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ABSTRACT

A recursive filter or parameterized curve fitting technique is usually used in a three-dimensional varia-
tional data assimilation (3DVAR) scheme to approximate the background error covariance, which can only
represent the errors of an ocean field over a predetermined scale. Without an accurate flow-dependent error
covariance that is also local and time dependent, a 3DVAR system may not provide good analyses because
it is optimal only under the assumption of an accurate covariance. In this study, a sequential 3DVAR
(S3DVAR) is formulated in model grid space to examine if there is useful information that can be extracted
from the observation. This formulation is composed of a series of 3DVARs, each of which uses recursive
filters with different length scales. It can provide an inhomogeneous and anisotropic analysis for the
wavelengths that can be resolved by the observation network, just as with the conventional Barnes analysis
or successive corrections. Being a variational formulation, S3DVAR can deal with data globally with an
explicit specification of the observation errors; explicit physical balances or constraints; and advanced
datasets, such as satellite and radar. Even though the S3DVAR analysis can be viewed as a set of isotropic
functions superpositioned together, this superposition is not prespecified as in a single 3DVAR approach
but is determined by the information that can be resolved by observation. The S3DVAR is adopted in a
global sea surface temperature (SST) data assimilation system, into which the shipboard SSTs and the 4-km
Advanced Very High Resolution Radiometer (AVHRR) Pathfinder daily SSTs are assimilated, respec-
tively. The results demonstrate that the proposed S3DVAR works better in practice than a single 3DVAR.

1. Introduction

In a three-dimensional variational data assimilation
(3DVAR) of oceanographic data, it has been custom-
ary to represent the background error covariance as

spatially homogeneous and isotropic Gaussian func-
tions (Derber and Rosati 1989; Masina et al. 2001;
Huang et al. 2002), referred to in this paper as the
correlation scale method (CSM). Increasingly, it is now
being realized that a better model of background error
should allow the statistical parameters defining the
background covariance to be spatially adaptive in re-
sponse to the density of the observed data and the am-
bient climatic field. Recently, an adaptive anisotropic
covariance has been applied to variational data assim-
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ilation, using a variety of local diagnostics of the back-
ground field (Desroziers 1997; Riishøjgaard 1998; Swin-
bank et al. 2000). Following the work of Derber and
Rosati (1989), Behringer et al. (1998) developed an in-
homogeneous and anisotropic background error covari-
ance using a parameterized Gaussian function. How-
ever, these methods, whether isotropic or anisotropic,
set their analysis scales empirically or statistically. Be-
cause the background error covariance requires a tre-
mendous amount of model statistics to construct, it is
not practical to obtain an accurate one. Considering a
numerical model with a million grid points or spectral
coefficients, the error covariance is a one million by one
million square matrix. In addition, some kind of local-
ization scheme has to be used to make the error covari-
ance matrix positive definite. With such an inaccurate
error covariance, the optimality of 3DVAR is compro-
mised.

Hayden and Purser (1995), extending the previous
work of Purser and McQuigg (1982) and Lorenc (1992),
showed how a family of very simple and relatively com-
putationally inexpensive recursive filters can yield em-
pirical isotropic smoothers. This method will be called
the recursive filter method (RFM) in this paper. The
recent development of spatially anisotropic recursive
filters (Purser et al. 2003a; Gao et al. 2004) allows more
degrees of freedom in defining the error statistics adap-
tively. However, using this method, it is still difficult to
construct a location-dependent anisotropic background
covariance (Purser et al. 2003b; Wu et al. 2002).

An enhanced 3DVAR method, named sequential
3DVAR (S3DVAR), was developed (Xie et al. 2005) to
improve the analysis by extending successive correction
schemes to a 3DVAR formulation to process error co-
variance explicitly, to more advanced datasets, and to
physical balances or constraints. It is simply composed
of a series of 3DVARs, each of which uses recursive
filters with different length scales. Instead of pre-
describing the length scales of the background error
covariance, it uses these 3DVARs to sweep through all
resolvable scales by observation networks from longer
to shorter waves. In this paper, we apply this method to
a global ocean temperature data assimilation system,
and the shipboard and Advanced Very High Resolu-
tion Radiometer (AVHRR) sea surface temperature
(SST) data are assimilated. Depending on the observed
resolvable scales, the resulting covariance of S3DVAR
is flow dependent, inhomogeneous, and anisotropic.
This cannot be done by a single 3DVAR by predescrib-
ing a background error covariance assuming either
Gaussian distribution or any other distribution. In what
follows, we use a Gaussian distribution for determining
the correlation as an example for CSM and RFM.

