
Measuring the Impact of Information on
Complex Systems

Larry H. Reeker Albert T. Jones
Information Technology Laboratory Manufacturing Engineering Laboratory

National Institute of Standards and Technology National Institute of Standards and Technology
Gaithersburg, Maryland Gaithersburg, Maryland
larry.reeker@nist.gov albert.jones@nist.gov

Abstract

The application of power-driven machinery to
manufacturing and other areas of human endeavor
characterized the Industrial Revolution in the 18th and 19th

centuries. Measurement contributed in many ways to the
increasing economic influence of these machines. Using
formal or informal physical principles, metrics and
measurement techniques were found that allowed the
comparison of machine performance (evaluation), the
development of machines with the needed qualities
(engineering), and the coordination of machines within
factories (integration). The required physical dimensions
were space, time, and mass, and the common physical
quantities derived from these three; and, for these
quantities, measurement techniques were established. In
the Information Revolution begun in the 20th Century,
measuring information is also vital to the continued
influence of machines. Unfortunately, information is not
as well understood, as are physical constructs. It seems to
have an unlimited number of dimensions, and no
generally accepted metrics or measurement procedures.
So how do we measure the impact of information in the
21st Century? This paper sketches research directions that
may help to answer this question and it stresses the
importance of obtaining an answer.

I. INTRODUCTION

The machines or systems (machine and system will be
used as synonyms) to which we will refer in this paper are
ones in which information is vitally necessary and for
which information affects the behavior. Our use of
“behavior” is not limited to input and output, not a black
box definition. There is information coming into, going
out of, and residing within a system that is essential to
both its internal and external behavior. So machines have
a physical aspect, but it is the informational one that will
be stressed here. Of particular interest is manufacturing,
where systems have practical importance plus high
complexity; but the same problems arise in all
information domains.

Information must be conveyed in physical symbols like
marks on paper, sounds, or electrical pulses. Nevertheless,
information has an effect on a system that is not
explainable by its physical properties alone. That effect is
related to (1) the organization of the symbols, (2) the
meaning ascribed to the symbols and their organization,
and (3) the change in the system state that comes from
understanding and acting on that meaning. Since the state
varies with time, so will the effect of a particular item of
information on the properties of a given system.

There are three practical reasons for measuring these
properties. First, they are useful to evaluate systems
successfully. Measurements are needed to compare one
system to another, to show that they meet a particular
need, to prove that they fulfill the specifications of a prior
agreement, to demonstrate that they conform to standards,
and so on. Second, they are necessary to engineer
systems successfully. Measurements are needed to ensure
that constraints in the building process are met and that
the system will behave in the required way. As an
extension of the process of building to the practical need
for modularity, they are required to integrate systems
successfully. Measurements are needed to verify that the
information needed by one system can be supplied by
others without error and on time. The importance of
measurement can thus be based in the three roles for
measurement: evaluation, engineering, and integration.
There are other reasons, too, that might be cited, such as
understanding the system; but they can be seen generally
as overlapping the three practical reasons1.

In the earliest applications of information that impacted
the performance of systems, the physical carrier of the
information was mechanical links in steam engine
governors, punched holes in Jacquard looms, or electrical
connectivity in thermostats. The impacts of the
information could be measured for these applications by
its physical properties, and its physical cause and effect
(as heat causing expansion of a certain amount or current

1 An appendix is attached that discusses some meta-level
aspects of the measurement, with respect to science and
engineering.

flow in a thermocouple), reaction times, and so on. Those
impacts could be quantified, therefore, in terms of system
performance. The meaning of the information, not its
representation, was what influenced that performance.
The punched holes in the loom cards were originally in
stiff pasteboard and were read by needles. After their
evolution into Hollerith’s paper cards, they could be read
by pins that conveyed electricity and later by light and
electricity. Finally, when the cards went away entirely in
favor of other information representations, the same
information could be conveyed by different physical
means. Thus, the performance of many physical systems
is, in some sense, independent of the physical form of the
information that drives them.

The complexity of systems has evolved considerably over
the past twenty years. Among the more complex systems
are what we often call "intelligent systems". In these
systems,2 the impact of the informational component, its
representation and its meaning, is paramount. It is clear
that testing for the amount of and the impact of
information in any particular area is going to be difficult,
and that even the terms "amount" and "impact" will be
difficult to define. In short, a metric of the information
abstracted from the physical parameters is not evident.
The paper will argue that a great number of such systems
exist, even outside the area that might be labeled
"intelligent" or "knowledge based". It stresses several
critical points to understanding and controlling such
systems.

