adsorbent wheel
 - membrane humidifier、
 - porous metal foam humidifier
 - cathode recycle compressor

Moto

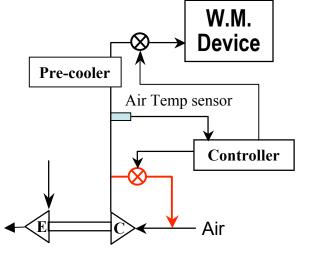
Radiator thermal performance trade studies

urbocharge Connections

Humidifier

ID: $\Phi 5.6$ "

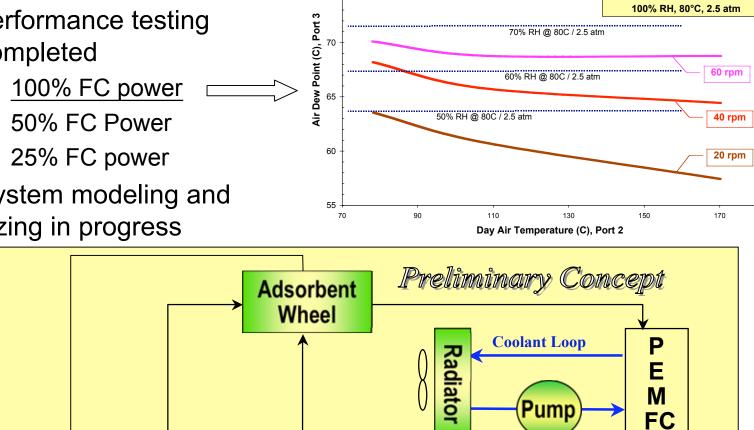
Fuel Cell Connections


Established Fuel Cell interface guidelines

- Peak power waste heat: 65 kW at 80 °C
- Cathode humidification: 50% to 90% relative humidity
- Oxygen utilization: 50% (stoichiometric ratio 2)

(Received fuel cell stack simulation data from ANL)

Obtained air compressor interface requirements


- Compressed air <u>pressure</u>: 2.5 atm at maximum power
- Compressed air <u>temperature</u>:
 - Max. 170 °C at amb. 50 °C / 100% power (may need a pre-cooler)
 - Min. -5 °C at amb. -20 °C / 10% power (a potential solution: air re-circulation at compressor stage)

75

Adsorbent Wheel

- Sub-scale unit performance testing completed
 - 100% FC power
 - 50% FC Power
 - 25% FC power
- System modeling and sizing in progress

Water Separator

rent 🖌

Air

Sub-scale Adsorbent Wheel

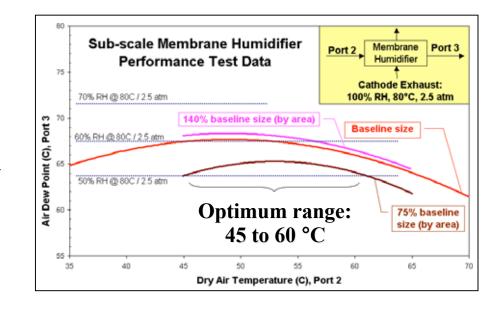
Performance Test Data

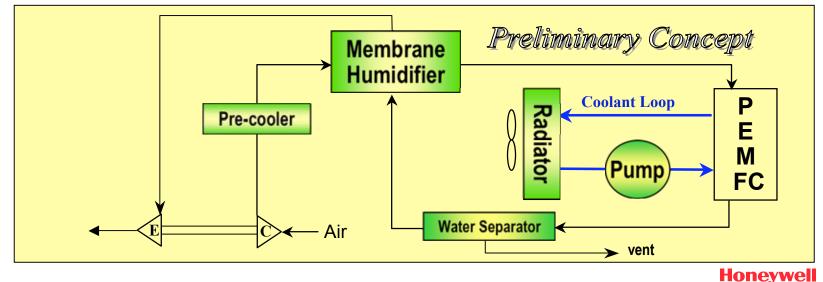
(Baseline size, at 100% FC power)