A brief review of CSM, RFM, and S3DVAR is given
in section 2 to clarify the major differences among these
methods. In section 3, a series of idealized experiments
is carried out to show the advantages of the new ap-
proach of S3DVAR. In section 4, a global SST assimi-
lation system using S3DVAR is described and the im-
pact of these assimilation schemes on the forecast is
investigated. Finally, conclusions are summarized in
section 5.

2. Formulating background error covariance

Based on Bayesian probability theory, Lorenc (1986)
derived the standard formulation of variational meth-
ods assuming Gaussian error distributions. The analysis
is determined by directly minimizing a variational cost
function. The cost function is usually written as

J �
1
2

XTB�1X �
1
2

�HX � Y�TR�1�HX � Y�, �1�

where the vector X is the analysis increment from the
background, Y is the deviation of background to ob-
servations, B is the background error covariance ma-
trix, H is an interpolation operator from the model grid
points to locations of observations, and R is the obser-
vational error covariance matrix.

The estimated background covariance matrix deter-
mines the spatial structure and the magnitude of the
correction for the state variable, which is temperature
in this paper. First, let us review the two methods of
predescribing a background covariance, CSM and
RFM.

a. Correlation scale method

Behringer et al. (1998) represent a spatially inhomo-
geneous background error covariance using the follow-
ing Gaussian function:

B � A�x, y� exp��
rx

2

Lx
2 �

ry
2

Ly
2�, �2�

where A is an estimate of the background error mag-
nitude, rx and ry are the distances between two grid
points in the x and y directions, respectively, and Lx and
Ly are characteristic or length scales that reflect the
extent of spatial correlation of the background error
and are usually prescribed based on the statistical fea-
ture of the ocean states.

The formulation of background covariance seems
flexible for specifying the length scales, but there is no
obvious way to select the spatial variation of the pa-
rameters to accurately represent the error covariance at
every location. Note that large values of these length
scales can easily yield a singular matrix and encounter

JUNE 2008 H E E T A L . 1019



numerical problems. Another limitation of this method
is the much larger computer memory required to store
the matrix B if it varies with location.

b. Recursive filter method

A recursive filter has the following form (see Hayden
and Purser 1995):

A�i � �A�i�1 � �1 � �� Ai 0 � � � 1, left pass, �3�

A�i � �A�i�1 � �1 � �� A�i right pass, �4�

where Ai is the “input” value at grid point i, A�i and A�i
are the “output” values after one pass of the filter in
each direction, respectively, and 	 is the filter coeffi-
cient.

After smoothing by the two pass operators, the value
of A�i can be expressed as

A�i � 

j���

�

SjAi�j � 

j���

� �1 � �

1 � ���| j |Ai�j. �5�

Here, the recursive filter is expressed by a signal S,
which is

Sj � �1 � �

1 � ���| j|. �6�

It has been shown that repeated applications of the
recursive filter will enhance the smoothing effect of a
filtered field, and the shape of the iterated filters to a
single pulse function will become progressively more
Gaussian according to the central limit theorem
(Dudewicz 1976; Hayden and Purser 1995).

The background error covariance can be achieved
through the application of multiple iterations of a re-
cursive filter (Huang 2000). In practice, it is easy to
decompose the background covariance B by its square
root,

B � �BT�B � CTC,

where C is uniquely defined as a symmetric positive
definite matrix that has the same eigenvectors as B and
eigenvalues of the square root of those of B (see Golub
and Van Loan 1983). Defining an alternative control
variable W � C�1X, Eq. (1) becomes

J �
1
2

WTW �
1
2

�HCW � Y�TR�1�HCW � Y�. �7�

If the matrix B is chosen as a series of recursive filter
operators, even though it is not perfectly symmetrical
for a limited area, it forms a symmetric nonnegative B
matrix by CTC. It does not need to calculate B�1 ex-
plicitly by using the alternative control variable W and
does not require extra memory for storing either B or

B�1, and X can be recovered by CW. Note that the
singularity of the B matrix may not be detected in this
change variable process at all unless it is checked, and
it could result in an unintentional use of a singular ap-
proximation of B.