II. IMPACT OF INFORMATION ON CONTROL OF COMPLEX

SYSTEMS

Two of the simple systems mentioned above as examples
– the thermostat and the governor – are ones in which the
information is gathered by feedback, which is the
collection of information, its representation in a physical
medium, and its interpretation to control a system. The
handling of information for control can be much less
direct. Yet it is often the case that simple models can
provide ideas that can be generalized to more complex
ones, and maybe it can help in this case to understand the
general problem of measuring information impact.

Many complex systems can be viewed as a collection of
integrated and layered subsystems, which might at some
“bottom” layer be cases of direct physical control.
Typically, the layering occurs in both the temporal
domain and the spatial domain. The bottom layer contains
some combination of biological, chemical, and physical
processes. In humans, the evolution of these processes is
governed by an internal and natural intelligence, which

2 This paper used the term "complex" interchangeably
with “intelligent”, to avoid defining the latter term, the
difference not being important for our purposes.

we call the mind. While we do not know exactly how it
works, we see its benefits every moment of our lives.

Man-made systems, on the other hand, are not endowed
with a mind. The processes that make up these systems
are subject to the second law of thermodynamics. Hence,
without any external intelligence to guide their evolution,
entropy will increase and they will go out of control over
time. To keep this from happening, researchers have
expended an enormous amount of time, energy, and
money to develop models, algorithms, and heuristics that
come under the general heading of control theory.

While it is conceptually simple, control theory can be
complicated in practice. Conceptually, it consists of two
steps. Step 1 is to set the desired goal and develop a plan
to achieve that goal. Step 2 is to observe the execution of
that plan and make adjustments as required. The first step
usually involves the development of a model of the
system, an optimization problem based on that model, and
technique to solve that problem. Models, which can be
continuous or discrete, and deterministic or stochastic,
typically have temporal and spatial parameters. The
optimization problem has at least one measurable,
quantitative goal and constrains the parameters in the
model. Sometimes these problems can be solved
analytically, sometimes not. Regardless of how the
solution is derived, it results in a plan to be executed by
the system.

Consider a robot that that must move a part from point A
to point B in the shortest possible time. To generate a
path to accomplish this goal, the robot controller, which
could be a human or a software procedure, needs models
of the robot and its environment. These models are
continuous time, continuous state, and deterministic. The
controller formulates an optimization problem whose
solution will specify the start coordinates, the end
coordinates, the time, limits on models parameters (such
as speed, joint angles, and so on), and possible obstacles
to avoid. That solution yields the optimal plan that the
robot should use. This plan is then sent to the robot, or
more accurately the execution part of its controller, to be
implemented. Once the robot begins to move, we must
proceed to step 2. This means that we must somehow
make sure that the robot does not exceed any of the limits
and follows the predetermined path. We do this through
the generation and analysis of feedback. Sensors on the
robot create the feedback, which is analyzed by the
controller. When a problem is detected, a new plan will
be generated.

CRITICAL POINT 1: Both the plan and the feedback
are information objects, which impact the
performance and the behavior of the robot. Some of
these objects are simple; some are not. The meaning of
these objects must be conveyed to and understood by

all hardware and software components or there is no
hope of achieving the desired goals. These capabilities
do not happen "naturally"; they must be built into the
system.

As we move up the layers, we no longer deal directly with
biological, chemical, and physical systems. Instead, we
deal with decision-making and information systems that
affect those bottom-layers, but on a longer-term basis.
Nevertheless, the same two steps are involved. In this
case, however, the models are discrete time and discrete
state systems that often contain one or more stochastic
parameters. There are several, often conflicting,
quantitative performance measures and the techniques are
implemented in a number of software applications such as
linear programming, demand forecasting, and supply
chain management. These applications also produce
plans that are implemented in other, lower-layer software
applications -- demands lead to production plans, which
lead to schedules, which lead to sequences and so on.
These plans are based on information that has a high
degree of uncertainty. Some of this uncertainty arises
because of the influence of the second law on the bottom-
layer processes. Some of it arises because of the
stochastic nature of predictions associated with demand
projections, priority orders, and material arrivals, to name
a few.

