Membrane Performance and Durability Overview for Automotive Fuel Cell Applications

Tom Greszler

General Motors Corporation Fuel Cell Activities Honeoye Falls, NY

Fuel Cell Activities

- M General Motors

Outline

- Fuel Cell Vehicle Commercialization
 - Automotive Competitive Fuel Cell Membrane Requirements
- Proton Exchange Membranes
 - Performance: Requirements & Status
 - Durability: Requirements & Status
- Closing

Fuel Cell Activities

Vehicle Commercialization Requirements

H1 H₂-FC Vehicle (2000):

H3 H₂-FC Vehicle (2003):

- External humidified H₂/air
- Reduced passenger/trunk space

Internal humidification

GM

Reduced range & peak power

General Motors

Commercialization Requirements:

- Performance at least equal to internal combustion engine vehicles
- Durability 6000 hours service, 10 years life
- Cost -- \$5000 for power train including H₂ storage
 - About \$50/kW for 100 kW system
 - Less than \$10/kW target for membrane electrode assembly (supported catalyst, membrane, diffusion media, fabrication)

Fuel Cell Activities

Automotive FC System Operating Conditions

Fuel cell materials and design that enable higher temperature operation will be preferred in vehicle applications.

- smaller radiator
- greater packaging / styling flexibility

For a higher temperature system to be feasible, the membrane must have improved proton conductivity at low RH vs. current materials.

Comparison of Internal Combustion Engine (ICE) vs. Fuel Cell System (FCS)				
	<u>ICE</u>	<u>FCS</u>		
Power from system	80 kW	80 kW		
Heat rejected (Q)	< 80 kW	100 kW (@0.6 v, including parasitics)		
T _{ambient}	40°C	40°C		
T _{coolant}	120°C	$80 \rightarrow 95 \rightarrow 120^{\circ}C$		
"Q/ITD" Proportional to radiator size	<1 kW / K	$2.5 \rightarrow 1.8 \rightarrow 1.25 \text{ kW / K}$		

We ultimately want $T_{coolant}$ (FCS) as close as possible to $T_{coolant}$ (ICE), 120°C.

Fuel Cell Activities

General Motors

Effect of Cathode Outlet Pressure on Cost

- Maximum feasible operating pressure considered to be 150 kPa abs.
- Operating at higher cathode outlet pressures, to achieve higher RH, is not a cost effective or high efficiency option.

<u>GM</u>

General Motors

Fuel Cell Activities

Effect of Temperature on Humidifier Size

- Higher temperature requires lower RH operating conditions to allow cost effective and packagable humidification system.
- Membrane operating at 95°C could enable a FC System that can compete with the ICE.

General Motors

GM

Fuel Cell Activities

Automotive FC System Operating Requirements

 0.1 S/cm at 50% RH operating at 95°C could enable a FCS that could be an "Automotive Competitive System"

> although it would still require a large humidifier and thermal system developments

<u>GM</u>

General Motors

- 0.1 S/cm at <20% RH operating at 120°C remain long term goal
 - GM does not believe materials exist which meet initial market launch timing

Fuel Cell Activities

Conductivity of Polymer Electrolyte Membranes

Target: 0.1 S/cm

- Sulfonated aromatic membranes are more conductive than Nafion® 1100EW at high RH, but are inferior at low RH.
- Nafion® 1100EW is not a good benchmark. Higher conductivity (lower EW PFSAs) are available.

General Motors

Sulfonated polyarylenethioethersulfone (SPTES)

Bai, Z.; Williams, L. D.; Durstock, M. F.; Dang, T. D.; Polym. Prepr., 2004, 45(1), 60.

Fuel Cell Activities

Expected Stack Temperature-Life Profile

Assumed designed for $T_{max} = 95^{\circ}C$

• The vast majority of stack life will be at 60-80°C stack temperature.

<u>GM</u>

General Motors

• Only 60 hours (~1%) of 5500 hr life are anticipated at 95°C.

Fuel Cell Activities

Automotive-Competitive Membrane Summary

- PFSA membranes with evolutionary improvements should meet needs of 1st generation Fuel Cell Systems
 - Conductivity at 95°C & 50% RH in order to demonstrate an "Automotive Competitive System"
- Membrane needs to survive 60 hours at 95°C
 - Durability tests must properly assess membrane's ability to do this
- Revolutionary new materials (non-PFSA membranes) are desired for 2nd-generation automotive. These materials will relieve constraints (system complexity, operating conditions, cost) imposed by current materials.