Just like CSM, the correlation scale of the back-
ground field is determined empirically or statistically by
the coefficient 	 and usually keeps the same value over
the domain. For a given value of 	, only certain wave-
length information can be retrieved from the observa-
tion. To demonstrate the response of a recursive filter
to a signal with a certain scale, a Fourier transformation
into wavenumber space of Eq. (6) is applied (de
Franceschi and Zardi 2003), and the response function
is achieved:

|S̃���|2 �
�� � 1�2

1 � 2� cos� � �2 , �8�

where � is angle frequency.
Figure 1 shows the corresponding functions of the

filter with different coefficients 	. It is revealed that the
intrinsic scale of the filter is strongly influenced by 	.
These responses illustrate how they respond to differ-
ent wavelengths.

c. Sequential 3DVAR

The method of S3DVAR was first derived by Xie et
al. (2005) to assimilate meteorological data. This
method uses a sequence of 3DVARs to obtain its final
analysis to retrieve information from all wavelengths
from long to short waves in turn. For each 3DVAR
process, the background covariance is approximated by
applying a one-dimensional recursive filter sequentially
on the x and y coordinates. S3DVAR starts its se-
quence with a large 	 value in (0, 1), say 0.99, and then
it obtains an initial solution by analyzing the observed
data. Thereafter, a subsequent 3DVAR is solved with a

FIG. 1. The responding curves of the recursive filter.
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smaller coefficient 	, which is reduced from the previ-
ous 3DVAR step by , where  � (0.5, 1) is a constant.
For the subsequent 3DVARs, the data to be assimi-
lated are generated by subtracting the previously ana-
lyzed value from the observation that is assimilated by
the previous 3DVAR. These 3DVARs are sequentially
solved until the 	 value is small enough that its corre-
sponding influence radius is smaller than the scales that
can be resolved by the observation network (Koch et al.
1983). The final analysis will be the summation of all
the previous 3DVAR analyses.

Obviously, S3DVAR is a simple extension of the
standard 3DVAR. Without a perfect covariance, a
single 3DVAR cannot yield a good result as shown in
their responses. However, this is no longer a limitation
for S3DVAR, which can retrieve information step by
step from longer to shorter wavelengths that can be
resolved by the observation. With these iterations, this
method can correct the analyzed field far away from
observations. At the same time, the information with
shorter wavelengths can also be maintained. For
S3DVAR, the background covariance is changed from
one grid point to another, and it is flow dependent and
anisotropic following the resolvable information of the
observation. This is different from the single 3DVAR
approach, in which the covariance is predescribed sta-
tistically and its anisotropic does not necessarily reflect
the true anisotropic of the ocean or atmosphere.

3. Observing/assimilation system simulation
experiments

In this section, observing/assimilation system simula-
tion experiments are performed to compare the impact

of the three assimilation methods: S3DVAR, CSM, and
RFM. The “true field” in the experiments is an analytic
function and set over the area of 10°N–10°S and 100°–
120°E. The true field of temperature is plotted in Fig. 2.
The high nonlinearity of the true field is a representa-
tion of the real ocean state.

The grid resolution is 0.5° � 0.5°. The observational
dataset is generated using the analytic solution. Obser-
vational error is simulated by adding a sample of white
noise with a standard deviation of 0.2 to the “truth.”
Two experiments are conducted in which different
numbers of observations are employed.

a. Experiment 1

The number of observations in this experiment is
500. The distribution of observations in the area is
shown in Fig. 3. The background value is set to be zero,
which is equivalent to analyzing the innovation with a
particularly bad background.

In the experiments with RFM and CSM, several val-
ues of the filter coefficient 	 or correlation scales are
tested to verify their impact on the analyzed field. In
the experiment with S3DVAR, the algorithm is com-
posed of eight fixed-filter coefficient recursive filterings
in a sequential manner. At the first step, the filter co-
efficient 	 is set to 0.999; for the consequent steps, the
coefficient is reduced by 0.8 from the previous step. The
coefficient at the last step is 0.999 � 7 ≅ 0.210, which is
small enough for most cases. Note that for RFM and
each step of S3DVAR, three iterations of recursive fil-
tering are applied in each dimension to form the co-
variance operator of C in Eq. (7).