CRITICAL POINT 2: Optimizing high-level
performance measures is critically dependent on the
ability of the associated software applications to share
complex information objects. Furthermore, without
have a common understanding of the meaning of those
objects, optimization is useless.

As we progress through the various layers of a complex
system like a manufacturing enterprise, an evolution
occurs from continuous time to discrete time and from
continuous state to discrete state. Furthermore, an
aggregation in information takes place as well - very
detailed, relatively simple, deterministic information at
the bottom; very little detail, more complex, highly
stochastic information at the top. No one knows how this
evolution or aggregation takes place. Moreover, at every
layer, there is some influence of entropy from both the
second law and information uncertainty. At the bottom,
the second law dominates. At the top, information
uncertainty dominates. We have a very good idea of how
to measure and control the effects of the second law on
physical system performance. We have almost no idea
how to measure and control the effects of information on
performance.

CRITICAL POINT 3: Information has a large impact
on system performance. Integration, getting the right
information from one software application to another,
also has an impact. Consequently, ensuring that all

software applications have the same understanding of
that information is critical to system performance.
Furthermore, and most importantly, our ability to
measure how well they understand impacts directly
our ability to measure the true performance of the
system.

An important question then is how can we build software
applications that are capable of understanding
information. The simple answer is that we must make
software, just as we must make equipment, more
intelligent. More accurately, we must surround each
software application with the "stuff" it needs to
understand the information it receives from other
applications. A partial list of some of that “stuff"
includes:

Parsers to determine the structure of an encoding (the
physical representation) according to a known
structural description (for symbols, called a
“grammar”).

Ontologies to describe the internal model that the
system can use to recognize inputs in terms of
catalogues of entities and processes and their
relationships.

Dictionaries to define the relationship of discrete
elements of the encoding to objects and processes in
the ontology.

Mappers from encodings to models or directly from
one model to another.

Controller which makes decisions on a course of
action (a sequence of behaviors), based on
information in plans that have been preprogrammed
or formulated and inputs (from users or sensors,
including feedback), and operates actuators to cause
the behavior sequence.

Actuators: Devices which behave physically to
produce behavior.

Perceptors: Systems that convert the input of sensors
into information for the system to process.

Equivalence, Similarity, and Difference Metrics:
Ways of measuring how the information in one
system or subsystem relates to another – whether it is
equivalent or not (more on this below!)

CRITICAL POINT 4: Our ability to control the
performance of the physical systems can depend
directly on our ability to measure the similarities and
differences between information objects.

III. MEASURING EQUIVALENCE BETWEEN INFORMATION

OBJECTS

Perhaps the first thing to consider in looking at
measurement metrics is whether definitions of
equivalence can be established. This is a tricky issue,
because in some sense they cannot. Consider two
ontologies, as defined above. They conventionally are
represented by classes of entities and their attributes,
linked into hierarchies (lattices are mathematically one
representation) based on the IS-A relationship. IS-A
relationships are based on the attributes of classes of
entities, and those attributes are based two things:
fundamental properties and the behaviors of entities in
activities. Trying to compare behaviors of entities after a
certain degree of complexity is reached leads to things
like the halting problem. Thus, just as it may be formally
undecidable if two programs are equivalent, it may be
difficult to determine ontological equivalence formally.
Perhaps we can still get measurements that will enable
satisfactory performance within bounds, and
undecidability will not be a problem. We still need to
measure some concepts of equivalence, even with the
blanket restriction of undecidability, which is a common
restriction that must be sidestepped often in computing.
One approach is to use approximations, which are often
required by limited measurement precision anyway.

CRITICAL POINT 5: The equivalence of information
objects may be undecidable, but we may be able to
develop approximate measurements.

Developing an approximate equivalence metric puts us
right in the middle of an ongoing controversy. That
controversy revolves around the best way to represent
uncertainty in information. There are two views:
probabilistic and fuzzy. The probability proponents argue
that there is only one consistent way to measure
uncertainty and that is probability theory. They further
argue that all probability is conditioned upon prior
information and that the proper way to do inferencing
must be based on a Bayesian framework. That
framework says (1) create a prior distribution using the
Principle of Maximum Entropy, (2) update that
distribution using any new information and Bayes
theorem, and, (3) use this new distribution for inferencing
[Jaynes, 88].