Fuel Cell Activities

__ <u>GM</u>

General Motors

Membrane Performance Screening

- **Objective:** Evaluate membrane performance in a fuel cell over entire range of automotive operating conditions
- <u>Method</u>: 50 cm² H₂-Air fuel cell test
- 1. Polarization Curves over range of RH (80°C, 50 kPag, 2-3 Stoichs)
 - a) Wet (110% RH out)
 - b) Intermediate (80% RH out)
 - c) Dry (60% RH out)
- 2. Humidity Sweep over operating window (50 kPag, 2/2 Stoichs)
 - a) 0.4 A/cm² 80°C
 - b) 0.4 A/cm² 95°C
 - c) $1.2 \text{ A/cm}^2 80^{\circ}\text{C}$
 - d) 1.2 A/cm² 95°C

<u>**Target</u>:** Robust Operation over range of Temperature and Humidity levels</u>

Fuel Cell Activities

Membrane Performance Screening: Wet vs Dry

At wet conditions some HC membranes perform comparably to PFSA

Fuel Cell Activities

September 14, 2006

At dry conditions most HC membranes cannot run stably to 1.5 A/cm²

Membrane Performance: RH Sensitivity

- <u>80°C @ 1.2 A/cm²</u>: PFSA performance stable down to 30% RH HC performance dropping below 50% RH.
- <u>95°C @ 1.2 A/cm²</u>: PFSA performance dropping below 50% RH HC performance dropping below 100% RH.

<u>GM</u>

General Motors

Fuel Cell Activities

Exchange Capacity vs. Water Uptake

Higher IECs increase conductivity, but also increase swelling

Membrane	IEC	Dry Density	Wt% Uptake	Swelling
Data at mE		gm/cm ³	100 + mass H2O/	wet volume/
	mEq/cm		mass dry polymer	dry volume
Nafion 112	1.8 (1100 EW)	1.9	40	1.8
Low EW PFSA	2.9 (700 EW)	1.9	60	2.2
SPTES-50	2.2 (1.8 mEq/gm)	1.2	450	6.3

• Membrane should not swell excessively in liquid water at 100°C.

- Volumetric exchange capacity more relevant than gravimetric
- Volume swell in fuel cell stack can cause excessive mechanical force
- Durability issues (e.g. fatigue) in wet-dry cycling
- Swelling of 2 suggested as screening limit
- Important that water taken up by membrane contribute efficiently to proton conductivity!

<u>GM</u>

General Motors

Fuel Cell Activities

Proton Exchange Membrane Durability

- Automotive Fuel Cells must survive 10 years and 6000h operation.
 - Electrochemically active environment
 - Transient operation
 - Start-Stop & Freeze-Thaw cycling

- We need to determine the conditions that lead to membrane failure.
- Promote development of materials that can withstand these conditions.

Fuel Cell Activities

Why Do Membranes Fail?

Mechanical Degradation

- Stresses caused by Membrane Shrinking/Expansion with Fluctuations in Temperature or Humidity
- Stresses caused by Stack Compression & Compression Variation
- Creep/Stress Rupture
- **Chemical Degradation**
- Polymer chain attack by radicals or other active species

Thermal Degradation

• Weakening of Membrane by Overheating (higher than operating temp)

<u>GM</u>

General Motors

Combined Effects of Mechanical & Chemical Degradation

Fuel Cell Activities

Hypothesis for Membrane Mechanical Failure

- Membranes & MEAs swell after soaking in water and subsequently shrink upon drying
- In plane: tension & compression are caused as membrane constrained from shrinking & swelling cycles between wet & dry
- Fatigue from humidity cycling induced stresses causes pinholes

Accelerated Testing: In-Situ Humidity Cycling

- Test membranes for mechanical failure in the absence of reactive gases and electric potential
- Impose mechanical stresses on MEAs that would be experienced during fuel cell operation due to humidity fluctuations

General Motors

<u>GM</u>

Materials:	MEA (Pt/C electrodes) & Carbon Fiber Paper GDM
Cell Build:	50 cm ² cell w/ single pass 2mm lands & channels
Cycle:	2 min 150% RH air; 2 min 0% RH air flow
Conditions:	80°C, 0 kPa, 2 SLPM dry anode & cathode flow
Diagnostics:	Physical crossover leak (failure = 10 sccm)

Fuel Cell Activities

Humidity Cycling of PFSA Membranes

- Different processing methods for same polymer dramatically effects
 humidity cycling durability
- Mechanical reinforcement insufficient to prevent humidity cycling induced crossover leak

GM

General Motors

Fuel Cell Activities

Humidity Cycling of Alternative Membranes

- Most research on Hydrocarbon membranes focused on performance at high temperatures and low RH
- What About Durability?