During the minimizing procedure, different algo-

FIG. 2. The true field to be analyzed: (a) wave shape and (b) ichnography image.
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rithms are used for the three methods. To avoid calcu-
lating the matrix B�1 directly, following Derber and
Rosati (1989), the conjugate gradient method is used to
minimize the cost function of CSM. For RFM and
S3DVAR, a quasi-Newton method is used. In the ex-
periment of RFM, the cost function is minimized
through 80 iterations. As shown in Fig. 4 (where the
filter coefficient 	 is set to 0.999 � 0.80, · · · , 0.999 �
0.87 at each 3DVAR step of S3DVAR, the cost is mini-

mized with 12 iterations at each step, and the filter
coefficient 	 in RFM is set to 0.3) by comparison with
the true field, the root-mean-square error (RMSE) of
the analyzed field of RFM reduces very fast at first, but
after it has been minimized 30 times, the RMSE stays
almost unchanged. For the experiment of CSM, the
RMSE can reach the minimum after 10 consecutive
iterations. To ensure that the best analyzed field is
achieved, the number of minimizing iterations is set at
24 for CSM and 80 for RFM. As in the case of
S3DVAR, there are 8 single 3DVAR steps and the cost
function is minimized 12 iterations at each step, so the
cost function is minimized 96 iterations in total. As
shown in Fig. 4, the RMSE of the analyzed field of
S3DVAR reduces more slowly than that of RFM, but it
reduces continuously. After 70 minimizations, the
RMSE becomes smaller than that of the RFM.

The structure of B in CSM is mainly determined by
the correlation lengths Lx and Ly. Thus, the ability to
correct the background field of this method is decided
by the setting of correlation lengths. If the correlation
lengths are set unsuitably, the method cannot produce
a good result. If the correlation lengths are set too
small, for example, as shown in Fig. 5a, the analyzed
field will fluctuate acutely, and the long-wave informa-
tion of the true field cannot be retrieved. In contrast, if
a larger influence radius of the covariance is used, as
shown in Fig. 5c, the smaller-scale information is re-
moved from the analysis and a smoother analyzed field
is produced. When the correlation length is set to a

FIG. 3. The distribution of observed data (500 observations).

FIG. 4. The value of the RMSEs of the analyzed field during minimization. The curves show the
RMSEs of the analyzed field by comparing with the true field after each step of minimization.
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medium value, as shown in Fig. 5b, a better result is
obtained, but it is still not satisfactory on all scales.

A series of experiments similar to those done with
CSM is performed to investigate the effect of 	 on the
analyzed field for RFM. As shown in Fig. 6, the results
are quite similar to those of CSM. After testing several
choices of 	 value, the most satisfactory value of 	
proves to be 0.3.

Generally speaking, it is not only troublesome to
choose an a priori length scale, but it also produces
inaccuracies if the chosen length scale does not reflect
the actual length scale. In particular, the statistical es-
timation of the length scales of the background is usu-
ally independent of observations in the 3DVAR ap-
proach, and thus the estimated length scales have no
knowledge at all about the length scales of the actual
physical states.

Figure 7 shows the analyzed field of S3DVAR. Ob-
viously, it is very close to the true field. To compare the
results of CSM, RFM, and S3DVAR quantitatively, the
RMSEs of these results are listed in Table 1. We can see
that the deviation of S3DVAR is the smallest and the
result of CSM is the worst because only three roughly
guessed parameters were tested. For RFM and CSM,
the result is remarkably influenced by the correlation
scale, which is represented by the value of 	 or L. How-
ever, the S3DVAR would be more stable. Although it
indicates that RFM performs better than CSM for this
particular case, it is expected that CSM could achieve
the same result if more length scales were tested be-
cause their response function can be tuned to the same
by adjusting their parameters.

It is worth noting that there is no procedure for tun-
ing or appropriately choosing parameters in the experi-
ment of S3DVAR as was done for both CSM and RFM.
Therefore, the method of S3DVAR is more objective
and practical for real data assimilation.

b. Experiment 2

A practical oceanography observation is usually very
infrequent and spatially sparse. Although the SST data
from satellite remote sensing are vast, their spatial dis-
tribution is very inhomogeneous because of cloud
cover. To simulate a more realistic oceanic data assim-
ilation environment, the number of “observed data” is
set to 100 in experiment 2 to compare the results of the
three methods when observations are sparse. The dis-
tribution of the observations is shown in Fig. 8a,
marked with cross points. By adjusting the correlation
scale L or recursive coefficient 	, the parameters are
decided for methods of CSM and RFM, and the ana-
lyzed fields are given in Figs. 8b and 8c.