The fuzzy proponents argue that information is not crisp
enough to be measured using the quantitative laws of
probability. To overcome this difficulty, the concept of a
membership function is used. It has yet to be determined
for many researchers if there is any essential difference
between using fuzzy information and exact numbers with
probabilistic error bounds. At this point, many people
agree that fuzzy information can be a useful concept for
engineering systems and simplifying the code that runs

those systems. It may turn out that it is a mathematical
difference analogous to that between matrix and wave
mechanics in physics.

CRITICAL POINT 6: A full understanding of the
relationship between various approximate ways of
measuring information is needed.

Another important issue related to measuring uncertainty
in information objects is the notion of entropy. That there
is a relationship between information and entropy has
been postulated for many years. A number of information
measures have been proposed [Arndt, 01], including those
by Shannon [Shannon and Weaver, 71] and Stonier
[Stonier, 91]. Information is a measure of the decrease of
uncertainty, and its representation requires an organized
notation. Entropy is a measure of the increase of
randomness. If one takes an organized body of
information and randomizes it (adds noise) then there is
less information and higher entropy.

The term “information” is itself used in different ways,
however, because organization can mean many things. In
thermodynamics, it is molecules behaving in an organized
fashion. In Shannon’s communication examples, it is
strings of symbols sent from a sender arranged in a way
that can potentially lessen uncertainty at a receiver that
can decode the symbols. In other uses, however,
information has to be relevant to some task being
performed by a system. In computation, it is related to
complexity considerations. The work of Solomonoff,
Kolmogoroff and Chaitin [Chaitin, 92] links information
conveyed by symbols in logic and information systems
with complexity of computation, and relates them to
Shannon’s measures, as well.

The problem of information content is that it is “about
something”. How do we compare information about two
different subjects? The answer may be that we just do not
do so, at least if the subjects are independent. But how do
we know if they are independent? We may not want to
mix oranges and apples; but, if we are concerned about
fruit, we can develop information about them because
they are no longer independent. Consider the following
simple experiment. Suppose we have nine pieces of fruit,
five oranges and four apples, and someone puts three of
them in a bag. If we find three apples, we know that there
are no oranges. This becomes much more difficult when
we get to questionable or fuzzy sets -- try repeating this
experiment with five big apples and four small apples.
This second experiment is typical of problem of
measuring information content. It depends on the
individual system and its ontology. Independence can be
classified as being in different dimensions, analogous to
dimensions in physics; but it seems there are too many
dimensions to measure.

In the example above “fruitiness” might be considered an
attribute and the question might be whether a tomato has
some fruitiness, so a negotiation is needed to decide if it
will count or not. The Garden of Eden “fruit” is generally
considered to be an apple. Could it be an orange? Is an
apple “fruitier” or more likely to be fruity than an orange?
Reasoning like this would call for a lot of dimensions,
since apples and oranges alone have plenty of attributes to
be compared. The psychologist and communication
scholar Charles E. Osgood developed work in the
measurement of a type of meaning (which is information
content in much the same way that work is energy;
meaning changes information content).

Osgood was interested in connotative meaning – meaning
that is related to an individual’s personal ontology
[Osgood, 57]. So, it is beyond the denotational meaning
and only intended to be partial. In trying to define it, he
postulated three dimension types or factors, within which
pairs of adjectives would indicate denotations.

• Evaluative factor (example: good - bad)
• Potency factor (example: strong – weak)
• Activity factor (example: active - passive)

Osgood then measured each pair, for each factor, on a
seven point Likert scale. In the apple example, perhaps
“fruity” could be equated to one and “not fruity” could be
equated to seven. He then constructed an n-dimensional
space, n being the number of adjective pairs, for his
“semantic differential”.

Clearly, much more than the semantic differential is
needed to do the evaluation that can lead to integration of
several manufacturing systems or bioinformatics systems.
However, Osgood’s ideas fit into the idea of fuzzy
frameworks, and it was an important step in trying to
formalize the idea of how the vocabulary of humans may
vary. Vocabulary, while not the same as ontology, is
closely linked, and provides a way to get at human
ontologies. With machines where we know the code, we
have the advantage of being able to read the ontologies
more directly. The problem then becomes one of
developing mappings from one ontology to another.

How do we reconcile the measures mentioned above with
a system of dimensions like those used to measure
physical dimensions, and how many dimensions do we
actually have in information?

