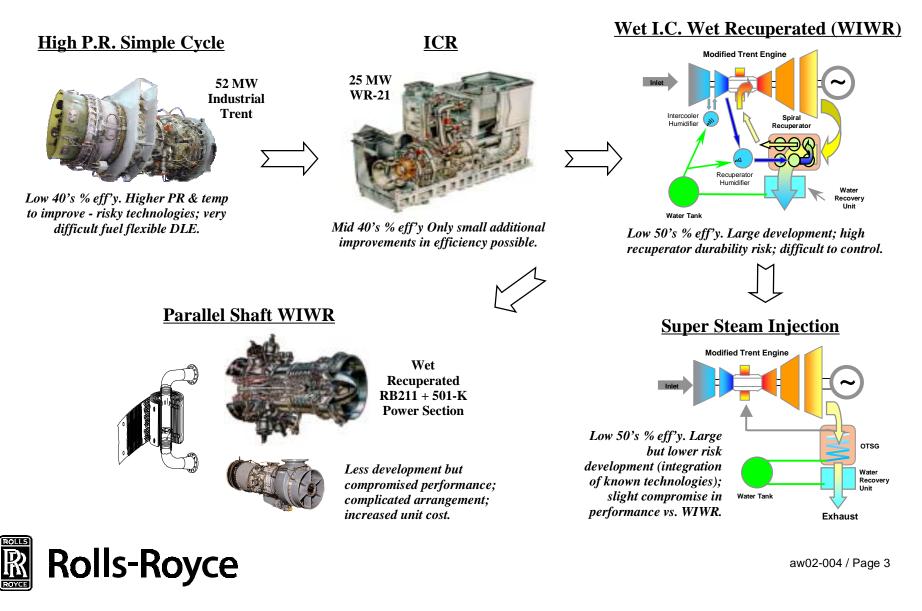
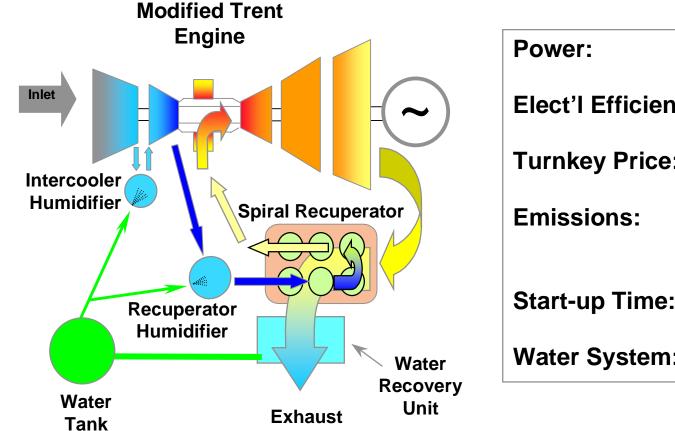
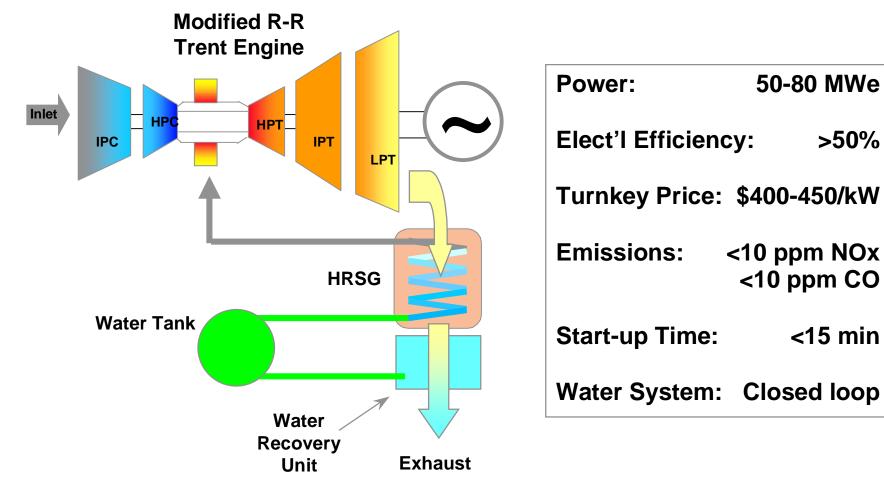
Technologies for Next Generation Turbine Systems

Turbine Power Systems Conference and Condition Monitoring Workshop February 25-27, 2002 Galveston, Texas