The RMSEs of the analyzed fields are calculated,

FIG. 5. The analyzed field of CSM: results of (a) short correlation
length, Lx � Ly � 110 km; (b) medial correlation length, Lx � Ly �
220 km; and (c) long correlation length, Lx � Ly � 330 km.
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compared against the true field, and listed in Table 1. It
is shown that on account of the sparseness of the ob-
servations and lack of information, the short-scale
waves cannot be resolved. The correlation scale must
be set larger for CSM and RFM than in experiment 1 to
achieve good analyses. If the distribution or the number
of observations varies, the correlation scale of RFM or
CSM would need to be changed every time, depending
on the observation density. This would be difficult and
impractical. More importantly, if scales differ in the
analysis field, these parameters could misrepresent the
scales. Interestingly, S3DVAR does not experience this
difficulty of choosing parameters when processing dif-
ferent observational datasets by comparison. If a length
scale can be resolved by the observation, S3DVAR
analysis retrieves it; otherwise, S3DVAR leaves it as
errors on top of the resolvable scales. Note that these
error magnitudes are smaller than those of errors pro-
duced by mismatching the analysis scales to the physical
scales, where long-wave information might be treated

TABLE 1. The RMSE of the analysis field.

Scheme

Recursive coefficient or
correlation scale RMSE (°C)

Expt 1 Expt 2 Expt 1 Expt 2

S3DVAR 0.999�0.210 0.999�0.210 0.29 0.76
CSM L � 110 km L � 330 km 0.94 1.10

L � 220 km L � 440 km 0.53 1.04
L � 330 km L � 550 km 0.63 1.04

RFM 	 � 0.1 	 � 0.3 0.94 1.23
	 � 0.3 	 � 0.5 0.38 0.85
	 � 0.5 	 � 0.7 0.55 0.99

FIG. 6. The analyzed field of RFM: (a) 	 � 0.1, (b) 	 � 0.3,
and (c) 	 � 0.5.

FIG. 7. The result of S3DVAR with the coefficient 	 from 0.999
to 0.210.
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as errors. This result is shown in Table 1, although the
parameters used in experiment 2 are identical to those
of experiment 1 for S3DVAR, and further indicates
that S3DVAR is more suitable for practical oceanic
data assimilation.

4. Global SST assimilation using S3DVAR

An ultimate evaluation of these different data assim-
ilation schemes is to compare their impact on numerical
forecasts when real observation data are assimilated
into a numerical model. In this paper, a global SST data
assimilation system is developed using the three data
assimilation schemes.

The numerical model used in this study is a z-level
system of s-coordinate Princeton Ocean Models
(POMs; Mellor et al. 2002). The model uses an orthogo-
nal curvilinear coordinate with 1° � 2° latitude–longi-
tude grids in the horizontal and 17 levels in the vertical
in a domain covering an area of the World Ocean from
65°S to 65°N. The model is forced by the reanalyzed
meteorological data from the National Centers for En-
vironmental Prediction (NCEP). The heat flux at sea
surface is calculated using a bulk formula. The sea sur-
face temperatures analyzed by the data assimilation
schemes are discussed here.

Two sets of SST data, shipboard and satellite remote
sensing data, were assimilated into the model. The two

FIG. 8. The analyzed field with 100 observations: (a) distribution of observed data; (b) analyzed field of CSM; Lx � Ly � 330 km;
(c) analyzed field of RFM, 	 � 0.5; and (d) analyzed field of S3DVAR.
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corresponding data assimilation experiments were con-
ducted with one assimilating shipboard SST data span-
ning 2 months (ESHIP), and the other assimilating sat-
ellite SST data spanning 1 yr (ESAT). A control model
run without assimilating SST data was carried out to
estimate the data assimilation impact.

A quality-control process of shipboard data was done
by limiting the value in a range defined by the mean
and standard deviation of climatic SSTs provided by the

National Marine Data and Information Service of
China (NMDIS). The satellite data are 4-km AVHRR
Pathfinder SST data, developed by the University of
Miami’s Rosenstiel School of Marine and Atmospheric
Science (RSMAS) and the National Oceanic and At-
mospheric Administration (NOAA)/National Oceano-
graphic Data Center (NODC). Some data are omitted
based on their bad-quality flags, which are provided
along with the SST data. A further quality control is

FIG. 9. The deviation of the satellite data from the shipboard data.