CRITICAL POINT 7: Even a theory that defines
information not just as to amount but also in terms of
“vectors” of information does not so far seem
adequate for computing information equivalence or
providing a precise measure of information overlap,
though it is an interesting approach.

There are other problems of terminology that will not be
discussed. It is rare to hear people use “data”,
“information”, and “knowledge” in consistent, well-
defined ways. And what about “potential information”
that has a statistical amount but is not used at all? All of
these still need some standard definition and scientific
theories to put them in a framework. The underlying
theory is not adequate. On the other hand, perhaps a
limited categorization of knowledge that would cover
particular programs is possible, if the categorization can
be agreed upon. Here we return to the notion of ontology.
This is a claim that sums up some of the ideas herein:

CRITICAL POINT 8: What we need to measure
defines the model of the world that a system expects to
find and its ways of coping with that world. The set of
its behaviors may be infinite and unknowable if the
machine is complex, but it is defined indirectly if we
can predict behavior through the model. To predict
behavior accurately, the information needs to be
characterized in an ontology and what is done to
information based on that ontology.

This point would seem to suggest an arduous task for
satisfactory measurement of the relevant information that
flows through a system; but it also suggest a potential
benefit. Measurement of the information, if it is
adequately powerful, can potentially “give back” to us in
understanding enough value to repay the effort we put
into creating and applying the metrics and techniques.

It is clear that every system that deals with information,
whether computational or biological, contains an internal
model of the outside world – an ontology. In computer
programs, the elements of the ontology are data objects
and procedures for manipulating those data objects; both
are used by the program. Like matter and energy in
physics, data objects and procedures in an ontology are
related. Consider the notion of an ordered list of
customers. It is a data object; yet it can be defined by a
random set of customers and a sorting procedure. Its
inputs are the (unordered) list and a statement of the type
of order desired; and its output is the ordered list. If we
want to integrate two systems that need an ordered list of
customers for some purpose, it is important that we be
confident that they employ the same order; otherwise they
will not correctly operate together. To do that, it is
necessary to measure the ontologies of the two systems to
see if that is true.

The order example is not very complex on its surface. In
practice, it is not possible, in general, to find out whether
two algorithms producing an arbitrary order (not just a
simple linear one) are outputting the same information.
This is a consequence of a variety of undecidability
results. So it is necessary to consider how we can use
standards and measurements to be relatively confident

that there is going to be interoperability between the two
systems.

IV. MORE ON MEASURING, COMPARISON, AND

CHARACTERIZATION OF ONTOLOGIES

The point has been made above that a core ontology is
needed to specify what information can be communicated
to a given system by another system and what information
the given system can send back. There is work going on
in measuring these ontologies.

Every ontology has certain terms that may be grounded in
physical parameters. In these cases, the physical
information needs to be expressed in the appropriate
dimensions. We are all familiar with the problem that
arose in a probe of the planet Mars when the input and the
expected physical parameters had different dimensions.
That problem was not unique, and is even common in the
building of software systems that do not have well-
engineered descriptions of requirements. It is just easier
to recognize when the information is closely related to
physical parameters, as in the Mars probe. This also
happens when the output from physical sensors is used as
input to software applications. One tests the input
requirements to see if the sensor outputs match exactly or
in a way that is 'mappable' at the information level.
Ontologies can help in both the matching and the
mapping.

The development of explicit ontologies, therefore, is itself
an important step because it clarifies which information
items are directly grounded and which are indirectly
grounded through computations. Comparing directly
grounded objects is, in general, easier than comparing
indeirectly grounded objects. Even if the frameworks for
the ontologies are different, they can be compared if they
use a consistent style. [Noy and Hafner, 97] characterized
and compared a number of different ontologies. They
concluded that if the ontologies can then be mapped into a
similar format, they may be aligned, and maybe merged,
with perhaps some human interaction. [Noy and Musen,
00] discusses this for a system called PROMPT;
[McGuinness et al, 00] discusses an environment that
provides tools for people who wish to merge ontologies.