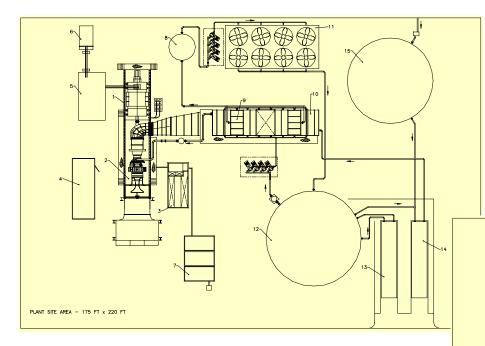

Alfonso (AI) Wei


Combined Cycle Performance at Simple Cycle Cost and Flexibility

Approach to "economically viable" NGT

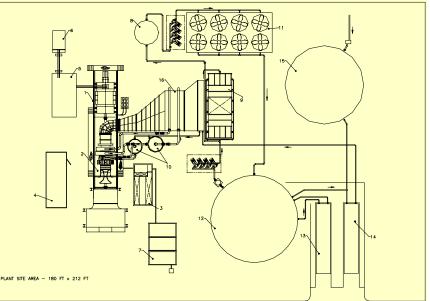

R-R NGT Concept #1 -Wet Intercooled Wet Recuperated

Power:50-80 MWeElect'l Efficiency:>50%Turnkey Price:\$400-450/kWEmissions:<10 ppm NOx
<10 ppm CO</td>Start-up Time:<15 min</td>Water System:Closed loop



R-R NGT Concept #2 - Super Steam Injection

Similar Plant Layouts


- 9 Water Recovery Sys
- 10 Once Thru Steam Generator
- 11 Fin Fan Cooler

- 12 Demin water
 - storage
- 13 Polishing Unit
- 14 Demin Unit
- 15 Make up water

- 1 Generator Skid
- 2 Gas Turbine Skid
- 3 GTG Auxiliary Module
- 4 Control Room

- 5 High Voltage Module
- 6 Utility Tie
- 7 Gas Compressor
- 8 Water Recovery Tank

R-R's NGT - Comparison to Current Products

	Simple Cycle			Wet Cycle			Combined Cycle			
	GE LM6000 PD (DLE)	R-R Trent DLE	GE Fr6FA	GE LM6000 Sprint	R-R NGT#1-SI (Super Stm Inj)	R-R NGT#2- WIWR (Wet IntrCool / Wet Recup)		R-R Trent C.C.	GE Fr6FA C.C.	GE Fr7EA C.C.
Power (MW)	43.1	51.2	70.1	47.3	50-80	50-80	56.4	66	107.4	130.2
Efficiency (%)	41.4%	41.6%	34.2%	41.4% 🤇	>50%	>50%	52.5%	54.3%	53.2%	50.2%
Turbogenerator Price (\$/kW)	\$366	\$303	\$285	<u>\$298</u>						
Turnkey Price (\$/kW)	~ \$560	~\$500	~\$480	~ \$430 (no water recov)	\$400-450 (incl water recov)	\$400-450 (incl water recov)	\$658	\$650	\$730	\$514
Flexibility	High	High	High	High	High -	High -	Med/Lo	Med/Lo	Low	Low

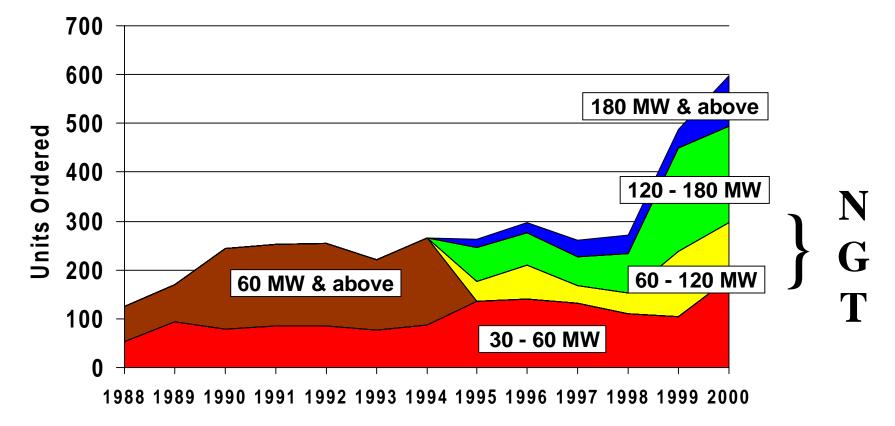
Source: Gas Turbine World Handbook

R-R's NGT Solution:

- ~ 25% improvement in efficiency of simple cycle machines
- ~ 30% improvement in capital cost (\$/kW) of combined cycle plants
- Maintains operational flexibility of simple cycle machines