Honevwe

Adsorbent

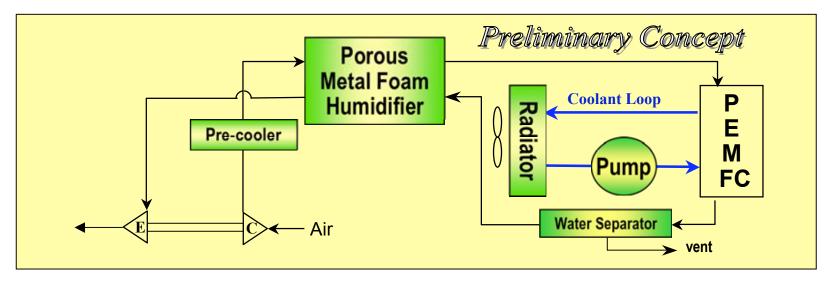
Wheel

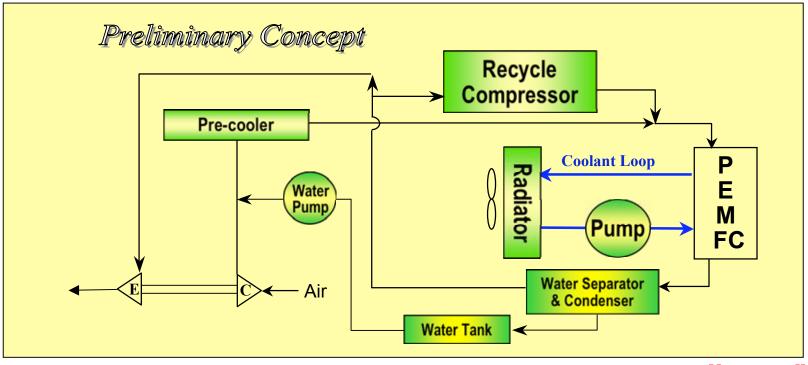

Cathode Exhaust:


Port 2

Port 3

Membrane humidifier


- Sub-scale unit performance testing completed
 - <u>100% FC power</u> _____
 - 25% FC power
- System modeling and sizing in progress


Porous Metal Foam Humidifier

- Evaluation tasks in progress
 - Designed and fabricated samples for material property tests
 - Tested material permeability and bubble pressure
 - Developing input/output performance model for device sizing
 - Establishing preliminary unit size with vendor
- System modeling and sizing in progress

Cathode recycle

- Air humidification: cathode inlet 60% RH condition can be reached with water spray (system complexity increases)
- Recycle fan and recycle compressor are under evaluation for power consumption comparison

Radiator thermal performance trade study

- Evaluating 3 options
 - Conventional "automotive" type tube-fin design,
 - Conventional "aerospace" type plate-fin design, and
 - Advanced <u>microchannel</u> type plate-fin design
- Preliminary volume comparison with 65 kW heat load at 80 °C
 - Conventional "automotive": 100% baseline volume
 - Conventional "aerospace": 75%
 - Advanced microchannel: 50%
- Additional design trade studies in progress
 - Balancing power consumption, pressure drops, etc.
- Off-the-shelf automotive designs cannot meet expectations
- Conventional aerospace & advanced microchannel designs need
 - Suitable air side contamination control and
 - Development for low cost and mass production

Honevwel

Interactions and Collaborations

- Argonne National Laboratory
 - Romesh Kumar, Rajesh Ahluwalia: GCTool program
 - Established interface between the TWM system and PEM fuel cell stack
 - Mutual assistance in adsorbent wheel test / simulation data
- Honeywell Turbo-compressor project
 - Established interface between the TWM system and high pressure air management system
- Fuel Cell Power System / Automotive OEMs
 - Obtain/seek inputs from OEMs

Future Work

Remainder of FY 2004:

- Two design reviews:
 - Down-select the "optimum" TWM system from 4 different concepts
 - Establish TWM system and component specifications
- Kickoff component designs
- Start full scale "humidifier" component test bench setup

• FY 2005:

- Complete component designs and procure research hardware
- Start component testing
- FY 2006:
 - Complete component testing
 - Demonstrate a breadboard TWM system performance