Three efforts are underway to develop some standards for
ontologies related to manufacturing: the Standard Upper
Ontology, SUO, [http://suo.ieee.org/], the Process
Specification Language, PSL,
[http://www.mel.nist.gov/psl/], and, the Defense Agency
Markup Language, DAML, [http://www.daml.org/] .
These can be helpful in that they make the comparison of
systems with different ontologies easier. How does each
deviate from the core ontology? If the top (more general)
ontological categories are the same, that saves a lot of
work; and if they are not entirely the same, it may be

easier to compare them to a single, core ontology and note
their deviations. But there will still be systems with
different ontologies in overlapping subject areas that need
to be merged. A recent paper on how these may be
compared is found in [Maedche and Staab, 01], who
provide some explicit measures of similarity.

The goal of determining the properties of ontologies by
analyzing the information in them and then comparing
them to ontologies of other systems for interoperability
purposes is still some distance away. Nevertheless, the
interest in the area is growing and the results are
promising.

V. IMPLICATIONS FOR COMPUTER SCIENCE AND

SOFTWARE ENGINEERING

Each programming language must provide means of
instructing a machine how to process information. This
can be done implicitly, through logic or objects, or
explicitly, through commands and procedure calls.
Equally, a language must be able to convey knowledge of
what information it is dealing with. This fact is
encapsulated in the title of Nicklaus Wirth’s book
Algorithms + Data Structures = Programs [Wirth, 1976].
The history of programming languages shows that there is
a tradeoff between describing the how and what. The
tradeoff is illustrated by comparing object-oriented
languages with procedural languages. In the SIMULA
language, the first object-oriented language, is both
procedural and object-oriented, but a glance at the
programs in, say, SIMULA Begin [Birtwhistle et al 73] ,
illustrates the tradeoff.

The data structure is a fundamental part of a programming
language. There has been descriptive work on data
structures, and everybody has examples of
"informationally equivalent" data structures. As a simple
example, consider character strings. Before they were
basic structures in some languages, they were handled as
an array of characters and numbers with the number
indicating the array address of the next character. Note
that one of these has both single characters and integers,
while the other one has only character strings. Despite the
difference in structure, it is not difficult to show the
informational equivalence of these two representations. In
fact, the idea of data abstraction deals with using such
equivalences to free the programmer from details of
implementation. Though it is not the purpose of this
paper to deal with programming per se, the idea of
comparing ontologies is, in fact, similar to comparing two
implementations that have different data structures. One
first asks if the data structures are equivalent. If so, their
syntax, the physical organization by which they are
communicated by the programmer to the computer or
stored in the computer is equivalent. The next question is
“Do they mean the same thing?” Another way to ask this

question is “Are they informationally the same?” This is
usually far more difficult to ascertain.

The data structures used in a program are a part of the
program’s ontology, as are the procedures it uses. When
we set out to integrate two existing programs, we want to
be able to measure their ontologies because it is necessary
that their data structures correspond in some way. That
understanding allows us to couple them directly or
through an interface. Two ways to improve software
engineering are (1) to develop methods for creating and
publishing these ontologies, and, (2) create processes for
measuring informational objects and determining their
role in the software programs.

One of the early issues in programming was modularity.
As programs became more complex, and particularly as
they began to be crafted by a team of people rather than a
single individual, modularity became a design
requirement. The possibility of reuse was another major
impetus. Today, integration of software is probably more
important than the creation of tailor-made programs. The
challenge of integration is determining if the information-
- data structures, knowledge bases and knowledge
models, databases and their schemata, and the syntax and
semantics -- are the same in each of the programs being
integrated. Therefore, it is important to all systems that
must share information – not merely the ones we might
deem “intelligent” – that we have ways of measuring and
comparing the information that each system uses.

VI. CONCLUSION

We do not know today how to measure equivalence of
information nor its impact on a system. We need to be
able to do so to evaluate existing systems, to engineer
new systems, and, to integrate both. The benefits will be
seen primarily in highly complex software systems that
utilize a large amount of knowledge from either other
programs with the system or devices in the real world.
On the other hand, should the promise of “ubiquitous
computing” come true, information will permeate
physical systems as well. In this paper, we have argued
that the measurement of the ontology of a system is a
fundamental part of realizing these goals. We also
indicated that some ideas are emerging in the areas of
ontology standards and measurement.

References

Albus, J. S. [00] Features of Intelligence Required by
Unmanned Ground Vehicles, in [Meystel and Messina,
00]

Arndt, C. [01] Information Measures: Information and its
Description in Science and Engineering, Springer-Verlag,
Berlin, Germany, 2001.

Birtwistle, G.M., Dahl, O-J., Myhrhaug, B., and Nygaard,
K., Simula BEGIN,
Petrocelli/Charter, 1973.