FIG. 10. The distribution of the shipboard SST observation, showing the observed data used in assimilation (plusses) and the
training data used for camparison (circles).
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done by comparing the remaining data to the climatic-
averaged SST in each 5° � 5° block, and the data far
away from the averaged SST, which is limited by the
standard deviation data in the block, is omitted. After
these quality-control processes, the satellite data are
adjusted as a whole to ensure that their spatial average
value is equal to that of shipboard data. This is to en-
sure that the two sets of data are consistent and can be
used together in the data assimilation experiments.
Note that the quality of satellite data is satisfactory, but
there are still some differences between these two
datasets, especially in August. The average deviation of
satellite data from shipboard data is shown in Fig. 9.

a. Assimilating shipboard SST data

In the ESHIP experiment, the global model was run
for 2 months, with initial conditions on 1 January 2004.

The shipboard SST data were assimilated into the
model once a day by using the three assimilation meth-
ods. Figure 10 displays the distribution of observed data
on one particular day. To verify the results of the model
and the three assimilation methods, some of the ship-
board SST data are used as the training dataset to cal-
culate the RMSEs.

After a training period, the best parameters of CSM
and RFM fitting the distribution of the observation are
decided on (listed in Table 2). Note that there is no
change made for the S3DVAR from the foregoing ide-
alized experiments in section 3. The temporal RMSEs
of the numerical outputs in comparison with the train-
ing dataset are displayed in Fig. 11, which shows that
the three data assimilation methods notably improve
the result of control model run. The RMSE of
S3DVAR is the smallest when compared to the training
datasets.

FIG. 11. The RMSEs of the analyzed field of the three assimilation schemes and the model
simulation for the experiment of ESHIP.

TABLE 2. The RMS error of the analyzed field of the three assimilation schemes compared to the training data. The latitude of the
grid points is denoted by �, and Lx and Ly are measured in kilometers.

Scheme

Parameters to determine background covariance RMSE (°C)

ESHIP ESAT ESHIP ESAT

Control model run — — 4.19 4.17

CSM �Lx �1200 � cos���

Ly � 2400 �Lx � 600 � cos���

Ly � 1200 3.41 3.02

RFM 	 � 0.5 	 � 0.3 2.75 2.64
S3DVAR 	 � 0.999 � 0.210 	 � 0.999 � 0.210 2.36 2.22
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The total RMSEs of the analyzed fields are calcu-
lated and listed in Table 2. The error of S3DVAR is
much smaller than those of RFM and CSM; it de-
creased by almost 44% compared with that of the con-

trol model run without assimilation and by 14% com-
pared with that of RFM. This shows S3DVAR’s signif-
icant advantage in assimilating information from nearly
all scales.

FIG. 12. The global SST field on 1 Mar 2004 after the shipboard SST data were assimilated into
the model: (a) the model simulation and the results of (b) CSM, (c) RFM, and (d) S3DVAR.
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To compare the impact of the three methods in de-
tail, the plots of the analyses and the model output for
one day (1 March 2004) are displayed in Fig. 12. This
shows that the SSTs calculated by the model look rea-
sonable in general, but the value and extension of the
warm pool in the western Pacific are too large. Using
any one of the three methods, considerable improve-
ment is gained after assimilating the SST data, and the
analyzed field exhibits a realistic state of ocean surface
temperature distribution on a large scale. The smaller-
scale features, however, are obviously different for the
three methods. By comparing the RMSEs, the analysis
of S3DVAR may closely reflect the characteristics of
the real ocean state.

b. Assimilating satellite SST data

The satellite data in 2004 were processed as de-
scribed above, and almost one-third of the data failed

the quality check and were disregarded. The residual
data were averaged in each 1⁄6° � 1⁄6° block before being
assimilated. Figure 13a plots the data assimilated on 15
September 2004, showing that the distribution and den-
sity of satellite data vary inhomogeneously in some re-
gions.

In the ESAT experiment, the numerical model was
run for a 1-yr period with an initial condition of 1 Janu-
ary 2004, and the satellite SST data were assimilated
once a day. The parameters used in the two assimilation
systems of CSM and RFM were adjusted based on the
density of observation (listed in Table 2).