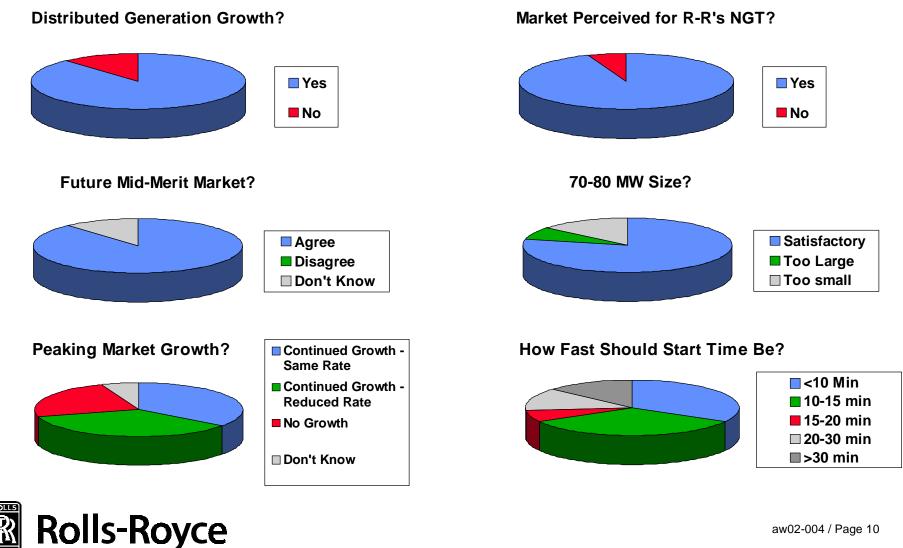
R-R's NGT Concept Meets The DOE Goals

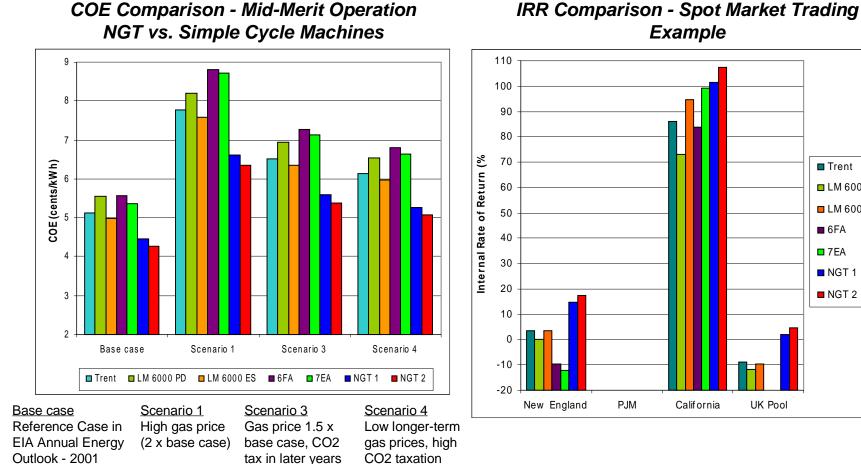
Determine the feasibility of developing flexible gas turbine systems with a greater than 30 MW power rating. Compared to 1999 state-of-the-art systems, the proposed systems shall include: R-R's NGT


- 15% or higher improvement in net system efficiency;
- improvement in turndown ratios;
- 15% or higher reduction in COE;
- improved service life;
- reduction of emissions (carbon and NOx);
- 15% or higher reduction in operations & maintenance costs;
- 15% or higher reduction in and capital costs;
- increased flexibility (min. 400 starts/year);
- improvement in RAM; and
- capability to use multiple fuels.

V √ √ Achievable Achievable Achievable √ √ √

Achievable


The Market Opportunity Appears to Exist


Source: Diesel & Gas Turbine Worldwide Annual Power Gen Survey

Customer Survey: R-R Solution Seems Appropriate

R-R's NGT - Economic Benefits to Operators

Trent

■ 6FA

7EA

■ NGT 1

NGT 2

LM 6000 PD LM 6000 ES

Public Benefits of R-R's NGT

- Assuming 34 NGT units (2550 MWs) per year installed in U.S.:
 - CO₂ Emissions Cumulative 15 Year Savings
 - Compared to Simple Cycle GT, 150 million tonnes savings
 - Compared to Coal Plant, 630 million tonnes savings
 - \$3B savings in CO₂ trading credits (assumed @ \$20/tonne) cf simple cycle GT
 - \$12.6B savings in CO₂ trading credits (assumed @ \$20/tonne) cf coal plant
 - Fuel (natural gas) Consumption Cumulative 15 Year Savings
 - Compared to Simple Cycle GT, 2.6 trillion cubic feet savings
 - \$8.3B fuel cost savings compared to Simple Cycle GT
- \$2.1 billion/yr potential export sales from 2006 (assumed 54 units/yr)
- Lower risk approach allows earlier availability to market
- Flexible characteristics allow for viable and efficient operations even in changing market conditions

Summary

- R-R's NGT concepts have been approached from an "economic viability" perspective:
 - Leveraging available hardware and technologies to lower risk, investment, and time to market; and
 - Applying these in innovative ways to develop a solution that will provide customers with improved return on investment (ensure deployment) while providing extensive public benefits.
- R-R's NGT concepts (Wet Intercooled/Wet Recuperated; Super Steam Injection):
 - Meet DOE NGT goals;
 - Seem to be appropriate for the future marketplace;
 - Provide substantial economic benefits to operators; and
 - Provide substantial public benefits.
- R-R is encouraged by the results of this study. However, the significant technical & market risks and the large investments required make launching an NGT product very difficult in today's business environment.