Chaitin, G. J. [92] Information-Theoretic Incompleteness,
World Scientific, 1992 (Reprinted 1998.

Chandrasekaran, B., J. R. Josephson, and V. R.
Benjamins [98] Ontology of Tasks and Methods, 1998
Banff Knowledge Acquisition Workshop. [Revised
Version is cited above. It appears as two papers "What
are ontologies and why do we need them?," IEEE
Intelligent Systems, Jan/Feb 1999, 14(1); pp. 20-26;
"Ontology of Task and Methods," IEEE Intelligent
Systems, May/June, 1999.]

Jaynes, E. 88, `The Relation of Bayesian and Maximum
Entropy Methods (510Kb),' in Maximum-Entropy and
Bayesian Methods in Science and Engineering, 1, G. J.
Erickson and C. R. Smith (eds.), Kluwer, Dordrecht, 1988

Maedche, A. and S. Staab, Comparing Ontologies –
Similarity Measures and a Comparison Study, Internal
report 408, Institute AIFB, University of Karlsruhe,
Germany, 2001.
http://ontobroker.semanticweb.org/ontos/report-aifb-
408.pdf

McGuiness, D., R. Fikes, J. Rice, and S. Wilder, an
environment for merging and testing large ontologies,
Proceedings of the Seventh International Conference on
Principles of Knowledge Representation and Reasoning,
Brekenridge, CO, 2000.

Meystel, A. and E. Messina, Eds., Measuring
Performance and Intelligence of Systems: Proceedings of
the 2000 PerMIS Workshop, National Institute of
Standards and Technology, 2000.
http://www.isd.mel.nist.gov/research_areas/research_engi
neering/PerMIS_Workshop

Noy, N. F., and C. Hafner, 1997, The State of The Art in
Ontology Design: A Survey and Comparative Review, AI
Magazine, 18(3), 53-74 (1997)

Noy, N. F., and M. Musen, Prompt: Algorithm and tool
for automating ontology merging and alignment, in
Proceedings of the Seventeenth National Conference on
Artificial Intelligence, Austin, TX, 2000

Osgood, C. E., G. Suci and P. H. Tannenbaum [57], The
Measurement of
Meaning. Urbana: The University of Illinois Press.

Reeker, L. [00] Theoretical Constructs and Measurement
of Performance and Intelligence in Intelligent Systems, in
[Meystel and Messina, 00]

Simon, H. A. [69] The Sciences of the Artificial. Third
edition, Cambridge, MA, MIT Press, 1996. [First edition
published 1969].

Shannon, C. and Weaver W. [71], The Mathematical
Theory of Communication, University of Illinois Press,
Urbana, IL, 1971.

Stonier, T. [91], Information and the Internal Structure of
the Universe, Springer-Verlag, Berlin, Germany, 1991.

Wirth, N. [76], Algorithms + Data Structures =
Programs, Englewood Cliffs, N.J : Prentice-Hall, 1976.
Reeker, L., Theoretical constructs and measurement of
performance and intelligence in intelligent systems, in
[Meystel and Messina, 2000].

Walther, E., H. Eriksson, & M. A. Musen. [92] Plug-and-
Play: Construction of Task-Specific Expert-System Shells
Using Sharable Context Ontologies. AAAI Workshop on
Knowledge Representation Aspects of Knowledge
Acquisition, San Jose, CA, 191-198. AAAI, 1992.

Appendix: Technical and Scientific Progress Through
Measurement

This appendix argues generally for the importance of
measurement in technology and in science, of which the
measurement discussed in the paper is an example. This
importance is expressed succinctly in two statements of
Lord Kelvin (William Thomson) in the 19th century.
These statements are

"If you can not measure it, you can not improve it"
"To measure is to know."

The following sections describe in more detail what these
statements have meant to engineering and science,
thereby stressing the importance of paying attention of
measurement considerations.

Let us assume that we are working on technology that is
not underlain by an established scientific theory -- like
robotics or AI. We should be aware of the relationship
between technology and science, which is sometimes
muddied when the public regards “information
technology” and “computer science” as synonymous. Of
course technology and science are linked, but they are
separable, both logically and historically. As a rule, some
technology in any given area has developed before the
corresponding science. In a symbiotic relationship,
technology has been stimulated by scientific interests and

aided by scientific knowledge, and much scientific
discovery has occurred in or been motivated by
technology.