To check the impact of the three methods, the ana-
lyzed fields are compared to the shipboard SST data of
the corresponding day, and the RMSEs in time are dis-
played in Fig. 14. The total RMSEs of the analyzed
fields are calculated and listed in Table 2. The same
conclusion can be drawn: the most remarkable im-
provement is achieved by S3DVAR. Note from the

FIG. 13. The distribution of the satellite data assimilated on 15 Sep 2004. (a) The satellite data assimilated into the model and (b)
the shipboard data used to calculate the RMSEs.
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curved lines in Fig. 14 that the temporal RMSE of
S3DVAR is the smallest in almost all days, but around
September it increased abruptly and became larger
than the errors of CSM and RFM. The reason for this
peculiar behavior may be the separation of the satellite

SST data and the shipboard data shown in Fig. 9, which
are used to compute the RMSE during this period. As
shown in Fig. 13, the shipboard data are centralized at
the areas alongshore, where the satellite data are
sparse. However, as shown in Fig. 15, when the ana-

FIG. 14. The RMSEs of the analyzed fields of the three assimilation schemes and the model
simulation for the experiment of ESAT (compared with shipboard data).

FIG. 15. The RMSEs of the analyzed field of the three assimilation methods for the experiment of
ESAT (compared with satellite data).
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lyzed fields are compared with the training satellite
data, the RMSE of S3DVAR is always smaller than
those of the other two methods.

The analyzed SST fields on one particular day are

plotted in Fig. 16, which reveals that the outputs of
CSM and RFM are very similar to that of S3DVAR in
the large scale, but in the small scale they are quite
different. Because of the very inhomogeneous distribu-

FIG. 16. The global SST field on 2 Apr 2004 after the satellite data was assimilated into the
model: (a) model simulation, and results of (b) CSM, (c) RFM, and (d) S3DVAR.
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tion of the observations, the background covariance
cannot be formulated very well using a certain correla-
tion scale; hence, the methods of CSM and RFM cannot
assimilate satellite data as well as S3DVAR does, es-
pecially because the observation density varies in time
at different locations. As shown in Fig. 14, the RMSE of
the SST field decreases immediately after the satellite
data are assimilated into the model by S3DVAR. How-
ever, for the case of CSM and RFM, more time is
needed to diminish the RMSE to the same level as
S3DVAR. This demonstrates the obvious advantage of
S3DVAR in assimilating satellite data.

5. Summary

In this paper, the difficulties of implementing “single
3DVAR” methods are briefly discussed. Because the
background error covariance is formulated with a cer-
tain correlation scale at a certain place, only the infor-
mation of corresponding scale can be retrieved, and
because of the very inhomogeneous distribution of tem-
perature observation in the global ocean, it is difficult
to obtain satisfactory results when assimilating SST
data using these methods. To obtain a multiscale grid
analysis, an extended method named sequential
3DVAR is adopted based on the response analysis. It
performs like the conventional Barnes scheme in a
variational framework so it can easily process error co-
variance, advanced and proxy observation data, and
physical balances.

Some idealized experiments are carried out to evalu-
ate the impact of S3DVAR compared to two kinds of
single 3DVAR methods, namely, the correlation scale
method and the recursive filter method. They indicate
that the parameters of single 3DVAR methods must be
adjusted according to the observation density. In prac-
tical data assimilation, a statistical scheme has to be
used to estimate the parameters. However, the param-
eters cannot be accurate because of the lack of flow-
dependent information. The outcome of S3DVAR is
always better than those of single 3DVAR approaches,
even though its parameters are not necessarily changed
when the density of observation is different.

The method of S3DVAR is adopted into a global
SST assimilation system. Two sets of SST data, namely,
shipboard and satellite data, are assimilated. The ana-
lyzed SST fields show great improvement. In the case of
the shipboard data, the RMSE of the analyzed field
decreased by 44% against the control run, and an im-
provement from those using the other two methods is
also impressive, decreasing the RMSE by 19% and
34%, respectively. In the case of the satellite data, a
similar result is obtained: all three methods can im-

prove the SST field significantly on a large scale, while
only S3DVAR is effective in extracting multiscale in-
formation from observations. The superiority of
S3DVAR is more evident when assimilating the satel-
lite data for an inhomogeneous distribution of observa-
tion datasets. The RMSE of the analyzed field from
S3DVAR is dramatically and immediately reduced
when the assimilation cycle is started, while CSM and
RFM could not reduce the errors until a later time
when the sequence of the observations takes effect, just
as in a spinup process.
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