Humidity cycling durability is critical when developing FC membranes

<u>GM</u>

General Motors

Concepts like block copolymers & cross-linking show promise

Fuel Cell Activities

Chemical Degradation of Ionomer

Hypothesis: Membrane degrades via reaction of (•OH) with ionomer

• Peroxide is formed as byproduct of oxygen reduction

• Peroxyl radical can be formed through decomposition of hydrogen peroxide (H₂O₂) $H_2O_2 \xrightarrow{Fe^{++}} 2 \text{ OH}^*$

• Chain "unzipping" occurs via non-fluorinated end groups (example)

General Motors

Journal of Power Sources, Volume 131, Issues 1-2, 14 May 2004, Pages 41-48, Curtin et al

Fuel Cell Activities

Accelerated Membrane Chemical Durability

Objective: Test for chemical failure with minimal mechanical stres	SS
---	----

- <u>Method</u>: Operate at conditions that accelerate Chemical Degradation no RH fluctuations
- Materials: MEA (Pt/C electrodes) & Carbon Fiber Paper GDM
- Cell Build: 50 cm² cell w/ serpentine flow field
- Conditions: OCV, 95°C, 50% RH, 50 kPag, 5/5 stoich at 0.2 A/cm² equivalent flow
- Diagnostics: OCV, H₂ crossover current, physical leak, FRR

Target:

- PFSA: < 10⁻⁸ g/hrcm² Fluoride release rate (FRR)
- Non-PFSA: crossover diagnostic used as opposed to effluent chemical analysis

General Motors

Combining Mechanical & Chemical Stresses

<u>Objective</u>: Does Electrochemical Reaction Accelerate Mechanical Failure?

- Repeat Humidity Cycling Protocol in a H₂/Air Fuel Cell
- Run constant current test at 0.1 A/cm₂

MEA	Cycles to Failure w/o load	Cycles to Failure @ 0.1 A/cm ²
DuPont [™] Nafion [®] (NR-111)	4000-4500	800-1000
Ion Power™ Nafion [®] (N111-IP)	20000+	1800
Gore™ Primea	6000-7000	1300

- Commercial PFSA: failure accelerated >5 times under electrochemical load
- GM Benchmark: Lifetime under load = 0.7 X Lifetime in with no electrochemical load

Fuel Cell Activities

- **General Motors**

Chemical Degradation During Humidity Cycling

<u>Summary</u>

- Membrane Performance
 - High membrane conductivity at low RH (< 50%) required to enable an "auto-competitive" Fuel cell System
 - 120°C remains long term target, but 95°C enables initial commercialization
 - Low EW PFSAs have potential to meet performance requirements
 - HC benzene sulfonic acid membranes not expected to meet targets
- Membrane Durability
 - Humidity cycling durability must be considered when developing membrane materials
 - Humidity cycling durability strongly dependent on processing method
 - Mechanical reinforcement not sufficient to prevent RH cycling failures
 - Humidity cycling failure is accelerated by chemical degradation
 - Mitigations strategies must be incorporated to prevent radical attack on the membrane

<u>GM</u>

General Motors

- High Performance Membranes exist, Mechanically Robust membranes exist, and Chemically Stable Membranes exist
- \rightarrow Now we need to combine these properties into a single material

Fuel Cell Activities

Acknowledgements

Thank You

Craig Gittleman, Frank Coms, Tim Fuller, Yeh-Hung Lai, Dave Masten, Mark Mathias, Dan Miller, Mike Schoeneweiss

General Motors – Fuel Cell Activities Honeoye Falls, NY, USA

Cortney Mittelsteadt

Giner Electrochemical Systems Newton, MA

Fuel Cell Activities

General Motors