Science begins with curiosity, but technology starts with
more mundane needs. A need is perceived and made
more precise in what systems engineers call a set of
requirements. Once that happens, any techniques
available may be used to fill the prescription. For
complex requirements a good deal of ingenuity is
required, so we have come to call the people who
transform the prescriptions into technology engineers.
The ingenuity and experience needed for engineering has
not required a developed science, but engineering has
always been improved by the ability to measure.
Comparison, matching, and duplication are engineering
uses of measurement, and important for meeting
requirements. Their usefulness was known by the time
the Great Pyramids of Egypt were constructed (probably
long before).

Today, we tend to link science and engineering because
engineering is frequently able to call upon science to
predict the outcomes of engineering processes that may
be breaking new ground (not just ones that require
matching parts or duplicating previous artifacts). The
ability to predict is a key aspect of the understanding that
scientific theories provide, and is a clear transfer from the
ability to measure. But the use of substantial amounts of
scientific understanding to improve engineering is
relatively new because the development of scientific
understanding has been slower than necessity-driven
technology, requiring a similar but different kind of
creativity.

From the standpoint of computational systems or physical
systems, or their combination in robotics, we use all sorts
of measurements in the construction process, but also in
evaluating. We measure the performance of artifacts for
engineering purposes, either to test the performance limits
of a single artifact, to test its conformance to
requirements, or to compare multiple artifacts. If it is for
conformance, it may be done by matching quantitative
behavior to requirements. If the requirements are
qualitative, the number of requirements met and/or the
degree to which they are met is interesting. Measurement
can determine the success or failure of a portion of a
technology project or of the entire project (or device, if
that is the outcome of the project). But success is rarely
absolute, and requirements met lead to ideas for better or
stricter requirements. As Lord Kelvin pointed out,
measurements provide a way of meeting these new
requirements and thus of improving the product.

If project requirements are not easily translated into a
behavioral outcome, then models of various suggested
approaches can be developed and their behaviors may

stimulate the development process by people who tacitly
know the needs but may not have been able to articulate a
satisfactory set of requirements. The point is, however,
that thinking about tests and measurements that might
indicate the success or provide data for comparison can
both prove and improve the outcome. This may be seen
as the beginning of science, since scientific theories are
models that meet certain requirements beyond those of a
particular project.

Engineering is the process of creating artifacts, and
“engineering sciences” developed by studying the
process, are themselves sciences of the artificial. But for
most engineering sciences, there are also underlying
physical sciences. Because of that and because physical
science provides the leading paradigm of science as it has
developed over the ages, it is useful to consider examples
of physical theoretical constructs. (It is well to keep in
mind that informational theoretical constructs are going to
be primary in computer science and artificial intelligence
and a major consideration in robotics.)

Consider the construct gravity, which has a theoretical
basis traceable to Galileo and Newton, refined more
recently by Einstein. The gravitational constant is a part
of that theory that has major technological ramifications,
such as great predictive value in ballistic calculations. If
one is building a catapult to bring down the walls of a
fortified city, it could greatly help in making the right
design decisions before actually building one; though
such catapults were engineered well before Newton, or
even Galileo.

Similarly, Newton’s laws of motion are very useful, and
mass is a fundamental theoretical construct used in both
gravity and motion. When we create theoretical constructs
like gravity and mass and can measure them, they
increase our understanding of the physical world and our
ability to predict how artifacts will perform in all
situations: “To measure is to know.”

Measurable theoretical constructs from physical theory
influence design decisions and increase the likelihood of
meeting technology prescriptions, with efficiencies of
time, resources, and effort. The same thing will be true for
theoretical constructs in information sciences and their
related engineering branches as they develop.

In summary, science and technology both require
measurements, and each has its separate needs. For
technology, measurement is used to guide the engineering
process and to check both the process and its products
against requirements (the term often used is “validation
and verification”). Often, however, intermediate
measures can be found during the engineering process
that turn out to have predictive value as to the final
performance of an artifact. These measures may be
indicative of important theoretical constructs that can
enrich understanding within an underlying science.
Science can exist by itself, and it originates in a basic
human need to understand the world. Technology has
existed for longer, as long as people have had a need for
artifacts. Science and technology enrich each other, and
measurement enriches them both.

